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Cell wall matrices are complex composites mainly of polysaccharides, phenolics

(monomers and polymers), and protein. We are beginning to understand the synthesis

of these major wall components individually, but still have a poor understanding of how

cell walls are assembled into complex matrices. Valuable insight has been gained by

examining intact components to understand the individual elements that make up plant

cell walls. Grasses are a prominent group within the plant kingdom, not only for their

important roles in global agriculture, but also for the complexity of their cell walls. Ferulate

incorporation into grass cell wall matrices (C3 and C4 types) leads to a cross-linkedmatrix

that plays a prominent role in the structure and utilization of grass biomass compared

to dicot species. Incorporation of p-coumarates as part of the lignin structure also

adds to the complexity of grass cell walls. Feruoylation results in a wall with individual

hemicellulosic polysaccharides (arabinoxylans) covalently linked to each other and to

lignin. Evidence strongly suggests that ferulates not only cross-link arabinoxylans, but

may be important factors in lignification of the cell wall. Therefore, the distribution of

ferulates on arabinoxylans could provide a means of structuring regions of the matrix

with the incorporation of lignin and have a significant impact upon localized cell wall

organization. The role of other phenolics in cell wall formation such as p-coumarates

(which can have concentrations higher than ferulates) remains unknown. It is possible

that p-coumarates assist in the formation of lignin, especially syringyl rich lignin. The

uniqueness of the grass cell wall compared to dicot sepcies may not be so much

in the gross composition of the wall, but how the distinctive individual components

are organized into a functional wall matrix. These features are discussed and working

models are provided to illustrate how changing the organization of feruoylation and

p-coumaroylation could lead to differing cell wall properties.

Keywords: grasses, cell walls, ferulates, p-coumarates, lignin, cross-linking, glucuronoarabinoxylans

INTRODUCTION

Annual and perennial grasses play a vital role in agriculture by providing feedstuffs for animals in
the forms of fresh forage (grazing) and preserved forage (silage and hay). The grains harvested from
grasses comprise an important food source for both animals and humans. In addition, perennial
grasses play a pivotal role in stabilizing soils and minimizing soil erosion especially in areas that
are considered marginal lands. Understanding the functional roles of cell walls as it relates to
plant growth, development, and responses to the environment would be useful and important for
agronomic productivity and utilization. Increased knowledge of cell walls would result in greater
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and more efficient utilization as feedstuff for ruminants as well as
improved sources of biomass for bioenergy.

Structural Polysaccharides (Xylans)
In general, plant cell walls have similar main structural
features. They all contain a cellulosic backbone imbedded
in a variable matrix made up of structural polysaccharides
(hemicellulosic polysaccharides and pectins), lignin, and proteins
(both structural and metabolic). The proportions and specific
types of polysaccharides within the major groups can vary among
species of plants providing a general fingerprint for a given
species. This is complicated by the variable amounts of different
components depending upon the stage of development and the
organ- and cell-type source of the cell wall.

In grass cell walls the major hemicellulosic polysaccharide is
the xylan. Typically grass xylans make up between 20 and 30% of
the total cell wall. The non-xylan, non-cellulosic polysaccharides
comprise between 10 and 15% of the cell wall. Grass xylan
composition differs from dicot xylan in that it is substituted
with arabinofuranose (Araf ) and ester-liked hydroxycinnamates
(Figure 1; Carpita, 1996; Pauly et al., 2013; Rennie and Scheller,
2014). Araf substitution of the β-(1,4)-xylose backbone may
be α-(1,2) or α-(1,3)-linked. Additionally, the β-(1,4)-xylose
backbone can be substituted with α-(1,2)-glucuronic acid to
form glucuronoarabinoxylans (GAX) containing both arabinosyl
and glucuronosyl substitutions on the β–1,4 xylan backbone.
Arabinosyl substitution of grass xylan can vary from molar
ratios of 1:2 Ara:Xyl to levels of 1:20 or 1:30 depending upon
the maturity of the specific grass and tissue being evaluated.
Substitution patterns on the xylan backbone dictate how strongly
they can hydrogen bond to other wall polysaccharides, mainly
cellulose and to other xylans, influencing structural properties of
the wall (Ebringerova and Heinze, 2000).

Characterization of the xylan reducing end structure in
monocots lags dicot systems. In dicots and gymnosperms, a
specific reducing end sequence (4-β-D-Xylp-(1,4)- β-D-Xylp-
(1,3)- α-L-Rhap-(1,2)- α-D-GalpA-(1,4)-D-Xylp) has been found
(Pena et al., 2007). Recently, targeted identification of the
reducing end structure from wheat endosperm xylans indicate
a significantly different sequence comprising of linear 1,4-β-D-
Xylp mono-substituted with an 1,3-α-L-Araf at the terminal or
penultimate Xylp and/or an 1,2-α-D-GlcA on the terminal Xylp
residue (Ratnayake et al., 2014).

Xylans in grasses have another unique structural feature when
compared to dicot xylans: the addition of ferulic acid (FA) and,
to a lesser extent, p-coumaric acid (pCA) to the α-(1,3)-Araf
residues (Ishii, 1997). Ferulic acid and pCA are attached by ester
linkages to the C-5 carbon of arabinofuranosyl (Araf ) residues
(Figure 1). Not every arabinosyl residue contains a ferulate and
the exact placement along the xylan backbone remains unknown
at this time. There is continued debate as to the placement
of Araf residues to form uniform repeating structures (Faik,
2010). Detailed structural studies using purified endoxylanases

Abbreviations: Araf, arabinofuranose; AX, arabinoxylan; FA, ferulic acid,

ferulates; GlcA, glucuronic acid; GAX, glucuronoarabinoxylan; pCA, p-coumaric

acid, p-coumarates; Xyl, xylose.

followed by structural characterization of the purified released
oligosaccharides indicated uniformity of these carbohydrate
fractions (Zeng et al., 2008). Carpita (1984b) identified a highly
substituted GAX in maize that was structurally related to other
GAX polysaccharides from maize with a much lower level of
substitution on the xylan backbone. It was speculated that GAX
biosynthesis may initially occur in the highly substituted form
and enzymatically modified once secreted into the cell wall.
Such a mechanism would help with manipulation of the xylan
into a particular location followed by removal of the arabinosyl
substitutions to promote hydrogen bonding to other xylans
and/or cellulose (Figure 2). Arabinofuranosidase activity needed
to remove the side chain substitutions may be limited by the
presence of ferulates attached to some of the Araf residues.
This action could result in what appears to be a relatively
uniform structure but is controlled post synthesis as opposed to
controlling the appropriate glycosyltransferases.

The presence of ferulates on Araf residues varies from grass
species to grass species and also within different tissues. Inmature
maize the ratio of FA:Araf can be nearly 1:1 for pith tissues and
1:2 for the rind portion of the stem (Hatfield and Chaptman,
2009). In Brachypodium (Rancour et al., 2012) the FA:Araf ratio
varied depending upon the stage of development and plant tissue.
In mature stems FA:Araf was 1:2.4 while expanding stems were
1:3.1, mature sheath material was 1:3.9 and expanding sheath
was 1:10.7 and leaf material remained relatively constant at 1:4.7
FA:Araf. There is other data in the literature but it is difficult to
draw conclusions concerning the FA:Araf as it is not always clear
if the FA analyses accounted for both ester linked and ether linked
or whether FA dimers were included in the analyses. However,
these data do not address if the observed variation in the FA:Araf
ratio is controlled at the time of FA-AX synthesis or is the result of
post-synthesis modification by appropriate hydrolytic enzymes,
such as arabinofurnanosideases.

Ferulates and p-Coumarates
The majority of the Poaceae family (true grasses) incorporates
ferulic acid (FA) and p-coumaric acid (pCA) into their cell walls.
Harris and Hartley (1980), Harris et al. (1980) identified the
acylation of plant cell walls with both p-hydroxycinnamates. It
is widely accepted that grass cell walls are uniquely cross-linked
by ferulates to form diferulates and to some extent p-coumarate
cyclodimers (Fry, 1986; Ford and Hartley, 1990; Quideau and
Ralph, 1997; Ralph et al., 1998; Hatfield et al., 1999a). This cross-
linking extends to coupling carbohydrate fractions (GAX) to
lignin. The degradability of grass cell walls can be affected by
manipulating the degree of cross-linking and lignification (Ford
and Elliott, 1987; Jung et al., 1992; Grabber et al., 1998a). This
degradability is important for utilization as nutrient carbohydrate
sources in livestock systems and in feedstock for bioenergy
production systems.

Identification of phenolic acids in plant cell walls dates back
several decades. Since their identification, much work has been
devoted to defining their roles within cell wall matrices. Early
on it was shown that ferulates incorporated into grass cell
walls could form cross-links thus coupling together carbohydrate
polymers, principally GAX (Ishii and Hiroi, 1990; Ishii, 1997).
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FIGURE 1 | Chemical molecular model of grass xylan. Molecular models of grass xylan domains including (A) regions of arabinoxylan substituted with ferulic acid

ester-linked to the 5-OH of arabinofuranose, (B) β-1,4-xylose substituted with α–1,2 and/or α–1,3-arabinofuranose for arabinoxylan, and (C) unsubstituted

ß-1,4-xylose.

For a long time it was believed that only 5-5-diferulate formed
cross-links within cell wall matrices (Markwalder and Neukom,
1976; Neukom and Markwalder, 1978). Subsequent work clearly
demonstrated that several types of ferulate dimers could be
formed from free radical mediated coupling reactions (Ralph
et al., 1994; Grabber et al., 2000) as well as trimers and tetramers
(Bunzel et al., 2005). Ferulates can become linked to lignin
through the same type of free radical meditated cross-linking
to form a carbohydrate and lignin complex covalently linked
together in grass cell walls. It is clear the role of ferulates is
to cross-link not only the carbohydrate fraction (mainly GAX)
of the cell wall matrices but to also form covalent linkages
to growing lignin polymers during the lignification process
(Quideau and Ralph, 1997; Bunzel et al., 2005). Structural
evidence suggests that ferulates can act as nucleation sites for
lignin formation (Ralph et al., 1993, 1995; Grabber et al., 1998b).
One can envision lignification occurring and spreading out from
nucleation sites of feruloylated cell walls. Initially, lignification
from these numerous sites could form small separate pools of
lignin polymers within grass walls. This may explain why grass
lignin especially in immature plants is reasonably alkaline soluble
compared to many dicots. The advantage to the grass is in
maintaining a more flexible stem particularly at early stages of
development.

The significant amounts of pCA on lignin in these same
grass cell walls and the functional role p-coumaroylation plays
within the cell wall remains unclear. There are reports of pCA
being ester linked to GAX just like FA, yet this level is much
lower (1:15) compared to FA (Mueller-Harvey et al., 1986). Other
studies examining corn failed to identify detectable levels of
pCA attached to arabinose in the stem tissues using methods
based on mild acid hydrolysis to break the C1 arabinosyl linkage

to xylans releasing pCA-arabinose and FA-arabinose conjugates
(Myton and Fry, 1994; Marita et al., 2003; Hatfield et al., 2008b).
In corn stems as well as other grasses, pCA incorporation into
cell walls as part of the lignin fraction seems to be a preferred.
Recent reports have indicated substantial increases of ester-
linked pCA incorporation in place of FA on arabinoxylan can be
achieved in rice through the over-expression of OsAt10, a BAHD
acyl-CoA transferase (Bartley et al., 2013). This replacement of
FA with pCA resulted in saccharification improvements of 20–
40% without affecting plant development nor lignin content or
composition.

Corn (Zea mays) has some of the highest esterified-pCA levels
along with grain sorghum (Sorghum bicolor) (30–38 g kg−1 cell
wall). Other C4 grasses like switchgrass, big bluestem, and little
bluestem have significant levels (12–15 g kg−1 CW), but are
usually less than half the levels found in grain sorghum or corn
and are similar to the levels seen in C3 type grasses (Hatfield
et al., 2009). One explanation for greater quantities in corn and
grain sorghum over other grass species is independent of the
unique factors classifying them as C4 or C3 type grass. Such
differences could simply be related to the overall size of the
plants. Lignin isolated from taller grasses with larger diameter
stems results in a greater degree of p-coumaroylation. To clearly
determine the validity of this a more diverse cross section of
grasses needs to be examined across multiple locations and
environments.

