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A promisingmethod for characterizing the phenotype of a plant as an interaction between

its genotype and its environment is to use refined organ-scale plant growth models that

use the observation of architectural traits, such as leaf area, containing a lot of information

on the whole history of the functioning of the plant. The Phenoscope, a high-throughput

automated platform, allowed the acquisition of zenithal images of Arabidopsis thaliana

over twenty one days for 4 different genotypes. A novel image processing algorithm

involving both segmentation and tracking of the plant leaves allows to extract areas

of the latter. First, all the images in the series are segmented independently using a

watershed-based approach. A second step based on ellipsoid-shaped leaves is then

applied on the segments found to refine the segmentation. Taking into account all the

segments at every time, the whole history of each leaf is reconstructed by choosing

recursively through time the most probable segment achieving the best score, computed

using some characteristics of the segment such as its orientation, its distance to the plant

mass center and its area. These results are compared to manually extracted segments,

showing a very good accordance in leaf rank and that they therefore provide low-biased

data in large quantity for leaf areas. Such data can therefore be exploited to design an

organ-scale plant model adapted from the existing GreenLab model for A. thaliana and

subsequently parameterize it. This calibration of the model parameters should pave the

way for differentiation between the Arabidopsis genotypes.

Keywords: segmentation, tracking, genotypic, differentiation, Arabidopsis, leaf, area, phyllotaxy

1. INTRODUCTION

In order to predict plant phenotypic performance, statistical models are usually built based on
linear mixed-effect models for integrative variables (Bustos-Korts et al., 2016). Their strength is
that they take advantage of large repetitions of trials in very diverse environmental conditions
since they necessitate only restricted amount of data, but they offer poor perspectives in terms
of interpretation and extrapolation.

On the contrary, since they rely on the mechanistic description of growth processes, plant
growth models have opened promising perspectives for the description and prediction of genotype
by environment interactions. Mathematically speaking, if we consider the system of interest as the
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plant in its environment (or a population of plants, or a specific
part of the plant formodels at smaller scales) plant growthmodels
could formally be represented in the very generic following form:

Y = f (θ ,E) (1)

where:

• Y represents all the phenotypic traits of interest, and is
generally a real-valued function of space and time.

• f represents the functional equations (usually dynamical, see
for example the description of plant growthmodels as dynamic
state space models and hidden Markov models in Cournède
et al., 2013).

• θ represents all the parameters of the model. Some of them
are of biophysical relevance but some are only empirical
parameters (parameters of empirical descriptive functions). As
we will detail later, the estimation of these parameters is a key
issue in plant growth modeling.

• E represents all the external variables for the system,
which mostly corresponds to the environmental variables.
At the global scale, the main variables generally correspond
to radiation, temperature, potential evapo-transpiration,
soil content in water and nutriments. The agricultural,
horticultural, forestry practice can also be represented in the
environmental variables.

Models differ with respect to the phenomenon of interest and the
studied species.

For a given species and a given model, the parameters should
ideally be able to characterize genotypes. As stated by Tardieu
(2003), the application associating its model parameter vector
to each genotype should be injective. In such an ideal situation,
we could imagine very concrete applications: for instance, for
a given environment E, compare the performances of two
genotypes characterized by two different parameter sets θ1 and
θ2. Conversely, if the parameter set is stable for one genotype in
a large range of environmental conditions, we can optimize some
traits of interest with respect to the environmental conditions (see
examples for maize Qi et al., 2010, sunflower Lecoeur et al., 2011
or peach Quilot-Turion et al., 2012), leading to potential decision
aid tools. One example would be the optimization of water supply
under logistic and availability constraints Wu et al. (2012).

If the ecophysiological parameters characterize a given
genotype, then we could also imagine to decompose the genetic
variation of model parameters into individual quantitative trait
loci, or conversely to design a predictive model determining this
parameter set from the plant genetics, that is to say to write θ =
H(G) where G represent the genetic sequence of the individual
plant, either the genomic sequence or a representation of it with
quantitative trait loci markers (see for example Quilot et al., 2005;
Hammer et al., 2006; Letort et al., 2008; Xu et al., 2011; Reymond
et al., 2003; Des Marais et al., 2016).