One proposed role of pCA in grass cell walls is as a radical
transfer mechanism to help in the formation of lignin monomer
radicals especially sinapyl alcohol (SA) (Takahama and Oniki,
1996, 1997; Hatfield et al., 2008a). Incorporation of pCA into
the wall matrix occurs through the intracellular attachment of
pCA to SA or coniferyl alcohol (CA) residues via esterification.
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FIGURE 2 | Molecular model of grass lignin. Molecular model of grass lignin highlighting the diverse linkages contained within the polymer including p-coumarate

ester-linked (red) to sinapyl subunits.

In grasses such as corn, the cell wall peroxidases do not oxidize
SA as rapidly as CA, FA, or pCA. However, in its oxidized state,
pCA can rapidly transfer a free radical to SA resulting in rapid
radical mediated cross-coupling reactions between SA residues or
SA and CA (Ralph et al., 2004a). Attaching pCA to monolignols
especially SA residues insures that pCA is in the same location
within the wall matrix as the polymerizing monolignols. As such,
one might expect in grasses or tissues with higher levels of
pCA, there would be higher overall lignin content within the
cell wall matrix. A comparison of C3 and C4 grasses indicates
on a cell wall basis lignin levels were nearly the same across
all grasses (155–225 g kg−1 CW) while pCA ranged from (5–
37 g kg−1 CW). There was a 6-fold difference in pCA levels
but only a 31–45% difference between the highest and lowest
lignin content. If the role of pCA is to aid in the formation of
lignin especially syringyl rich lignin one might expect a strong
correlation between pCA content and total lignin. This does not
appear to be the case when comparing levels across a range of
different grasses (Hatfield et al., 2009), but does hold true looking
within nodes/internodes of a developing corn plant, directional
trends of pCA levels in nodes and internodes along a corn plant

do correlate with corresponding lignin levels (Jung et al., 1998;
Hatfield et al., 2008b). Therefore, in the current lignification
model where peroxidases and/or laccases provide the oxidative
capacity to plant cell walls (Vanholme et al., 2008), and the
presence of phenolic compounds such as pCA have the potential
to radicalize and be incorporated into the lignin polymer, this
does not occur. Instead pCA acts as a radical transfer system but
it does not become part of the radical mediated cross-coupling
reactions that form the growing lignin polymer (Hatfield et al.,
2008a). In essence, pCA can be recycled in this radical transfer
system alternating between its oxidized and ground states during
the formation of SA radicals. The pCA attachment to lignin is
only through its ester linkage to monolignols, primarily sinapyl
alcohol. Unlike ferulates that do become readily cross-linked into
the growing lignin polymer, pCA remains bound within the cell
wall matrix by this single covalent linkage, i.e., esterified to SA
residues. This property of pCA raises two possible scenarios for
its role in grass lignin (1) to act as a termination molecule for a
developing lignin polymer and (2) to contribute to enhancing the
linear or less reticulated nature of syringyl type lignin found in
grasses.
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Lignin
Lignin is a polymeric phenylpropanol material formed within
cell wall matrices of plants. As a hydrophobic material it forces
the water out of spaces in the wall matrix as it forms decreasing
the flexibility and permeability. Lignin biosynthesis is controlled
by developmental and environmental signals (Sarkanen and
Ludwig, 1971; Sederoff et al., 1999; Vanholme et al., 2010) with
many factors regulating lignin content, composition and linkage
structure (Barrière et al., 2007; Li and Chapple, 2010; Shen et al.,
2013). Recent work has demonstrated lignin composition and
structure can be manipulated through the introduction of unique
phenolic components not typically found in lignin (Elumalai
et al., 2012; Vanholme et al., 2012; Tsuji et al., 2015). Traditionally
the majority of genetic, genomic, and biochemical studies of
lignin have focused on perennial or annual dicots (Reddy et al.,
2005; Shadle et al., 2007;Wang et al., 2013; Anderson et al., 2015).
Interest in forages as bioenergy resources has refocused efforts
on understanding the genetic basis of lignin formation in grasses
(Barrière et al., 2007; Barriere et al., 2013; Shen et al., 2013).
Grass lignin polymers can be composed of three main types of
units present in grass, p-hydroxyphenyl, guaiacyl, and syringyl
units connected by aryl ether bonds (ß-O-4 and α-O-4 linkages),
biphenyl ether bonds (4-O-5 and 5-O-4), and/or resistant carbon-
carbon bonds (ß-5, ß-ß and 5-5) (Ralph et al., 2004b). In addition,
the p-hydroxycinnamates, ferulic acid (FA), and p-coumaric acid
(pCA), have been shown to be ester or ether linked to lignin in
grasses (Figure 3).

Cell Wall Proteins
The cell walls of plants are metabolically active tissues with
a wide range of proteins ranging from structural components
to cell wall hydrolases. Although all of these proteins play
important roles in cell wall function it is not always clear what
that role may be in grasses. Two general groups that are of
importance are the oxidizing enzymes (peroxidases and laccases)
and carbohydrate hydrolases, the latter group being important in
remodeling the cell wall for expansion as well as post expansion
secondary wall formation. A primary role of the peroxidases
is to initiate formation of radicals in radical mediated cross-
coupling reactions. In grasses, this results in the formation of
ferulate dimers cross-coupling GAX as well as coupling ferulates
monomers and dimers to lignin. The cell wall hydrolytic ß-
glucanases are critical for the remodeling of the primary wall
removing or at least releasing portions of the extensive (1,3)-
(1,4)-ß-glucan network to allow cell wall expansion (Huber and
Nevins, 1979; Nevins et al., 1984; Hatfield and Nevins, 1986,
1987). The other critical hydrolase is the arabinofuranosidase
responsible for shaping the GAX molecules after synthesis to fit
specific functional roles within the cell wall matrix (Herve et al.,
2010; Sumiyoshi et al., 2013).

Though the exact distribution of proteins within the wall
matrix is not clear it is likely many may be found in the
cell wall free space. While others are more likely to be
synthesized throughout the development of the cell wall and
become incorporated into the growing wall matrix. Of particular
importance are the peroxidases or laccases that are involved in
the formation of cross-linked phenolics. It is likely that as the

wall matrix is being formed peroxidases and/or laccases become
imbeddedwithin thematrix in an active form to initiate oxidation
of phenolic compounds (monolignols, FA, pCA) similar to that
observed in Arabidopsis (Schuetz et al., 2014). This would ensure
the formation of radicals needed to facilitate cross-coupling
reactions in the areas in which they will be needed. Begovic et al.
(2015)

SYNTHESIS OF WALL COMPONENTS
INVOLVED IN CELL WALL CROSS-LINKING

Feruloylated Arabinoxylans: Genes and
Enzymes
Identification of candidate enzymes responsible for the
biosynthesis of grass feruloylarabinoxylan (FA-AX) and the
genes encoding these proteins has been of great interest but
remain elusive. Identification of the genes and enzymes that
control FA-AX biosynthesis could lead to their manipulation
in biomass production crops to improve utilization (Pauly and
Keegstra, 2008). Complimentary approaches have been used and
will be discussed below.

Based on the structural complexity of grass FA/pCA-AXs,
the minimal set of enzymes needed for direct biosynthesis
would include five glycosyltransferases (GTs) and two
acyltransferases including (1) ß-(1,4)-xylosyltransferase
(1,4-XylT), (2) ß-(1,2)-xylosyltransferase (1,4-XylT),
(3) α-(1,3)-arabinofuranosyltransferase (1,3-ArafT), (4)
α-(1,2)-arabinofuranosyltransferase (1,2-ArafT), (5) α-
(1,2)-glucuronosyltransferase (1,2-GlcAT), and both (6) a
feruloyltransferase (FAT) and (7) a p-coumaryltransferase
(pCAT) (Faik, 2010; Rennie and Scheller, 2014).

Approaches taking advantage of gene expression analysis have
identified candidate genes involved in grass FA-AX biosynthesis
(Mitchell et al., 2007; Cao et al., 2008; Zeng et al., 2010;
Bosch et al., 2011; Pellny et al., 2012; Wilson et al., 2012;
Chiniquy et al., 2013; Zhang et al., 2014). For example,
Mitchell et al. (2007) made a comparative analysis of expressed
sequence tag (ESTs) abundance for grasses and dicots to identify
carbohydrate active gene (CASy Cantarel et al., 2009) orthologs
that were preferentially expressed in rice (Oryza sativa), wheat
(Triticum aestivum), and barley (Hordeum vulgare) compared to
Arabidopsis thaliana, soybean (Glycine max), Brassica spp., and
potato (Solanum tuberosum). The author’s hypothesis was that
genes encoding FA-AX synthetic enzymes would be expressed
at higher levels in monocots compared to orthologs in dicots.
The analysis implicated family members of the GT43, GT47,
GT61, and PF02458 families, a class of BAHD acyl transferases,
as most likely to encode the FA-AX biosynthetic enzymes.
Subsequent work with GT61 family members involving gene
suppression in wheat endosperm and heterologous expression
of rice and wheat family members in Arabidopsis strongly
suggest that GT61 family members are involved in xylan α-(1,3)-
arabinofuranosyltransferase (XAT) activity (Anders et al., 2012).
However, insertion mutants of rice Os02g22380, a GT61 family
member, showed reductions in cell wall associated Xyl, exhibited
a dwarf phenotype and, based on xylan structural analysis,
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FIGURE 3 | Model of molecular interactions for grass xylans. The presented model depicts the proposed progression of xylan development and its interactions.

Xylan (X) is synthesized with a high degree of arabinose (A) substitution with regions of higher ester-linked ferulic acid (F) and those that contain glucuronic acid (GA)

substitutions. Secretion into the extracellular space would provide access of arabinosidases that could remove unsubstituted arabinose units leaving linear regions of

xylan exposed. These exposed xylan regions could participate in hydrogen-bonding with other exposed xylan regions and or cellulose microfibrils to stabilize cell wall

architecture (gray shaded region). In addition, ferulic acids could form crosslinks to covalently stabilize interactions between opposing FA-AX polymers.

suggested that the plants were defective in a ß-(1,2)-xylose–AX
transferase activity (Chiniquy et al., 2012). Unexpectedly, these
Os02g22380 mutants also exhibited reductions in cell wall pCA
and FA but not in Ara thus suggesting some role of the ß-(1,2)-
xylose in either the modification of Ara by hydroxycinnamates or
in the stability of coupled pCA/FA.

Many of the candidate grass gene approaches have relied on
homology to Arabidopsis genes that were identified through
analysis of plants altered in glucuronosylxylan biosynthesis
including the irregular xylem (irx) mutants (Brown et al., 2007,
2009; Persson et al., 2007; Wu et al., 2009; Anders and Dupree,
2011). IRX10/IRX10L from the GT47 family and IRX9/IRX9L
and IRX14/IRX14L from the GT43 family have been proposed
to be responsible for xylan backbone elongation in Arabidopsis.
Transposon insertion mutants of riceOs01g70200, a GT47 family
member and ortholog to IRX10/IRX10L, exhibited a dwarf
phenotype with a decrease in cell wall Xyl (Chen et al., 2013).
Os01g70200 mutants did have improved saccharification of cell
wall carbohydrates without any alterations to lignin content.
Activity studies with the IRX10 homolog from Physcomitrella
patens demonstrated robust in vitro 1,4-XylT activity (Jensen
et al., 2014) indicating its central role in xylan backbone synthesis.

Studies of four rice GT43 family members indicated
a conservation of activity based on the functional

complementation of Arabidopsis irx9 and irx14 mutants
with select rice GT43 family members (Lee et al., 2014). The
analysis of Lee et al. (2014) reiterated the presence of two
functionally non-redundant classes of GT43 enzymes are needed
for xylan production in Arabidopsis. Contemporary work from
Ren et al. (2014) used site-directed mutagenesis of putative
active site residues of GT43 family members IRX9/IRX9L and
IRX14 to show that glycosyltransferase activity of IRX9/IRX9L is
not needed for xylan biosynthesis in Arabidopsis. These results
suggest a structural role for IRX9/IRX9L proteins in maintaining
a protein complex catalyzing the xylan backbone. It is presumed
that these results are conserved in monocots.

Members of the GT8 family of glycosyltransferase, GUX1,
GUX2, and GUX4, are responsible for the addition of GlcA
to xylans (Persson et al., 2007; Mortimer et al., 2010; Rennie
et al., 2012) in Arabidopsis. Recent work has demonstrated
unique, non-redundant xylan sequence domain specificities for
GUX1 and GUX2 suggesting differential targeting of GlcA
modifications to xylan sequence domains (Bromley et al., 2013).
These latter results would suggest possible regulatory roles in
controlling the positioning of xylan backbone modification and
its influence on interactions with other cell wall components.

Biochemical approaches to identify enzymes involved in AX
biosynthesis in grasses have been limited. Current evidence
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from all plant species strongly suggests that subcellular AX
biosynthesis occurs within the lumen of the Golgi apparatus
(Rennie and Scheller, 2014). Early in vitro enzyme activities
using microsomal systems have been attempted to characterize
intrinsic FA-AX associated glycosyltransferase activities (Porchia
and Scheller, 2000; Kuroyama and Tsumuraya, 2001; Porchia
et al., 2002; Zeng et al., 2008). Continuing the work of Zeng et al.
(2008), research using complementary approaches including
biochemical, proteomic, and transcriptomic analysis implicated
three wheat glycosyltransferase proteins from the GT43, GT47,
and GT75 families as candidates involved in AX biosynthesis
(Zeng et al., 2010). The presence of GT43 and GT47 family
members is consistent with work from Arabidopsis in assembly
of the ß-(1,4)-xylose-xylan backbone. Interestingly, members
of the GT75 family correspond to UDP-ß-L-arabinopyranose
mutase (UAM), the enzyme responsible for the biosynthesis
of UDP-ß-L-arabinofuranose (Konishi et al., 2007), were
associated with the isolated complex. Immuno-purification of a
detergent-solubilized wheat Golgi protein complexes exhibited
glycosyltransferase enzyme activities consistent with XylT, (1,3)-
AraT, and GlcAT activities however no direct proof was provided
to link a specific catalytic activity with a specific polypeptide.
Based on the author’s work and others, the biosynthetic active
sites for the AX glycosyltransferases is within the lumen of
the Golgi. However, UAM proteins lack N-terminal signal
sequences (Konishi et al., 2007; Rancour et al., 2015) and thus
should be cytoplasmic: a result corroborated by the localization
studies of Rautengarten et al. (2011) for the Arabidopsis
orthologs. Therefore, the interaction between the lumenally-
oriented GT43/GT47 and the cytoplasmic GT75 implies a mode
of localizing the GT75/UAM to the cytoplasmic surface of the
Golgi.

Recent work using Asparagus (Asparagus officinalis L.) as a
model system for non-commelinid monocot xylan biosynthesis,
has shown robust xylan biosynthesis and lignification activity
post-harvest (Song et al., 2015). Taking advantage of these
activities, RNA-seq was used to identify candidate genes
involved in those activities. Further work using heterologous
expression of asparagus genes and site-directed mutants have
corroborated findings from Arabidopsis where (1) AoIRX9,
AoIRX10, and AoIRX14 are core components of a Golgi-
localized xylan synthesis protein complex, and (2) a functional
glycosyltransferase active site is required for AoIRX10 and
AoIRX14 catalytic activity (Zeng et al., 2016).

The subcellular organization of substrate biosynthesis and its
utilization in xylan biosynthesis can provide a level of regulation
previously underappreciated. Nucleotide sugars are believed to
be the substrates for plant cell wall polysaccharide biosynthesis.
The biosynthesis of the primary nucleotide-sugar substrates for
GAX biosynthesis are metabolically related and are derived from
sequential step-wise inter-conversions from UDP- α-D-Glc to
UDP- α-D-GlcA to UDP- α-D-Xyl to UDP- β-L-Arap, and, final
to UDP- β-L-Araf (Bar-Peled and O’neill, 2011). The enzymes
involved in this metabolism are conserved in plants (Yin et al.,
2011). The early work of identification and characterization
of the inter-conversion enzymes occurred in Arabidopsis and
suggested possible synthesis localizations both in the cytoplasm

and the Golgi lumen depending on the involvement of a specific
gene product. The consumption of nucleotide-sugars for GAX
biosynthesis would be within the lumen of the Golgi. However,
characterization of the rice UAM, the enzyme responsible for
conversion of UDP-β-L-Arap to UDP-β-L-Araf is only found
in the cytoplasm (Konishi et al., 2007; Rautengarten et al.,
2011). Functional assessment of Brachypodium nucleotide-sugar
inter-conversion enzymes in GAX biosynthesis via in planta
RNAi indicated that the UAM was the most sensitive to gene
expression alterations that resulted in cell wall composition
changes (Rancour et al., 2015). Recent work in Arabidopsis has
indicated that the cytoplasmic localized UDP-Xylose synthases
(UXS) are responsible for providing more substrate for xylan
biosynthesis than the Golgi localized family members (Kuang
et al., 2016). These results suggest that transport of UDP- α-D-
GlcA, UDP- α-D-Xyl, and UDP- β-L-Araf into the Golgi are
all needed for GAX biosynthesis and could function as control
points for GAX biosynthesis. These results therefore suggest a
need for transport of UDP- β-L-Arap from the Golgi lumen to
cytoplasm (Temple et al., 2016). No gene product nor direct
evidence for this activity has been described.

FA-mediated cell wall crosslinking correlates with biomass
recalcitrance and negatively impacts cell wall utilization (Hartley,
1990; Hatfield et al., 1999a,b; Buanafina, 2009). The mode of how
FA and pCA are coupled to AX in terms of the identity of the
substrates, the enzyme, and subcellular location of the relevant
reactions is not well understood (Hatfield and Marita, 2010).
Early work suggested that either FA-glucose (Obel et al., 2003) or
FA-CoA (Yoshida-Shimokawa et al., 2001) could be the source for
FA for FA-GAX synthesis. Using metabolic labeling time-courses,
the rapid kinetics of GAX feruloylation suggested FA coupling
to GAX occurs intracellularly (Mastrangelo et al., 2009). Current
models suggest that select classes of BAHD acyltransferases
(D’auria, 2006) are responsible for the FA- and pCA-esterification
of GAX. BAHD transferases utilize acyl-CoA thioester substrates
to catalyze the acylation of an acceptor nucleophile oxygen or
nitrogen of a broad range of compounds. Work in rice and
Brachypodium distachyon has further implicated select BAHD
transferases in FA-AX biosynthesis (Piston et al., 2010; Bartley
et al., 2013; Molinari et al., 2013). Piston et al. (2010) used
RNAi approaches to suppress select BADH transferase expression
resulting in reductions in cell wall associated ester-linked
FA. Molinari et al. (2013) correlated BAHD transferase gene
expression with cell wall FA and pCA content in Brachypodium
to identify candidates responsible for FA-esterification of AX.

It is unclear what the significance of the ester-linked pCA
modification of AX is since pCA does not readily form dimers
when compared to FA (Weng et al., 2010). Recent work
characterizing activation-tag rice lines of the “Mitchell” clade
of BAHD transferases, a reference to the PF02458 gene clades
identified by Mitchell et al. (2007), indicated that overexpression
of OsAT10 resulted in cell wall FA reductions by 60% and
an increase in AX-coupled ester-linked pCA by 300%. In
addition, OsAT10 activation tagged plants did not exhibit any
morphological defects or decreases in biomass production.
Tagged-OsAT10 cell wall material had higher cell wall glucose
content and improved saccharification but without any changes
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to lignin. These results suggest that high expression of OsAT10
can promote cell wall incorporation of pCA in place of FA,
thus limiting cell wall crosslinking and improving cell wall
digestibility. In addition, the results suggest that mechanisms
are available to sense and respond to reduced FA crosslinking,
and the stability granted by it, by increasing cell wall cellulose
amounts. These results suggest that pCA substitution of AX
could provide a mechanism to affect cell wall crosslinking
capacity without drastic changes in the chemical nature of the
substitution.

Though BAHD transferases have been implicated in FA and
pCA esterification of AX, the mechanisms by which these occur
is unclear. Proposed AX glycosyltransferase activity is confined
to the lumen of the Golgi apparatus. However, the BAHD
transferases implicated thus far in AX esterification contain no
secretory pathway signal sequences or transmembrane domains
and thus are expected to be cytoplasmic. Therefore, it is unlikely
that direct acylation of the polymerizing AX occurs by these
BAHD transferases and thus this poses a challenge to understand
the subcellular topological context by which FA/pCA-AX is
synthesized and subsequently trafficked to its site of cell wall
incorporation.

The availability of nucleotide-sugar substrates can have
significant consequences on Golgi-associated polysaccharide
biosynthesis and FA-AX composition. Rice plant mutant in
a nucleotide-sugar transporter exhibit cell wall composition
alterations (Zhang et al., 2011). FA and pCA are ester-linked to
the 5-OH of α-(1,3)-Araf units. Mutant rice and Brachypodium
plants with suppressed UDP-ß-L-Arap mutase (UAM) gene
expression exhibit decreased cell wall Araf, FA and pCA derived
from FA/pCA-AX (Konishi et al., 2011; Rancour et al., 2015).
These observed phenotypes are due presumably to limiting the
capacity to synthesize UDP-ß-L-Araf, the α-1,3-ArafT substrate.
Rice and Brachypodium UAM proteins do not contain canonical
secretory pathway signal or transmembrane sequences (Konishi
et al., 2011; Rancour et al., 2015) and thus are predicted to be
cytoplasmic, similar to the Arabidopsis orthologs (Rautengarten
et al., 2011). Rautengarten et al. (2011) showed that Arabidopsis
UAM isoforms that have enzymatic active also localize as
peripheral Golgi membrane proteins. Knowing that rice UAM
activity is contained within a large protein complex [∼41 kDa
monomer by SDS-PAGE but from rice tissue was ∼460 kDa
by size-exclusion chromatography (Konishi et al., 2007)] and
assuming a conserved localization with the grass orthologs, sets
up the tantalizing possibility that the mutase could be associated
with the acyltransferase to allow for acylation of UDP-ß-L-Araf
to give UDP-ß-L-Araf -FA as precursor to FA-AX synthesis and
be positioned for direct transport into the Golgi for immediate
use. These topological issues make FA-AX biosynthesis as much
of a cell biology issue as a biochemical one. This model however
has several unresolved issues. Firstly, having a nucleotide-
sugar-hydroxycinnamate conjugate would require alterations in
the conventional specificity of a nucleotide-sugar membrane
transporter and a glycosyltransferase that would be unaffected
by the additional ester-linked hydroxcinnamate. Transporter and
glycosyltransferase proteins fitting these criteria have not been
identified nor has UDP-ß-L-Araf -FA or UDP-ß-L-Araf -pCA

intermediates. The lack of observable substrates could be
simply down to a mechanism analogous to substrate channeling
where (1) cytoplasm-oriented Golgi-associated UAM and
acyltransferase generate UDP-ß-L-Araf-FA or UDP-ß-L-Araf-
pCA intermediates, (2) the products are directly transported
across the Golgi membrane by a specific transporter that is
associated with the putative UAM/acyltransferase complex, and
(3) the nucleotide-sugar-FA/pCA is directly consumed by the
acyl-sugar-transferase which transfers the Araf -FA/pCA to the
xylan. The remaining uridine nucleotide would be recycled
back to the cytoplasm (Abeijon et al., 1997) to complete the
cycle.