As described by Yin and Struik (2010) or Baldazzi et al.
(2016), the tendency is to complicate the mechanistic description
of biophysical processes, by linking ecophysiology to omics
sciences as an attempt to fully comprehend the regulatory
networks from which plant robustness and plasticity is supposed

to emerge (Hirai et al., 2004) whilst the related robustness
appears to be difficult to achieve at the cell or tissue level. The
modeling of plant growth and development lends itself to such
an integrative approach. Several models for various component
systems of plants are constantly developed (Hodgman et al.,
2009). However, the road is still long to achieve such an ambitious
objective, resulting in a predictive model from the genes to
the whole plant phenotype in a large range of environmental
conditions. Themore complex themodels, themore troublesome
their parameterization and the assessment of the estimate
uncertainty (Ford and Kennedy, 2011), specifically due to costly
experimentations and the large number of unknown parameters
to consider. Likewise, local environmental conditions (in terms
of climatic and soil variables, as well as biotic stresses) and
initial conditions in specific fields are also very delicate to
characterize. Consequently, the propagation of uncertainties and
errors, which are related to parameters and inputs of these
dynamic models, may result in poor prediction of the plant-
environment interaction in real situations.

A good compromise between mechanistic description of
plant growth processes and the level of details in the data
necessary for their parameterization has recently emerged with
a new paradigm for plant ecophysiological modeling, namely
functional-structural plant modeling (see Vos et al., 2009). It
combines the ecophysiology of plant growth to its architectural
development. One of their fundamental properties is that their
parameterization does not rely on the same type of information
as classical ecophysiological models: architectural traits have the
property to integrate the whole history of plant functioning, and
a large information (in the Fisher sense) on model parameters
can be inferred from the observation of the architectural traits.
The key point that we aim at taking advantage of in this paper
is that architectural traits can potentially be measured efficiently
by automatic image analysis in high-throughput phenotyping
platforms. These have recently gained increasing interest, both
in fields (Araus and Cairns, 2014) and laboratories (Tisné et al.,
2013), thanks to their capacity to automatically measure many
morphological and physiological traits for a large number of
plant genotypes in various environmental conditions. However,
although these measurements are potentially very detailed in
time, they usually concern integrative traits (masses, total
leaf area, height, etc.) and are again classically analyzed with
descriptive statistical (multifactorial) models (see for example
Granier and Vile, 2014).

Our objective in this paper is dual: first, we will propose an
image analysis methodology allowing to dynamically monitor
surface areas of every individual leaves in Arabidopsis thaliana
phenotypes and, second, we will show how these architectural
data can be used to parameterize a functional-structural
model of Arabidopsis growth with the objective of genotypic
differentiation. The material and methods section deals with the
phenotyping data produced by the Phenoscope platform Tisné
et al. (2013), the image analysis methodology and the functional-
structural model developed for A. thaliana. The Phenoscope
platform is first described (section 2.1) and several traits of
its output images analyzed (section 2.2) for further use in the
image processing methodology. The latter relies on two main
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steps, segmentation (section 2.3) and tracking (section 2.4). The
segmentation part has already been studied Scharr et al. (2016),
and the method we developed was largely inspired by Apelt et al.
(2015). However, most studies only consider static images and
are not interested in the dynamic monitoring of leaf growth,
which raises non-trivial problems in tracking.We also propose an
adaptation of the GreenLab model (Yan et al., 2004), (Christophe
et al., 2008) for the first stage of Arabidopsis growth (section
2.5). The results of the dynamic monitoring of individual leaf
surface areas are presented for 4 different genotypes in section
3.1, and are then used to parameterize the GreenLab model with
statistical model inversion techniques in section 3.2. These results
and further perspectives are discussed in section 4.