An alternative mechanism for FA and pCA attachment to
GAX in the Golgi lumen could be through unidentified Golgi
transporters for CoA-FA and/or CoA-pCA, followed by transfer
to accepters (Araf already conjugated to the xylan backbone)
within the Golgi. Acetyl-CoA transporters have been identified
in other systems (i.e., Jonas et al., 2010) but it is unclear if these
exist in plants (Schultink et al., 2015). This model would require
signal sequences on FA/pCA transferases to properly localize
them within the Golgi. One possible Brachypodium candidate
could be Bradi2g23740 and its homologs. This gene exhibited
an expression profile that mirrored cell wall ester-linked FA
throughout development (Rancour and Hatfield, unpublished
data) and is predicted to contain an N-terminal signal sequence
consistent with entry into the secretory pathway. It remains to be
determined whether Bradi2g23740 and its homologs are involved
in FA conjugation to grass GAXs.

Although significant progress has been made in identifying
protein factors that influence FA-AX biosynthesis, our
understanding of how FA-AX is assembled is still lacking.
It is clear that the molar ratios of Ara:Xyl and FA:Xyl change
during development within grasses (Carpita, 1984a; Gibeaut and
Carpita, 1991; Obel et al., 2002; Hatfield et al., 2008b; Rancour
et al., 2012), however is this achieved during biosynthesis or post-
synthesis processing? Are different α-1,3-ArafT and α-1,2-ArafT
enzymes with altered processivity expressed developmentally
or in a tissue-specific manner? Alternatively, do glycosidase
activities, such as α-arabinofuranosidase, analogous to those
observed in dicot plant systems (Goujon et al., 2003; Montes
et al., 2008) have a role in grasses? Although these questions
remain to be answered they point to areas of research that can be
addressed.

ORGANIZATION OF THE CELL WALL

How the formation of lignin occurs within the cell wall matrix
remains unresolved. Much is known about the synthesis of
the monolignols and the phenolics, FA and pCA, but there
are still gaps concerning how all the wall matrix components
get organized into a functional cell wall. A recent review by
Barros et al. (2015) highlights the complexity of the lignification
process in higher plants. Even though the majority of work
has been done on dicot and gymnosperm species compared
to grasses there is valuable insight into possible processes.
The question of transport of components into the cell wall
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is far from complete. There is good evidence that cell wall-
associated proteins and select matrix polysaccharides including
hemicelluloses and pectins are transported to the wall via
exocytosis of Golgi derived vesicles (Li and Chapple, 2010).
The mode of monolignol and acylated monolignol transport to
the wall matrix remains unclear especially in grasses. There is
conflicting evidence as to the involvement of glycosylation of
monolignols in the transport process. There is evidence for the
involvement of specific transporters (ATP-binding cassette like
transporters) to move monolignols across the plasma membrane.
These transporters may also utilize glucosylated monolignols
and glucosidase activity once they are in the cell wall (Li and
Chapple, 2010; Wang et al., 2013). Glucosylation of monolignols
is an attractive process to help coordinate actual lignification
within the wall space since radical formation could not occur
with glucose attached. This in turn would allow accumulation
of monolignols into a location, removal of the glucose followed
by a radical mediated polymerization. A bulk type of reaction
compared to a simple one on addition to produce the lignin
polymer may explain the preponderance of β-O-4 type linkages
(Touzel et al., 2003; Nakamura et al., 2006; Habrant et al.,
2009). More importantly this should increase the efficiency of
the lignification process creating a localization of lignin that is
anchored by FA on GAX and initiated by the localization of
peroxidase or laccase in the same area (Schuetz et al., 2014).
Chapelle et al. (2012) have shown in Arabidopsis that monolignol
glucosides appear to be involved in storage but not in the process
of lignification. Similar work has not been done in grasses so
extrapolating to a grass system may not be appropriate.

It seems likely that the transport of monolignols and acylated
monolignols in grasses is not a random process, but would
be located close to sites of cellulose synthesis and GAX
incorporation to build the matrix (Figure 4). The incorporation
of matrix polysaccharides into the wall would precede the
transport of monolignols. Initially during cell expansion only the
matrix polysaccharides would be released to become associated
with the cellulose. Ferulates attached to theGAXmay help anchor
the GAX into place as the matrix polysaccharides are being
reprocessed tomeet the functional needs of the wall. It is apparent
there is coordination of these processes although there is no
clear understanding of how this may occur. If GAX molecules
are introduced into the wall free space in a highly substituted
form perhaps the action of specific glycosidases would be needed
for their integration. In addition, the released Ara and/or GlcA
could act as signals to positively influence monolignol synthesis.
Information regarding putative signaling pathways and possible
transporters to recycle released Ara and/or GlcA is lacking. The
role of sugar uptake transporters for Araf and/or GlcA in grass
cell wall development needs to be investigated at the gene level
to identify genes and gene families that might be involved. In
addition, a coordinated developmental study of gene expression
combined with enzyme activity involving glycosidases would
help establish what activities are critical and establish possible
timeline of events. The difficulty with these studies is at any one
point in time there may be over lapping stages of wall formation,
i.e., wall initiation to secondary wall formation in grasses. In
grasses such as corn or grain sorghum it would be possible to
identify newly formed cell walls to more mature and lignifying

walls all in the same internode. There are techniques for eluting
enzymes from the apoplastic space of cell walls (a likely place
for remodeling enzymes) to determine activity coordination with
wall formation (Li et al., 1989; Lohaus et al., 2001; O’leary et al.,
2014).

Though there are potential pathways for the movement of
materials into the cell wall matrix it is unclear how the wall
becomes organized. Once secreted, the movement of GAX
molecules into the free space then into position to add to the
wall matrix may play a pivotal role in final wall organization.
Are these latter movements facilitated or dependent on the local
physicochemical environment? Feruloylated GAX molecules
may be synthesized in a coordinated fashion and post-synthesis
modified to remove excess Ara units through the action of
arabinofuransidase activity (Figure 3). The formation of feruloyl
dimers between FA-GAX molecules suggests that FA is not
randomly distributed along the xylose backbone. Rather two
or three FA molecules may be attached to the arabinosyl side
branches in close clusters along the xylan backbone and this
is repeated over the entire molecule. This could be visualized
as two or three ferulates clustered together followed by regions
of 4–6 non-substituted arabinosyl units followed by another
feruloylated cluster followed by a longer stretch of non-
substituted arabinosyl units. Such a pattern would be repeated in
the newly formed GAX molecules. It does not necessarily mean
that the GAX has a specificmolecular size and a ridged placement
of ferulates along the xylan backbone. This arrangement would
allow cross-coupling between two FA molecules of different
xylans without the need to be perfectly aligned. The cross-
coupling reaction would help to anchor the GAX polymers in
place and in conjunction with the arabinofuranosidase activity
promote hydrogen bonding to further tighten the wall matrix.
It is likely that the appropriate oxidase (Laccase or peroxidase)
would be positioned into the same general area to provide
the oxidation potential to promote radical mediated cross-
coupling of FA. Additional GAX polymers could be positioned
and anchored as development continues. There is evidence that
ferulates within the grass wall act as nucleation sites for lignin
leading to localized formation into specific regions. Initially
there may be multiple sites of lignification forming around FA
nucleation points. During the early stages of lignification there
would be small polymers of lignin that continue to expand
as long as monolignols are supplied. The incorporation of
laccases/peroxidases into the wall matrix close to the FA cluster
would help control lignin formation since oxidation to form
radicals could not occur without the addition of hydrogen
peroxide thus providing another level of control over the process.
As lignification continues these small sites of lignin may become
connected together forming a much large lignin polymer. This
may help explain why lignin in grasses are alkaline soluble
especially in young tissues and decreases as the plant matures
(Hatfield et al., 1994).

As already discussed the presence of pCA in the cell wall
during lignification could possibly aid in lignin formation
through improved oxidation of SA residues. Due to the
electro-chemical properties of oxidized pCA, limiting radical
coupling potential to cross-react with oxidized SA and CA
residues, it may function as a radical shuttle system in the
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FIGURE 4 | Model for extracellular organization of cell wall synthesis and polymer organization. Cellulose is synthesized by cellular membrane cellulose

synthase complexes and forms stable microfibrils through hydrogen-bonding of individual cellulose polymers. Monolignols, synthesized within the cytoplasm, are

transported to the extracellular space, associate via hydrophobic interactions with cellulose and/or xylans, and are coupled into lignin polymer through the action of

wall peroxidases. Feruloylarabinoxylan (FA-AX) is synthesized within the Golgi and transported to the extracellular space by exocytosis. Once extracellular, activity of

arabinofuranosidase removes arabinose residues to promote increased hydrogen-bonding capacity of xylan backbone with other xylans and cellulose. Ferulic acid

dimer formation and coupling to lignin occurs during oxidative reactions coordinated with lignin polymerization.
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wall matrix. This would allow the formation of radicals on the
growing lignin polymer. With FA acting as a nucleation site
for lignin formation the pCA could assist in the continued
formation of the lignin polymer from this attachment point
in the wall. With pCA attachment via an ester linkage to
monolignols, the incorporation of pCA-monolignol conjugate
may act as a termination molecule for a developing lignin
polymer. Having some pCA-monolignol conjugates exported
along with individual monolignols would insure rapid oxidation
and coupling. This action/process would keep the lignin polymer
localized within a specialized region of the cell wall and allow
for multiple areas of lignification within the cell wall. If more
SA monolignols and SA-pCA conjugates, preferred conjugate
formed in grasses, were shuttled out, this would lead to a
molecule that is more linear in nature and less reticulated.

Why would termination of lignin polymers be an evolutionary
advantage to grasses? It is known that grass lignin tends to be
much more alkaline soluble than lignin found in typical dicots
(Hatfield et al., 1994). This greater solubility suggests the extent
of polymerization and/or the connectedness of grass lignin is less
than in other species of plants. Furthermore, if free phenolics
provide sites for alkaline and oxidative delignification resulting
in increased alkali solubility of lignin (Lapierre et al., 1989; Froass
et al., 1998), pCA attached to lignin as a termination molecule
would help explain the solubility of grass lignin under basic
conditions. Perhaps this serves grasses well especially during their
development by helping to maintain a flexible structure. Because
there is a need for lignin to provide additional strength to stems
and leaves, it is counterproductive if these tissues actually become
too rigid and subject plants to lodging especially during earlier
stages of development.

The role of pCA or more appropriately the role of
p-coumarate-monolignol conjugates, specifically the favored
sinapyl alcohol- pCA conjugate (SA-pCA) is to help control the
three-dimensional organization of grass lignin. It is known that
syringyl type lignin (formed primarily from SA monolignols)
forms a more linear structure (Kishimoto et al., 2005). This
is not to say it forms a straight rod-like structure (such as
cellulose) but does form a lignin polymer with little or no
branching and with a lesser degree of polymerization (Figure 2).
This is atypical of guaiacyl- or p-hydroxyphenyl-rich lignins
formed by incorporation of coniferyl and p-courmaryl alcohol
monolignols, respectively (Kishimoto et al., 2005). Although pCA
could help facilitate lignin formation, once it is incorporated
into the growing lignin polymer ester-linked as SA-pCA, it
would terminate the lignification process until a new batch of
monolignols were deposited into the wall.

The progress of lignification could be viewed as the
establishment of nodes of lignin at nucleation sites with longer
strands radiating out from these central concentrations of lignin
in the cell wall matrix. If the strands are primarily syringyl
types they most likely have few branch points (less reticulated)
and possibly few if any covalent linkages between closely
associated strands. Such a scenario would produce a structural
matrix that could explain observations of both increased lignin
solubility and increased cell wall digestibility as seen in grasses.
Perhaps using visualization techniques such as click chemistry or

fluorescence-tagged monolignols would help to define in plant
lignin structure (Tobimatsu et al., 2013, 2014). In addition, grass
cell walls tend to have a slower rate of structural carbohydrate
degradation by ruminants though the extent is usually greater
than the walls of dicot forages such as alfalfa (Galyean and
Goetsch, 1993). It could be envisioned that over time during
digestion the grass cell walls would be slowly degraded and as
the degradation occurs the plasticity of the SA rich grass lignin
would allow restricted access but sufficient flexibility to move
some lignin strands out of the way creating easier access by
ruminal microbes or released enzymes. Such an arrangement of
lignin within the grass cell wall would explain why such a large
portion of the lignin is soluble in hot acid detergent solutions.
With limited cross coupling within grass lignin polymers the
dissolution of matrix carbohydrates would allow additional
solubilization of a portion of the lignin fraction.

SUMMARY

Controlling this process of cell wall assembly in grasses remains
a question involving multiple steps in different metabolic
pathways. It is proposed that ferulates play a central role in
the organization as well as the function of grass cell walls. The
role of ferulates to form dimers is critical for initial cell wall
formation and expansion, but also aids in lignin formation within
the wall matrix. The role of p-coumarate-monolignol conjugates
could provide a means of controlling lignin size as well and
influencing three-dimensional structure. The formation of FA-
Ara substitutions on arabinoxylans is controlled by the activity
of Arap mutase and can act as a gating mechanism controlling
the formation of Araf and perhaps the level of substitution
on the xylans and coupling of FA by feruloyl-CoA transferase
to Araf. Localization of oxidases (peroxidases and/or laccases)
would occur at the lignin nucleation site i.e., FA and FA dimers
must also be part of the coordinated lignification process.

AUTHOR NOTE

Mention of a proprietary product does not constitute a
recommendation or warranty of the product by USDA and does
not imply approval to the exclusion of other suitable products.

AUTHOR CONTRIBUTIONS

RH has extensive research experience in grass cell wall chemistry
and biochemistry and provided the main frame work and basic
approach for this hypothesis article. DR was a Post-Doctoral
fellow in the Hatfield lab and completed work in dealing
with the characterization and molecular biology/biochemistry
of structural carbohydrates in grass cell walls. JM (retired)
was a research associate and has made many contributes to
our increasing knowledge of grass cell wall chemistry and
biochemistry.

FUNDING

This work was supported by the U.S. Government, USDA-ARS.

Frontiers in Plant Science | www.frontiersin.org 11 January 2017 | Volume 7 | Article 2056

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Hatfield et al. Making of Grass Cell Walls

REFERENCES

Abeijon, C., Mandon, E. C., and And Hirschberg, C. B. (1997). Transporters of

nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus. Trends

Biochem. Sci. 22, 203–207. doi: 10.1016/S0968-0004(97)01053-0

Anders, N., and Dupree, P. (2011). “Glycosyltransferases of the GT43 Family,” in

Annual Plant Reviews, ed P. Ulvskov (Chichester: Wiley-Blackwell), 251–263.

doi: 10.1002/9781444391015.ch9

Anders, N., Wilkinson, M. D., Lovegrove, A., Freeman, J., Tryfona, T., Pellny, T.

K., et al. (2012). Glycosyl transferases in family 61 mediate arabinofuranosyl

transfer onto xylan in grasses. Proc. Natl. Acad. Sci. U.S.A. 109, 989–993.

doi: 10.1073/pnas.1115858109

Anderson, N. A., Tobimatsu, Y., Ciesielski, P. N., Ximenes, E., Ralph, J., Donohoe,

B. S., et al. (2015). Manipulation of guaiacyl and syringyl monomer biosynthesis

in an Arabidopsis cinnamyl alcohol dehydrogenase mutant results in atypical

lignin biosynthesis and modified cell wall structure. Plant Cell 27, 2195–2209.

doi: 10.1105/tpc.15.00373

Bar-Peled, M., and O’neill, M. A. (2011). Plant nucleotide sugar formation,

interconversion, and salvage by sugar recycling. Annu. Rev. Plant Biol. 62,

127–155. doi: 10.1146/annurev-arplant-042110-103918

Barriere, Y., Chavigneau, H., Delaunay, S., Courtial, A., Bosio, M., Lassagne, H.,

et al. (2013). Different mutations in the ZmCAD2 gene underlie the maize

brown-midrib1 (bm1) phenotype with similar effects on lignin characteristics

and have potential interest for bioenergy production.Maydica 58, 6–20.

Barrière, Y., Riboulet, C., Mèchin, V., Maltese, S., Pichon, M., Cardinal, A., et al.

(2007). Genetics and genomics of lignification in grass cell walls based onmaize

as model species. Genes Genomes Genomics 1, 133–156.

Barros, J., Serk, H., Granlund, I., and Pesquet, E. (2015). The cell

biology of lignification in higher plants. Ann. Bot. 115, 1053–1074.

doi: 10.1093/aob/mcv046

Bartley, L. E., Peck, M. L., Kim, S. R., Ebert, B., Manisseri, C., Chiniquy, D. M.,

et al. (2013). Overexpression of a BAHD acyltransferase, OsAt10, alters rice

cell wall hydroxycinnamic acid content and saccharification. Plant Physiol. 161,

1615–1633. doi: 10.1104/pp.112.208694

Begovic, L., Ravlic, J., Lepedus, H., Leljak-Levanic, D., and Cesar, V. (2015).

The pattern of lignin deposition in the cell walls of internodes during barley

(Hordeum vulgare L.) development. Acta Biol. Cracov. Ser. Bot. 57, 1–12.

doi: 10.1515/abcsb-2015-0017

Bosch, M., Mayer, C. D., Cookson, A., and Donnison, I. S. (2011). Identification of

genes involved in cell wall biogenesis in grasses by differential gene expression

profiling of elongating and non-elongating maize internodes. J. Exp. Bot. 62,

3545–3561. doi: 10.1093/jxb/err045

Bromley, J. R., Busse-Wicher,M., Tryfona, T., Mortimer, J. C., Zhang, Z. N., Brown,

D. M., et al. (2013). GUX1 and GUX2 glucuronyltransferases decorate distinct

domains of glucuronoxylan with different substitution patterns. Plant J. 74,

423–434. doi: 10.1111/tpj.12135

Brown, D. M., Goubet, F., Vicky, W. W. A., Goodacre, R., Stephens, E., Dupree,

P., et al. (2007). Comparison of five xylan synthesis mutants reveals new

insight into the mechanisms of xylan synthesis. Plant J. 52, 1154–1168.

doi: 10.1111/j.1365-313X.2007.03307.x

Brown, D. M., Zhang, Z. N., Stephens, E., Dupree, P., and Turner, S. R.

(2009). Characterization of IRX10 and IRX10-like reveals an essential

role in glucuronoxylan biosynthesis in Arabidopsis. Plant J. 57, 732–746.

doi: 10.1111/j.1365-313X.2008.03729.x

Buanafina, M. M. D. (2009). Feruloylation in grasses: current and future

perspectives.Mol. Plant 2, 861–872. doi: 10.1093/mp/ssp067

Bunzel, M., Ralph, J., Funk, C., and Steinhart, H. (2005). Structural elucidation

of new ferulic acid-containing phenolic dimers and trimers isolated from

maize bran. Tetrahedron Lett. 46, 5845–5850. doi: 10.1016/j.tetlet.2005.

06.140

Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and

Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy):

an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233–D238.

doi: 10.1093/nar/gkn663

Cao, P. J., Bartley, L. E., Jung, K. H., and Ronald, P. C. (2008). Construction

of a rice glycosyltransferase phylogenomic database and identification of

rice-diverged glycosyltransferases. Mol. Plant 1, 858–877. doi: 10.1093/mp/

ssn052

Carpita, N. C. (1984a). Cell wall development in maize coleoptiles. Plant Physiol.

76, 205–212. doi: 10.1104/pp.76.1.205

Carpita, N. C. (1984b). Fractionation of hemicelluloses from maize cell walls

with increasing concentrations of alkali. Phytochemistry 23, 1089–1093.

doi: 10.1016/S0031-9422(00)82615-1

Carpita, N. C. (1996). Structure and biogenesis of the cell walls of grasses. Annu.

Rev. Plant Physiol. Plant Mol. Biol. 47, 445–476.

Chapelle, A., Morreel, K., Vanholme, R., Le-Bris, P., Morin, H., Lapierre, C., et al.

(2012). Impact of the absence of stem-specific beta-glucosidases on lignin and

monolignols. Plant Physiol. 160, 1204–1217. doi: 10.1104/pp.112.203364

Chen, X. W., Vega-Sanchez, M. E., Verhertbruggen, Y., Chiniquy, D., Canlas, P.

E., Fagerstrom, A., et al. (2013). Inactivation of OsIRX10 leads to decreased

xylan content in rice culm cell walls and improved biomass saccharification.

Mol. Plant 6, 570–573. doi: 10.1093/mp/sss135

Chiniquy, D., Sharma, V., Schultink, A., Baidoo, E. E., Rautengarten, C.,

Cheng, K., et al. (2012). XAX1 from glycosyltransferase family 61 mediates

xylosyltransfer to rice xylan. Proc. Natl. Acad. Sci. U.S.A. 109, 17117–17122.

doi: 10.1073/pnas.1202079109

Chiniquy, D., Varanasi, P., Oh, T., Harholt, J., Katnelson, J., Singh, S., et al.

(2013). Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L,

and IRX14 genes and their roles in xylan biosynthesis. Front. Plant Sci. 4:83.

doi: 10.3389/fpls.2013.00083

D’auria (2006). Acyltransferases in plants: a good time to be BAHD. Curr. Opin.

Plant Biol. 9, 331–340. doi: 10.1016/j.pbi.2006.03.016

Ebringerova, A., and Heinze, T. (2000). Xylan and xylan derivatives -

biopolymers with valuable properties, 1 - Naturally occurring xylans

structures, procedures and properties.Macromol. Rapid Commun. 21, 542–556.

doi: 10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0

Elumalai, S., Tobimatsu, Y., Grabber, J. H., Pan, X. J., and Ralph, J. (2012).

Epigallocatechin gallate incorporation into lignin enhances the alkaline

delignification and enzymatic saccharification of cell walls. Biotechnol. Biofuels

5:59. doi: 10.1186/1754-6834-5-59

Faik, A. (2010). Xylan biosynthesis: news from the grass. Plant Physiol. 153,

396–402. doi: 10.1104/pp.110.154237

Ford, C. W., and Elliott, R. (1987). Biodegradability of mature grass cell walls in

relation to chemical composition and rumen microbial activity. J. Agric. Sci.

108, 201–209. doi: 10.1017/S0021859600064273

Ford, C. W., and Hartley, R. D. (1990). Cyclodimers of p-coumaric and ferulic

acids in the cell walls of tropical grasses. J. Sci. Food Agric. 50, 29–43.

doi: 10.1002/jsfa.2740500105

Froass, P. M., Ragauskas, A. J., and Jiang, J.-E. (1998). Nuclear magnetic resonance

studies. 4. analysis of residual lignin after kraft pulping. Ind. Eng. Chem. Res. 37,

3388–3394.

Fry, S. C. (1986). Cross-linking of matrix polymers in the growing cell walls of

angiosperms. Annu. Rev. Plant Physiol. 37, 165–186.

Galyean, M. L., and Goetsch, A. L. (1993). “Utilization of forage fibers by

ruminants,” in Forage Cell Wall Structure and Digestibility, eds H. J. Jung, D. R.

Buxton, R. D. Hatfield, and J. Ralph (Madison, WI: ASA-CSSA-SSSA), 33–71.

Gibeaut, D. M., and Carpita, N. C. (1991). Tracing cell wall biogenesis in intact

cells and plants. Plant Physiol. 97, 551–561. doi: 10.1104/pp.97.2.551

Goujon, T., Ferret, V., Mila, I., Pollet, B., Ruel, K., Burlat, V., et al. (2003).

Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects

on phenotype, lignins and cell wall degradability. Planta 217, 218–228.

doi: 10.1007/s00425-003-0987-6

Grabber, J. H., Ralph, J., and Hatfield, R. D. (1998a). Ferulate cross-links limit the

enzymatic degradation of synthetically lignified primary walls of maize. J. Agric.

Food Chem. 46, 2609–2614. doi: 10.1021/jf9800099

Grabber, J. H., Ralph, J., and Hatfield, R. D. (1998b). “Modeling lignification in

grasses with monolignol dehydropolymerisate-cell wall complexes,” in Lignin

and Lignan Biosynthesis, eds N.G. Lewis and S. Sarkanen (Washington, DC:

American Chemical Society), 163–171.

Grabber, J. H., Ralph, J., and Hatfield, R. D. (2000). Cross-linking of maize walls

by ferulate dimerization and incorporation into lignin. J. Agric. Food Chem. 48,

6106–6113. doi: 10.1021/jf0006978

Habrant, A., Gaillard, C., Ralet, M. C., Lairez, D., and Cathala, B. (2009).