2. MATERIALS AND METHODS

2.1. Data Acquisition
Images of A. thaliana were acquired using the Phenoscope, an
automated phenotyping platform, whose full description can
be found in (Tisné et al., 2013). It is made of an aluminum
table on a steel structure and allows the simultaneous growth
of 735 plants in individual pots that are displaced along guiding
rails across the table to ensure that all plants are grown in the
same environmental conditions on average. The Phenoscope
comprises two stations: a watering station where each pot,
when placed over it, is weighed and watered according to
instructions with a specified nutrient solution, and an imaging
station that captures zenithal images of the plant placed under
the digital camera. The Phenoscope is equipped with its own
image processing scripts, Phenospeed, that outputs images where
the background and leaves from neighboring plants have been
removed to keep only the main rosette with red, green and blue
color components. These images have width n = 1624 pixels and
height m = 1232 pixels and 1 cm2 is considered equal to 28,900
pixels. Phenospeed automatically computes the total projected
rosette area (in cm2). It cannot, however, computes the individual
leaf areas necessary to exploit an organ-scale plant model.

The dataset considered in this article consists of a series
of T = 21 images for one plant of each of the 4 genotypes
Burren (Bur), Columbia (Col), Shahdara (Sha), and Tsushima
(Tsu). The plants were all grown in the same environmental
conditions. The photoperiod was of 8 h, with a radiation of
350µmolm−2 s−1. The temperature was set to 21◦C during the
day and 18◦C at night. The hygrometry was maintained constant
at 65%RH. The series is composed of images taken on consecutive
days from the 9th day after sowing (the day when the plants are
installed on the robot) to the 29th day after sowing although, for
the sake of clarity, the days of the image series will be identified
from 1 to 21 in the following. On day 1 (from installation on the
robot), the plants already have fully opened cotyledons (denoted
as leaves 1 and 2). It should be noted that, for the sake of clarity,
we have numbered leaves including the 2 cotyledons, so that the
first true leaf is actually leaf 3. Images for the Bur genotype are
presented in Figure 1 on three different days.

2.2. Data Analysis
To better understand the dynamics of the whole plant, a series of
measurements was performed on each image for the 4 genotypes

available. Images are considered as elements of Mm,n(R). Each
point P of an image can be defined as an ordered pair P =
(i, j) ∈ P , where P = [[1,m]] × [[1, n]], representing its row
and column. On day t ∈ [[1,T]], an image has a set of nt visible
leaves Lt = {ℓtu|u ∈ [[1, nt]]}, where ℓtu ⊂ P is referred to as
a leaf segment (or segment for short) and is a connected subset
of the image It ∈ Mm,n(R). Over the whole timeline [[1,T]],
the plant has a set of N leaves L = {Lv|v ∈ [[1,N]]} indexed
by their order of appearance. A particular leaf of the plant is
therefore identified by as many occurrences as images in the
series, Lv = {ℓtv|t ∈ [[1,T]] , ℓtv ∈ Lt ∪ ∅}. A leaf can indeed
have the empty set as a segment on certain days if its area is
not available, because of overlappings for instance. The index u
will therefore be reserved to segments, whereas the index v will
be reserved to leaves. The leaf of rank v is the v-th to appear.
Throughout this work, true segments, considered to be those
manually extracted from the images, will be denoted ℓtu, while
the segments found by the algorithm will be denoted ℓ̃tu. The
same distinction applies to leaves. The problem can therefore be
decomposed into two parts:

• Segmentation: on each day t ∈ [[1,T]], segment the image so
as to find as many leaf segments as possible in L̃t .

• Tracking: for each leaf of rank v ∈ [[1,N]], for each day
t ∈ [[1,T]], find if there is an element of L̃t susceptible to
belong to L̃v in order to reconstruct the whole history of the
v-th leaf.

We will denote by C ∈ P the mass center of the plant. The
extremity of a segment ℓtu is defined as the furthest point from
the mass center of the plant, i.e., Etu = argmaxP∈ℓtu