Relation between chemical structure and supramolecular organization

of synthetic lignin-pectin particles. Biomacromolecules 10, 3151–3156.

doi: 10.1021/bm900950r

Frontiers in Plant Science | www.frontiersin.org 12 January 2017 | Volume 7 | Article 2056

https://doi.org/10.1016/S0968-0004(97)01053-0
https://doi.org/10.1002/9781444391015.ch9
https://doi.org/10.1073/pnas.1115858109
https://doi.org/10.1105/tpc.15.00373
https://doi.org/10.1146/annurev-arplant-042110-103918
https://doi.org/10.1093/aob/mcv046
https://doi.org/10.1104/pp.112.208694
https://doi.org/10.1515/abcsb-2015-0017
https://doi.org/10.1093/jxb/err045
https://doi.org/10.1111/tpj.12135
https://doi.org/10.1111/j.1365-313X.2007.03307.x
https://doi.org/10.1111/j.1365-313X.2008.03729.x
https://doi.org/10.1093/mp/ssp067
https://doi.org/10.1016/j.tetlet.2005.06.140
https://doi.org/10.1093/nar/gkn663
https://doi.org/10.1093/mp/ssn052
https://doi.org/10.1104/pp.76.1.205
https://doi.org/10.1016/S0031-9422(00)82615-1
https://doi.org/10.1104/pp.112.203364
https://doi.org/10.1093/mp/sss135
https://doi.org/10.1073/pnas.1202079109
https://doi.org/10.3389/fpls.2013.00083
https://doi.org/10.1016/j.pbi.2006.03.016
https://doi.org/10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0
https://doi.org/10.1186/1754-6834-5-59
https://doi.org/10.1104/pp.110.154237
https://doi.org/10.1017/S0021859600064273
https://doi.org/10.1002/jsfa.2740500105
https://doi.org/10.1104/pp.97.2.551
https://doi.org/10.1007/s00425-003-0987-6
https://doi.org/10.1021/jf9800099
https://doi.org/10.1021/jf0006978
https://doi.org/10.1021/bm900950r
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Hatfield et al. Making of Grass Cell Walls

Harris, P. J., and Hartley, R. D. (1980). Phenolic constituents of the

cell walls of monocotyledons. Biochem. Syst. Ecol. 8, 153–160.

doi: 10.1016/0305-1978(80)90008-3

Harris, P. J., Hartley, R. D., and Lowry, K. H. (1980). Phenolic constituents of

mesophyll and nonmesophyll cell walls from leaf laminae of Lolium perenne.

J. Sci. Food Agric. 31, 959–962. doi: 10.1002/jsfa.2740310914

Hartley, R. D. (1990). “Phenolic monomers and dimers of the plant cell wall

and their effects on fiber utilization,” in Microbial and Plant Opportunities

to Improve Lignocellulose Utilization by Ruminants, eds D. E. Akin, L. G.

Ljungdahl, J. R. Wilson, and P. J. Harris (New York, NY: Elsevier), 183–193.

Hatfield, R. D., and Chaptman, A. K. (2009). Comparing corn types for differences

in cell wall characteristics and p-coumaroylation of lignin. J. Agric. Food Chem.

57, 4243–4249. doi: 10.1021/jf900360z

Hatfield, R. D., Jung, H. G., Ralph, J., Buxton, D. R., and Weimer, P. J.

(1994). A comparison of the insoluble residues produced by the klason

lignin and acid detergent lignin procedures. J. Sci. Food Agric. 65, 51–58.

doi: 10.1002/jsfa.2740650109

Hatfield, R. D., and Marita, J. M. (2010). Enzymatic processes involved in the

incorporation of hydroxycinnamates into grass cell walls. Phytochem. Rev. 9,

35–45. doi: 10.1007/s11101-010-9165-1

Hatfield, R. D., Marita, J. M., and Frost, K. (2008b). Characterization of p-

coumarate accumulation, p-coumaroyl transferase, and cell wall changes

during the development of corn stems. J. Sci. Food Agric. 88, 2529–2537.

doi: 10.1002/jsfa.3376

Hatfield, R. D., Marita, J. M., Frost, K., Grabber, J., Ralph, J., Lu, F. C.,

et al. (2009). Grass lignin acylation: p-coumaroyl transferase activity and

cell wall characteristics of C3 and C4 grasses. Planta 229, 1253–1267.

doi: 10.1007/S00425-009-0900-Z

Hatfield, R. D., and Nevins, D. J. (1986). Purification and properties of an

endoglucanase isolated from the cell walls of Zea mays seedlings. Carbohydr.

Res. 148, 265–278. doi: 10.1016/S0008-6215(00)90394-X

Hatfield, R. D., and Nevins, D. J. (1987). Hydrolytic activity and substrate

specificity of an endoglucanase from Zea mays seedling cell walls. Plant Physiol.

83, 203–207. doi: 10.1104/pp.83.1.203

Hatfield, R. D., Ralph, J., and Grabber, J. H. (1999a). Cell wall cross-linking

by ferulates and diferulates in grasses. J. Sci. Food Agric. 79, 403–407.

doi: 10.1002/(SICI)1097-0010(19990301)79:3<403::AID-JSFA263>3.0.CO;2-0

Hatfield, R. D., Ralph, J., and Grabber, J. H. (1999b). Cell wall structural

foundations: molecular basis for improving forage digestabilities. Crop Sci. 39,

27–37. doi: 10.2135/cropsci1999.0011183X003900010005x

Hatfield, R., Ralph, J., and Grabber, J. H. (2008a). A potential role for sinapyl p-

coumarate as a radical transfer mechanism in grass lignin formation. Planta

228, 919–928. doi: 10.1007/s00425-008-0791-4

Herve, C., Rogowski, A., Blake, A. W., Marcus, S. E., Gilbert, H. J., and Knox, J. P.

(2010). Carbohydrate-binding modules promote the enzymatic deconstruction

of intact plant cell walls by targeting and proximity effects. Proc. Natl. Acad. Sci.

U.S.A. 107, 15293–15298. doi: 10.1073/pnas.1005732107

Huber, D. J., and Nevins, D. J. (1979). Autohydrolysis of cell wall β-D-glucan in

corn coleoptiles. Plant Cell Physiol. 20, 201–212.

Ishii, T. (1997). Structure and functions of feruloylated polysaccharides. Plant Sci.

127, 111–127. doi: 10.1016/S0168-9452(97)00130-1

Ishii, T., and Hiroi, T. (1990). Isolation and characterization of feruloylated

arabinoxylan oligosaccharides from bamboo shoot cell walls. Carbohydr. Res.

196, 175–183. doi: 10.1016/0008-6215(90)84117-D

Jensen, J. K., Johnson, N. R., and Wilkerson, C. G. (2014). Arabidopsis thaliana

IRX10 and two related proteins from psyllium and Physcomitrella patens are

xylan xylosyltransferases. Plant J. 80, 207–215. doi: 10.1111/tpj.12641

Jonas, M. C., Pehar, M., and Puglielli, L. (2010). AT-1 is the ER membrane acetyl-

CoA transporter and is essential for cell viability. J. Cell Sci. 123, 3378–3388.

doi: 10.1242/jcs.068841

Jung, H. G., Mertens, D. R., and Buxton, D. R. (1998). Forage quality variation

among maize inbreds: in vitro fiber digestion kinetics and prediction with

NIPS. Crop Sci. 38, 205–210. doi: 10.2135/cropsci1998.0011183X0038000

10034x

Jung, H. G., Valdez, F. R., Hatfield, R. D., and Blanchette, R. A. (1992).

Cell wall composition and degradability of forage stems following

chemical and biological delignification. J. Sci. Food Agric. 58, 347–355.

doi: 10.1002/jsfa.2740580309

Kishimoto, T., Uraki, Y., and Ubukata, M. (2005). Easy synthesis of beta-

O-4 type lignin related polymers. Org. Biomol. Chem. 3, 1067–1073.

doi: 10.1039/B416699J

Konishi, T., Aohara, T., Igasaki, T., Hayashi, N., Miyazaki, Y., Takahashi, A.,

et al. (2011). Down-regulation of UDP-arabinopyranose mutase reduces the

proportion of arabinofuranose present in rice cell walls. Phytochemistry 72,

1962–1968. doi: 10.1016/j.phytochem.2011.07.012

Konishi, T., Takeda, T., Miyazaki, Y., Ohnishi-Kameyama, M., Hayashi,

T., O’neill, M. A., et al. (2007). A plant mutase that interconverts

UDP-arabinofuranose and UDP-arabinopyranose. Glycobiology 17, 345–354.

doi: 10.1093/glycob/cwl081

Kuang, B., Zhao, X., Zhou, C., Zeng, W., Ren, J., Ebert, B., et al. (2016). Role of

UDP-glucuronic acid decarboxylase in xylan biosynthesis in arabidopsis. Mol.

Plant 9, 1119–1131. doi: 10.1016/j.molp.2016.04.013

Kuroyama, H., and Tsumuraya, Y. (2001). A xylosyltransferase that synthesizes

beta-(1 -> 4)-xylans in wheat (Triticum aestivum L.) seedlings. Planta 213,

231–240. doi: 10.1007/s004250000499

Lapierre, C., Jouin, D., and Monties, B. (1989). On the molecular origin of

the alkali solubility of Gramineae lignins. Phytochemistry 28, 1401–1403.

doi: 10.1016/S0031-9422(00)97755-0

Lee, C., Teng, Q., Zhong, R. Q., Yuan, Y. X., and Ye, Z. H. (2014). Functional

roles of rice glycosyltransferase family GT43 in xylan biosynthesis. Plant Signal.

Behav. 9:e27809. doi: 10.4161/psb.27809

Li, X., and Chapple, C. (2010). Understanding lignification: challenges

beyond monolignol biosynthesis. Plant Physiol. 154, 449–452.

doi: 10.1104/pp.110.162842

Li, Z. C., McClure, J. W., and Hagerman, A. E. (1989). Soluble and bound

apoplastic activity for peroxidase, β-D-glucosidase, malate-dehydrogenase,

and nonspecific arylesterase, in barley (Hordeum vulgare-l) and oat (Avena

sativa l) primary leaves. Plant Physiol. 90, 185–190. doi: 10.1104/pp.

90.1.185

Lohaus, G., Pennewiss, K., Sattelmacher, B., Hussmann, M., and Muehling, K. H.

(2001). Is the infiltration-centrifugation technique appropriate for the isolation

of apoplastic fluid? A critical evaluation with different plant species. Physiol.

Plant. 111, 457–465. doi: 10.1034/j.1399-3054.2001.1110405.x

Marita, J. M., Vermerris, W., Ralph, J., and Hatfield, R. D. (2003). Variations in the

cell wall composition of maize brown midribmutants. J. Agric. Food Chem. 51,

1313–1321. doi: 10.1021/jf0260592

Markwalder, H. U., and Neukom, H. (1976). Diferulic acid as a possible

crosslink in hemicelluloses from wheat germ. Phytochemistry 15, 836–837.

doi: 10.1016/S0031-9422(00)94474-1

Mastrangelo, L. I., Lenucci, M. S., Piro, G., and Dalessandro, G. (2009).

Evidence for intra- and extra-protoplasmic feruloylation and cross-linking

in wheat seedling roots. Planta 229, 343–355. doi: 10.1007/s00425-008-

0834-x

Mitchell, R. A. C., Dupree, P., and Shewry, P.R. (2007). A novel bioinformatics

approach identifies candidate genes for the synthesis and feruloylation

of arabinoxylan. Plant Physiol. 144, 43–53. doi: 10.1104/pp.106.

094995

Molinari, H. B. C., Pellny, T. K., Freeman, J., Shewry, P. R., and Mitchell, R.A.

C. (2013). Grass cell wall feruloylation: istribution of bound ferulate and

candidate gene expression in Brachypodium distachyon. Front. Plant Sci. 4:50.

doi: 10.3389/fpls.2013.00050

Montes, R. A. C., Ranocha, P., Martinez, Y., Minic, Z., Jouanin, L., et al.

and Goffner, D. (2008). Cell wall modifications in Arabidopsis plants

with altered alpha-L-arabinofuranosidase activity. Plant Physiol. 147, 63–77.

doi: 10.1104/pp.107.110023

Mortimer, J. C., Miles, G. P., Brown, D. M., Zhang, Z., Segura, M. P., Weimar,

T., et al. (2010). Absence of branches from xylan in Arabidopsis gux mutants

reveals potential for simplification of lignocellulosic biomass. Proc. Natl Acad.

Sci. U.S.A. 107, 17409–17414. doi: 10.1073/pnas.1005456107

Mueller-Harvey, I., Hartley, R. D., Harris, P. J., and Curzon, E. H. (1986).

Linkage of p-coumaryl and feruloyl groups to cell wall polysaccharides

of barley straw. Carbohydr. Res. 148, 71–85. doi: 10.1016/0008-6215(86)

80038-6

Myton, K. E., and Fry, S. C. (1994). Intraprotoplasmic feruloylation of

arabinoxylans in Festuca arundinacea cell cultures. Planta 193, 326–330.

doi: 10.1007/BF00201809

Frontiers in Plant Science | www.frontiersin.org 13 January 2017 | Volume 7 | Article 2056

https://doi.org/10.1016/0305-1978(80)90008-3
https://doi.org/10.1002/jsfa.2740310914
https://doi.org/10.1021/jf900360z
https://doi.org/10.1002/jsfa.2740650109
https://doi.org/10.1007/s11101-010-9165-1
https://doi.org/10.1002/jsfa.3376
https://doi.org/10.1007/S00425-009-0900-Z
https://doi.org/10.1016/S0008-6215(00)90394-X
https://doi.org/10.1104/pp.83.1.203
https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<403::AID-JSFA263>3.0.CO;2-0
https://doi.org/10.2135/cropsci1999.0011183X003900010005x
https://doi.org/10.1007/s00425-008-0791-4
https://doi.org/10.1073/pnas.1005732107
https://doi.org/10.1016/S0168-9452(97)00130-1
https://doi.org/10.1016/0008-6215(90)84117-D
https://doi.org/10.1111/tpj.12641
https://doi.org/10.1242/jcs.068841
https://doi.org/10.2135/cropsci1998.0011183X003800010034x
https://doi.org/10.1002/jsfa.2740580309
https://doi.org/10.1039/B416699J
https://doi.org/10.1016/j.phytochem.2011.07.012
https://doi.org/10.1093/glycob/cwl081
https://doi.org/10.1016/j.molp.2016.04.013
https://doi.org/10.1007/s004250000499
https://doi.org/10.1016/S0031-9422(00)97755-0
https://doi.org/10.4161/psb.27809
https://doi.org/10.1104/pp.110.162842
https://doi.org/10.1104/pp.90.1.185
https://doi.org/10.1034/j.1399-3054.2001.1110405.x
https://doi.org/10.1021/jf0260592
https://doi.org/10.1016/S0031-9422(00)94474-1
https://doi.org/10.1007/s00425-008-0834-x
https://doi.org/10.1104/pp.106.094995
https://doi.org/10.3389/fpls.2013.00050
https://doi.org/10.1104/pp.107.110023
https://doi.org/10.1073/pnas.1005456107
https://doi.org/10.1016/0008-6215(86)80038-6
https://doi.org/10.1007/BF00201809
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Hatfield et al. Making of Grass Cell Walls

Nakamura, R., Matsushita, Y., Umemoto, K., Usuki, A., and Fukushima, K. (2006).

Enzymatic polymerization of coniferyl alcohol in the presence of cyclodextrins.

Biomacromolecules 7, 1929–1934. doi: 10.1021/bm060045d

Neukom, H., and Markwalder, H. U. (1978). Oxidative gelation of wheat flour

pentosans: a new way of cross-linking polymers. Cereal Foods World 23,

374–376.

Nevins, D. J., Hatfield, R. D., and Kato, Y. (1984). “Depolymerization of matrix

polysaccharides by endogenous wall enzymes,” in Structure, Function, and

Biosynthesis of Plant Cell Walls, eds W. M. Dugger and S. Bartnicki-Garcia

(Baltimore, MD: Waverly Press), 167–184.

Obel, N., Porchia, A. C., and Scheller, H. V. (2002). Dynamic changes in cell

wall polysaccharides during wheat seedling development. Phytochemistry 60,

603–610. doi: 10.1016/S0031-9422(02)00148-6

Obel, N., Porchia, A. C., and Scheller, H. V. (2003). Intracellular feruloylation of

arabinoxylan in wheat: evidence for feruloyl-glucose as precursor. Planta 216,

620–629. doi: 10.1007/s00425-002-0863-9

O’leary, B. M., Rico, A., McCraw, S., Fones, H. N., and Preston, G. M. (2014).

The infiltration-centrifugation technique for extraction of apoplastic fluid

from plant leaves using phaseolus vulgaris as an example. J. Vis. Exp. e52113.

doi: 10.3791/52113

Pauly, M., Gille, S., Liu, L. F., Mansoori, N., De Souza, A., Schultink,

A., et al. (2013). Hemicellulose biosynthesis. Planta 238, 627–642.

doi: 10.1007/s00425-013-1921-1

Pauly, M., and Keegstra, K. (2008). Cell-wall carbohydrates and their

modification as a resource for biofuels. Plant J. 54, 559–568.

doi: 10.1111/j.1365-313X.2008.03463.x

Pellny, T. K., Lovegrove, A., Freeman, J., Tosi, P., Love, C. G., Knox, J. P.,

et al. (2012). Cell walls of developing wheat starchy endosperm: comparison

of composition and RNA-Seq transcriptome. Plant Physiol. 158, 612–627.

doi: 10.1104/pp.111.189191

Pena, M. J., Zhong, R. Q., Zhou, G. K., Richardson, E. A., O’neill, M. A.,

Darvill, A. G., et al. (2007). Arabidopsis irregular xylem8 and irregular xylem9:

implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19,

549–563. doi: 10.1105/tpc.106.049320

Persson, S., Caffall, K. H., Freshour, G., Hilley, M. T., Bauer, S., Poindexter, P., et al.

(2007). The Arabidopsis irregular xylem8mutant is deficient in glucuronoxylan

and homogalacturonan, which are essential for secondary cell wall integrity.

Plant Cell 19, 237–255. doi: 10.1105/tpc.106.047720

Piston, F., Uauy, C., Fu, L. H., Langston, J., Labavitch, J., and Dubcovsky, J. (2010).

Down-regulation of four putative arabinoxylan feruloyl transferase genes from

family PF02458 reduces ester-linked ferulate content in rice cell walls. Planta

231, 677–691. doi: 10.1007/s00425-009-1077-1

Porchia, A. C., and Scheller, H. V. (2000). Arabinoxylan biosynthesis: identification

and partial characterization of β-1,4-xylosyltransferase from wheat. Physiol.

Plant. 110, 350–356. doi: 10.1034/j.1399-3054.2000.1100309.x

Porchia, A. C., Sorensen, S. O., and Scheller, H. V. (2002). Arabinoxylan

biosynthesis in wheat. Characterization of arabinosyltransferase activity in

Golgi membranes. Plant Physiol. 130, 432–441. doi: 10.1104/pp.003400

Quideau, S., and Ralph, J. (1997). Lignin-ferulate cross-links in grasses. Part 4.

Incorporation of 5–5-coupled diferulate into lignin. J. Chem. Soc. Perkin Trans.

1, 2351–2358. doi: 10.1039/A701808H

Ralph, J., Bunzel, M., Marita, J. M., Hatfield, R. D., Lu, F., Kim, H.,

et al. (2004a). Peroxidase-dependent cross-linking reactions of p-

hydroxycinnamates in plant cell walls. Phytochem. Rev. 3, 79–96.

doi: 10.1023/B:PHYT.0000047811.13837.fb

Ralph, J., Grabber, J. H., and Hatfield, R. D. (1995). Lignin-ferulate crosslinks

in grasses: active incorporation of ferulate polysaccharide esters into ryegrass

lignins. Carbohydr. Res. 275, 167–178. doi: 10.1016/0008-6215(95)00237-N

Ralph, J., Guillaume, S., Grabber, J. H., Lapierre, C., and Barrière, Y. (2004b).

Genetic and molecular basis of grass cell wall biosynthesis and degradability.

III. Towards a forage grass ideotype. Comptes Rend. Biol. 327, 467–479.

doi: 10.1016/j.crvi.2004.03.004

Ralph, J., Hatfield, R. D., Grabber, J. H., Jung, H. G., Quideau, S., and Helm, R. F.

(1998). “Cell wall cross-linking in grasses by ferulates and diferulates,” in Lignin

and Lignan Biosynthesis, eds N. G. Lewis and S. Sarkanen (Washington, DC:

American Chemical Society), 209–236.

Ralph, J., Hatfield, R. D., Quideau, S., and Helm, R. F. (1993). “Lignin

crosslinking in the plant cell wall; unambiguous methods for identification, and

structural/regiochemical characterization of cross-linked structures,” in NMR

of Biomaterials Symposium, 1993 American Chemical Society National Meeting

(Denver, CO: ACS), 1–137.

Ralph, J., Quideau, S., Grabber, J. H., and Hatfield, R. D. (1994). Identification

and synthesis of new ferulic acid dehydrodimers present in grass cell

walls. J. Chem. Soc. Perkin Trans. 1, 3485–3498. doi: 10.1039/P199400

03485

Rancour, D.M., Hatfield, R. D., Marita, J. M., Rohr, N. A., and Schmitz, R. J. (2015).

Cell wall composition and digestibility alterations in Brachypodium distachyon

achieved through reduced expression of the UDP-arabinopyranose mutase.

Front. Plant Sci. 6:446. doi: 10.3389/fpls.2015.00446

Rancour, D. M., Marita, J. M., and Hatfield, R. D. (2012). Cell wall composition

throughout development for the model grass Brachypodium distachyon. Front.

Plant Sci. 3:266. doi: 10.3389/Fpls.2012.00266

Ratnayake, S., Beahan, C. T., Callahan, D. L., and Bacic, A. (2014). The reducing

end sequence of wheat endosperm cell wall arabinoxylans. Carbohydr. Res. 386,

23–32. doi: 10.1016/j.carres.2013.12.013

Rautengarten, C., Ebert, B., Herter, T., Petzold, C. J., Ishii, T., Mukhopadhyay,

A., et al. (2011). The interconversion of UDP-arabinopyranose and UDP-

arabinofuranose is indispensable for plant development in Arabidopsis. Plant

Cell 23, 1373–1390. doi: 10.1105/tpc.111.083931

Reddy, M. S. S., Chen, F., Shadle, G. L., Jackson, L., Aljoe, H., and Dixon, R.

A. (2005). Targeted down-regulation of cytochrome P450 enzymes for forage

quality improvement in alfalfa (Medicago sativa L.). Proc. Natl. Acad. Sci. U.S.A.

102, 16573–16578. doi: 10.1073pnas.0505749102

Ren, Y. F., Hansen, S. F., Ebert, B., Lau, J., and Scheller, H. V. (2014). Site-

directed mutagenesis of IRX9, IRX9L and IRX14 Proteins involved in xylan

biosynthesis: glycosyltransferase activity is not required for IRX9 function in

Arabidopsis. PLoS ONE 9:e105014. doi: 10.1371/journal.pone.0105014

Rennie, E. A., Hansen, S. F., Baidoo, E. E. K., Hadi, M. Z., Keasling, J. D., and

Scheller, H. V. (2012). Three members of the Arabidopsis Glycosyltransferase

family 8 are xylan glucuronosyltransferases. Plant Physiol. 159, 1408–1417.

doi: 10.1104/pp.112.200964

Rennie, E. A., and Scheller, H. V. (2014). Xylan biosynthesis. Curr. Opin.

Biotechnol. 26, 100–107. doi: 10.1016/j.copbio.2013.11.013

Sarkanen, K. V., and Ludwig, C. H. (1971). Lignins, Occurrence, Formation,

Structure and Reactions. New York, NY: Wiley-Interscience.