d(P,C),
where d is the Euclidean distance. This allows us to measure
three variables for a given visible leaf segment ℓtu. Let ECEtu be
the vector joining the mass center of the plant to the segment
extremity, then we define the maximum distance etu = ‖ ECEtu‖1
and the maximum angle dtu = (Oj, ECEtu) where Oj designates
the horizontal axis. There are several ways to measure the angle
of a segment (other possibilities would be for example the angle
defined by the point minimizing the distance to the plant mass
center, the average angle of all points or the angle of the mass
center of the segment) but this definition is the more stable and
robust against overlappings. These two variables yield valuable
information about the orientation and the distance of a given leaf
throughout plant growth. A third variable is obviously the leaf
area, which was manually extracted from the images, potentially
reconstructing the shape of the leaves partially hidden by others.
It has to be noted that the insertion of the leaf was taken into
account when extracting areas. They were manually acquired on
all the images using Photoshop CS5, the Ruler tool for angles
and distances, which allows easy measurements of distances and
angles between two points as well as tab-delimited file export
for post-processing, and the Eraser and the Magic Wand to
isolate a segment and select all its pixels for the areas. The
values obtained for the angles and leaf areas are displayed on
Figures 2, 3 respectively for each genotype.

2.2.1. Analysis of Angles
As can be seen from Figure 2, the angle of a given leaf is not
constant throughout the growth of the plant and there are two
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FIGURE 1 | Images output by the Phenoscope software on different days (after installation on the Phenoscope which takes place 8 days after sowing)

for genotype Bur. (A) Day 1. (B) Day 11. (C) Day 21.

FIGURE 2 | Evolution of the angles of the different leaves for genotypes Bur (top left), Col (top right), Sha (bottom left), and Tsu (bottom right). The angle

α of the v-th leaf on day t is displayed on the circle centered in (0, 0) and of radius t, i.e., have coordinates (t cos(α), t sin(α)). Straight lines indicate the mean angles for

each leaf throughout their respective growth. Manually acquired data.

Legend: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

main reasons to this: (i) there might be small displacements of
the pot from day to day (both in translation and in rotation)
and (ii) leaves can be displaced or pushed by some others due

to development competition. In most cases, it is easy for a human
observer to extract from all the points the occurrences of a given
leaf, but sometimes it is very hard not to say impossible to choose
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FIGURE 3 | Evolution of the areas of the different leaves (in cm2) with respect to time (in days) for genotypes Bur (top left), Col (top right), Sha (bottom

left) and Tsu (bottom right). Manually acquired data.

Legend: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

between two points. For the Bur genotype, it suffices to consider
the trajectories of the 2nd and 6th leaves that create a fork on day
8, or the 10th leaf whose trajectory overrides alternatively that of
the 5th leaf and the 1st one. Similar scenarios can be found for
the other genotypes.

Let dtv denote the angle of the v-th leaf on day t, d
0
v the angle of

the v-th leaf on the first day it appeared and dv the angle of the v-
th leaf averaged over all the days it exists. On day 1 on the robot,
only the first two embryonic leaves (cotyledons) are visible. In
fact, 4 leaves are already preformed in A. thaliana but they might
not be all visible from the very beginning of the image series. The
first two leaves grow in opposite directions, i.e. d01 − d02 ≈ 180◦.
The 3rd and 4th leaves (the first true leaves) appear on the same
day, more precisely on day 2 for Sha, on day 3 for Bur and Col,
and on day 4 for Tsu. Similarly to the first two leaves, they grow
in opposite directions such that d03 − d04 ≈ 180◦. Furthermore,
they grow in a direction very close to the bissector of (d01, d

0
2),

i.e. for i ∈ {1, 2}, j ∈ {3, 4}, |d0i − d0j | > 40◦, even though

this might not be the case at the end of the growth because of

competition, so that for i ∈ {1, 2}, j ∈ {3, 4}, |di − dj| > 40◦

does not necessarily hold as can be seen for the Bur, Col and Sha
genotypes. By convention and to distinguish between the 1st and
2nd leaves on the one hand and the 3rd and 4th leaves on the
other hand, the 1st and 3rd leaves are defined to have the closest
averaged angle to that of the 5th leaf, that is |d5 − d1| ≤ |d5 − d2|

and |d5 − d3| ≤ |d5 − d4|.
The leaves appearing after the 4th one are not preformed and