Schuetz, M., Benske, A., Smith, R. A., Watanabe, Y., Tobimatsu, Y., Ralph, J., et al.

(2014). Laccases direct lignification in the discrete secondary cell wall domains

of protoxylem. Plant Physiol. 166, 798–807. doi: 10.1104/pp.114.245597

Schultink, A., Naylor, D., Dama, M., and Pauly, M. (2015). The role

of the plant-specific ALTERED XYLOGLUCAN9 protein in arabidopsis

cell wall Polysaccharide O-Acetylation. Plant Physiol. 167, 1271–1283.

doi: 10.1104/pp.114.256479

Sederoff, R. R., Mackay, J. J., Ralph, J., and Hatfield, R. D. (1999).

Unexpected variation in lignin. Curr. Opin. Plant Biol. 2, 145–152.

doi: 10.1016/S1369-5266(99)80029-6

Shadle, G., Chen, F., Srinivasa Reddy, M. S., Jackson, L., Nakashima,

J., and Dixon, R. A. (2007). Down-regulation of hydroxycinnamoyl

CoA: shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects

lignification, development and forage quality. Phytochemistry 68, 1521–1529.

doi: 10.1016/j.phytochem.2007.03.022

Shen, H., Mazarei, M., Hisano, H., Escamilla-Trevino, L., Fu, C., Pu, Y., et al.

(2013). A genomics approach to deciphering lignin biosynthesis in switchgrass.

Plant Cell 25, 4342–4361. doi: 10.1105/tpc.113.118828

Song, L. L., Zeng, W., Wu, A. M., Picard, K., Lampugnani, E. R., Cheetamun,

R., et al. (2015). Asparagus spears as a model to study heteroxylan

biosynthesis during secondary wall development. PLoS ONE 10:e0123878.

doi: 10.1371/journal.pone.0123878

Sumiyoshi, M., Nakamura, A., Nakamura, H., Hakata, M., Ichikawa, H., Hirochika,

H., et al. (2013). Increase in cellulose accumulation and improvement of

saccharification by overexpression of arabinofuranosidase in rice. PLoS ONE

8:e78269. doi: 10.1371/journal.pone.0078269

Takahama, U., and Oniki, T. (1996). “Enhancement of peroxidase-dependent

oxidation of sinapyl alcohol by esters of 4-coumaric and ferulic acid,” in

Plant Peroxidases, Biochemistry and Physiology, eds C. Obinger, U. Burner,

R. Ebermann, C. Penel and H. Greppin (Genève :Université de Genève),

118–123.

Frontiers in Plant Science | www.frontiersin.org 14 January 2017 | Volume 7 | Article 2056

https://doi.org/10.1021/bm060045d
https://doi.org/10.1016/S0031-9422(02)00148-6
https://doi.org/10.1007/s00425-002-0863-9
https://doi.org/10.3791/52113
https://doi.org/10.1007/s00425-013-1921-1
https://doi.org/10.1111/j.1365-313X.2008.03463.x
https://doi.org/10.1104/pp.111.189191
https://doi.org/10.1105/tpc.106.049320
https://doi.org/10.1105/tpc.106.047720
https://doi.org/10.1007/s00425-009-1077-1
https://doi.org/10.1034/j.1399-3054.2000.1100309.x
https://doi.org/10.1104/pp.003400
https://doi.org/10.1039/A701808H
https://doi.org/10.1023/B:PHYT.0000047811.13837.fb
https://doi.org/10.1016/0008-6215(95)00237-N
https://doi.org/10.1016/j.crvi.2004.03.004
https://doi.org/10.1039/P19940003485
https://doi.org/10.3389/fpls.2015.00446
https://doi.org/10.3389/Fpls.2012.00266
https://doi.org/10.1016/j.carres.2013.12.013
https://doi.org/10.1105/tpc.111.083931
https://doi.org/10.1073pnas.0505749102
https://doi.org/10.1371/journal.pone.0105014
https://doi.org/10.1104/pp.112.200964
https://doi.org/10.1016/j.copbio.2013.11.013
https://doi.org/10.1104/pp.114.245597
https://doi.org/10.1104/pp.114.256479
https://doi.org/10.1016/S1369-5266(99)80029-6
https://doi.org/10.1016/j.phytochem.2007.03.022
https://doi.org/10.1105/tpc.113.118828
https://doi.org/10.1371/journal.pone.0123878
https://doi.org/10.1371/journal.pone.0078269
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Hatfield et al. Making of Grass Cell Walls

Takahama, U., and Oniki, T. (1997). Enhancement of peroxidase-dependent

oxidation of sinapyl alcohol by an apoplastic component, 4-coumaric acid ester

isolated from epicotyls of Vigna angularis L. Plant Cell Physiol. 38, 456–462.

Temple, H., Saez-Aguayo, S., Reyes, F. C., and Orellana, A. (2016). The

inside and outside: topological issues in plant cell wall biosynthesis

and the roles of nucleotide sugar transporters. Glycobiology 26, 913–925.

doi: 10.1093/glycob/cww054

Tobimatsu, Y., Van De Wouwer, D., Allen, E., Kumpf, R., Vanholme, B., Boerjan,

W., et al. (2014). A click chemistry strategy for visualization of plant cell wall

lignification. Chem. Commun. 50, 12262–12265. doi: 10.1039/c4cc04692g

Tobimatsu, Y., Wagner, A., Donaldson, L., Mitra, P., Niculaes, C., Dima, O., et al.

(2013). Visualization of plant cell wall lignification using fluorescence-tagged

monolignols. Plant J. 76, 357–366. doi: 10.1111/tpj.12299

Touzel, J. P., Chabbert, B., Monties, B., Debeire, P., and Cathala, B.

(2003). Synthesis and characterization of dehydrogenation polymers in

Gluconacetobacter xylinus cellulose and cellulose/pectin composite. J. Agric.

Food Chem. 51, 981–986. doi: 10.1021/jf020200p

Tsuji, Y., Vanholme, R., Tobimatsu, Y., Ishikawa, Y., Foster, C. E., Kamimura, N.,

et al. (2015). Introduction of chemically labile substructures into Arabidopsis

lignin through the use of LigD, the C-dehydrogenase from Sphingobium sp

strain SYK-6. Plant Biotechnol. J. 13, 821–832. doi: 10.1111/pbi.12316

Vanholme, R., Demedts, B., Morreel, K., Ralph, J., and Boerjan, W.

(2010). Lignin biosynthesis and structure. Plant Physiol. 153, 895–905.

doi: 10.1104/pp.110.155119

Vanholme, R., Morreel, K., Darrah, C., Oyarce, P., Grabber, J. H., Ralph, J., et al.

(2012). Metabolic engineering of novel lignin in biomass crops. New Phytol.

196, 978–1000. doi: 10.1111/j.1469-8137.2012.04337.x

Vanholme, R., Morreel, K., Ralph, J., and Boerjan, W. (2008). Lignin engineering.

Curr. Opin. Plant Biol. 11, 278–285. doi: 10.1016/j.pbi.2008.03.005

Wang, Y., Chantreau, M., Sibout, R., and Hawkins, S. (2013). Plant cell

wall lignification and monolignol metabolism. Front. Plant Sci. 4:220.

doi: 10.3389/fpls.2013.00220

Weng, J. K., Akiyama, T., Bonawitz, N. D., Li, X., Ralph, J., and Chapple, C. (2010).

Convergent evolution of syringyl lignin biosynthesis via distinct pathways

in the lycophyte Selaginella and flowering plants. Plant Cell 22, 1033–1045.

doi: 10.1105/tpc.109.073528

Wilson, S. M., Burton, R. A., Collins, H. M., Doblin, M. S., Pettolino, F. A., Shirley,

N., et al. (2012). Pattern of deposition of cell wall polysaccharides and transcript

abundance of related cell wall synthesis genes during differentiation in barley

endosperm. Plant Physiol. 159, 655–670. doi: 10.1104/pp.111.192682

Wu, A. M., Rihouey, C., Seveno, M., Hornblad, E., Singh, S. K., Matsunaga, T.,

et al. (2009). The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases

are critical for glucuronoxylan biosynthesis during secondary cell

wall formation. Plant J. 57, 718–731. doi: 10.1111/j.1365-313X.2008.

03724.x

Yin, Y. B., Huang, J. L., Gu, X. G., Bar-Peled, M., and Xu, Y. (2011). Evolution

of plant nucleotide-sugar interconversion enzymes. PLoS ONE 6:e27995.

doi: 10.1371/journal.pone.0027995

Yoshida-Shimokawa, T., Yoshida, S., Kakegawa, K., and Ishii, T. (2001). Enzymic

feruloylation of arabinoxylan-trisaccharide by feruloyl-CoA: arabinoxylan-

trisaccharide O-hydroxycinnamoyl transferase from Oryza sativa. Planta 212,

470–474. doi: 10.1007/s004250000490

Zeng, W., Chatterjee, M., and Faik, A. (2008). UDP-Xylose-stimulated

glucuronyltransferase activity in wheat microsomal membranes:

characterization and role in glucurono(arabino)xylan biosynthesis. Plant

Physiol. 147, 78–91. doi: 10.1104/pp.107.115576

Zeng, W., Jiang, N., Nadella, R., Killen, T. L., Nadella, V., and Faik, A. (2010). A

glucurono(arabino)xylan synthase complex from wheat contains members of

the GT43, GT47, and GT75 families and functions cooperatively. Plant Physiol.

154, 78–97. doi: 10.1104/pp.110.159749

Zeng, W., Lampugnani, E. R., Picard, K. L., Song, L. L., Wu, A. M.,

Farion, I. M., et al. (2016). Asparagus IRX9, IRX10, and IRX14A Are

components of an active xylan backbone synthase complex that forms

in the golgi apparatus. Plant Physiol. 171, 93–109. doi: 10.1104/pp.15.

01919

Zhang, B. C., Liu, X. L., Qian, Q. A., Liu, L. F., Dong, G. J., Xiong, G. Y., et al.

(2011). Golgi nucleotide sugar transporter modulates cell wall biosynthesis

and plant growth in rice. Proc. Natl. Acad. Sci. U.S.A. 108, 5110–5115.

doi: 10.1073/pnas.1016144108

Zhang, Q. S., Cheetamun, R., Dhugga, K. S., Rafalski, J. A., Tingey, S. V.,

Shirley, N. J., et al. (2014). Spatial gradients in cell wall composition and

transcriptional profiles along elongating maize internodes. BMC Plant Biol.

14:27. doi: 10.1186/1471-2229-14-27

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Hatfield, Rancour and Marita. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 15 January 2017 | Volume 7 | Article 2056

https://doi.org/10.1093/glycob/cww054
https://doi.org/10.1039/c4cc04692g
https://doi.org/10.1111/tpj.12299
https://doi.org/10.1021/jf020200p
https://doi.org/10.1111/pbi.12316
https://doi.org/10.1104/pp.110.155119
https://doi.org/10.1111/j.1469-8137.2012.04337.x
https://doi.org/10.1016/j.pbi.2008.03.005
https://doi.org/10.3389/fpls.2013.00220
https://doi.org/10.1105/tpc.109.073528
https://doi.org/10.1104/pp.111.192682
https://doi.org/10.1111/j.1365-313X.2008.03724.x
https://doi.org/10.1371/journal.pone.0027995
https://doi.org/10.1007/s004250000490
https://doi.org/10.1104/pp.107.115576
https://doi.org/10.1104/pp.110.159749
https://doi.org/10.1104/pp.15.01919
https://doi.org/10.1073/pnas.1016144108
https://doi.org/10.1186/1471-2229-14-27
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Grass Cell Walls: A Story of Cross-Linking
	Introduction
	Structural Polysaccharides (Xylans)
	Ferulates and p-Coumarates
	Lignin
	Cell Wall Proteins

	Synthesis of Wall Components Involved in Cell Wall Cross-Linking
	Feruloylated Arabinoxylans: Genes and Enzymes

	Organization of the Cell Wall
	Summary
	Author Note
	Author Contributions
	Funding
	References