phyllotaxy underlies the direction of their growth. Phyllotaxy is a
well-known phenomenon inA. thaliana Smith et al. (2006) which
drives the growth direction of a leaf based on the growth direction
of the leaf previously emerged. More precisely, |d0v+1 − d0v | ≈
dp, where dp = 137.5◦ is the golden angle. This phenomenon
starts from v = 4 as it does not affect the preformed leaves
and is either clockwise or counter-clockwise for a given plant.
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However, this orientation cannot be predicted with certainty as
it varies among plants: in this case study, it is counter-clockwise
for the Bur individual and clockwise for the Col, Sha and Tsu
individuals used here. The means and standard deviations of the
difference of angles between two consecutive leaves from v = 4
are summarized in Figure 4 for the 4 genotypes. This will be
used in the classification algorithm to predict the direction of the
leaves.

2.2.2. Analysis of Areas
From the graphs of the areas on Figure 3, the growth behaviors of
the different leaves appear to be similar to those of the angles: the
1st and 2nd leaves have an identical evolution, growing from day
1 to day 10 approximately, then reaching a plateau. The growth
is initially linear. Alike, the 3rd and 4th leaves exhibit an identical
behavior, appearing on the same day and with a growth curve
resembling more a sigmoid than for the first two leaves. By the
end of the series, they start to reach a plateau as well. From the 5th
leaf, the leaves appear one by one, two leaves never having similar
growth curves. The higher the rank of a leaf, the steeper its initial
growth so that the area of the v+ 1-th leaf ends up (or would end
up if the series were longer) to exceed that of the v-th leaf.

Since there is only one image per day, the phyllochron (that is
to say the time interval between the appearance of two successive
leaves) cannot be measured exactly, it is however obviously not
the same across the different genotypes as can be seen from the
number of emerged leaves on day 21: 14 for Bur, 13 for Col, 11 for
Sha and 15 for Tsu. The phenotypic differences are well illustrated
by, for instance, the area of the 7-th leaf which, on day 21, varies
greatly among genotypes: 1.10 cm2 for Bur, 0.76 cm2 for Col, 0.92
cm2 for Sha, 1.20 cm2 for Tsu.

2.3. Automatic Leaf Segmentation
The objective of this part is to search for all possible segments of
leaves and their corresponding areas on each image of the series.
The segmentation problem has been approached in various
ways, with recent contributions using ellipsoid leaf-shape models
(Aksoy et al., 2015), Gaussian process shape models under a
Bayesian approach (Simek and Barnard, 2015) or machine-
learning (Pape and Klukas, 2015). The approach used here
was inspired from Apelt et al. (2015). Some of the images
provided by the Phenoscope software still contained objects
from the background. Therefore, connected-segment labeling
was first used to discard such objects not belonging to the plant,
considered to be the main connected subset. The mass center of

Gen. mean std

Bur 136.52 6.91
Col 136.01 17.92
Sha 136.15 15.27
Tsu 136.12 10.32

FIGURE 4 | Mean and standard deviation of the phyllotaxy angle for

each genotype.

the plant is then computed, as it constitutes, once artifacts have
been removed, a very good approximation of the stem location
from where the leaves grow. Then a Canny edge detection filter
(Canny, 1986) is applied to help detect strongly overlapping
leaves, before computing the Euclidean distance transform of the
plant. The local maxima of this transform are searched, as they
are the points the furthest from the background, and are therefore
likely to correspond to mass center of leaves. They are hence used
as markers for a watershed-based segmentation, which returns
a set of connected segments susceptible to be leaves. The image
processing operations were all performed using Python 3.4.3, and
the library scikit-image 0.12.3.

This first step of the segmentation returns a set of segments

L̃
(1)
t = {ℓ̃(1)tu |u ∈

[[

1, ñt
]]

}, which is different from the true set
of segments found manually Lt = {ℓtu|u ∈ [[1, nt]]}. The main
difficulty of segmenting the leaves of a plant classically owes to the
fact that some leaves might partially overlap some others, hence
leading to segments of the resulting image to be (i) either only
parts of a leaf (ii) or several distinct leaves merged. To assess if a
segment ℓ̃tu can be considered a true leaf segment, we define the
ratio:

itu =
A(H(B(ℓ̃tu)))

A(B(ℓ̃tu))
(2)

where B : C → Mm,n({0, 1}) transforms a segment into
a binary image such that B(ℓ)(i, j) = δ((i, j) ∈ ℓ), H :

Mm,n({0, 1}) → Mm,n({0, 1}) denotes the convex hull operation
andA :Mm,n({0, 1}) → R gives the area of a segment. If this ratio
is greater than a given threshold, the segment is considered to be
a leaf, i.e.:

ℓ̃tu is a leaf segment if itu > i0. (3)

A value i0 = 0.9 was retained throughout this work. In practice,
the result of the first segmentation step is sometimes unable
to discriminate between several leaves, grouping them into one
single segment. To refine the segmentation, we used a very simple
approach. If ℓ̃tu is not a leaf segment, the local maxima Mtu of
the Euclidean distance transform of ℓ̃tu and the points achieving
these maxima Itu are computed:

{

Itu = {P ∈ ℓ̃tu| Eℓ̃tu
(P) is a local maximum of E

ℓ̃tu
},

Mtu = {E
ℓ̃tu
(P)| P ∈ Itu},

(4)

where E
ℓ̃tu

= E(B(ℓ̃tu)) and E:Mm,n({0, 1}) → Mm,n(R) denotes
the Euclidean distance transform operation. We then define the
greatest two maximam1 = maxm∈Mtu Mtu, m2 = maxm 6=m1 Mtu

and their corresponding coordinates P1 and P2, and two ellipses
E1 and E2 with respective centers P1 and P2, minor semi-axes a1
and a2 and major semi-axes b1 and b2, where:

ak = φ min
P∈(CEk)

d(P,Ek), bk = φ min
P|(PEk)⊥(CEk)

d(P,Ek). (5)

with φ = 1.05 to embrace the whole leaf segment. Two new

segments are thus computed, ℓ̃∩tu = ℓ̃tu ∩ E1 and ℓ̃
\
tu = ℓ̃tu\ℓ̃

∩
tu

and tested to be leaves again in a recursive manner. Results of this
refinement step are illustrated on Figure 5.
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FIGURE 5 | Example of images output by the Phenoscope and after the two segmentation steps for the Col genotype on day 15. (A) Output of the

Phenoscope. (B) After first segmentation. (C) After refinement step.

2.4. Leaf Tracking
The segmentation step returns L̃ such that:

{

L̃ = {L̃t|t ∈ [[1,T]]},

L̃t = {ℓ̃tu|u ∈
[[

1, ñt
]]

},
(6)

The true set of leaves L is such that:
{

L = {Lt|t ∈ [[1,T]]},
Lt = {ℓtu|u ∈ [[1, nt]]},

(7)

or equivalently:

{

L = {Lv|v ∈ [[1,N]]},
Lv = {ℓtv|t ∈ [[1,T]] , ℓtv ∈ Lt ∪ ∅}.

(8)

The objective of the tracking step is to assign each segment ℓ̃tu
found during the segmentation step to a leaf of a given rank so
that L̃ = {L̃v|v ∈ [[1,N]]}with L̃v = {ℓ̃tv|t ∈ [[1,T]] , ℓ̃tv ∈ L̃t∪∅}
be as close as L. The data analysis helped us to better understand
the growth dynamics of each leaf. The tracking of a given leaf
is based on its direction, its maximum distance and its area. To
find the first occurrence of a leaf, only its direction and the day of
possible first appearance are given. Let us recall that the first two
leaves (cotyledons) always appear on day 1. Once an occurrence
of the leaf has been found, it is searched on the following days
according to this strategy: given a leaf of rank v whose k first
segments have been tracked, L̃v = {ℓ̃tv|t ∈

[[

1, k
]]

}, the aim is
to find the segment on day k + 1 the most probable to belong

to the leaf of rank v. For each leaf l̃k+1,u ∈ L̃k+1, a score skuv is
computed as:

skuv = γd s
d
kuv + γe s

e
kuv + γa s

a
kuv (9)

where the superscripts d, e and a stand for direction, extremity
and area respectively, (γd, γe, γa) ∈ (R+)3 allows to weigh the
different scores and:







sd
kuv

= 2δd fU (dk+1,u, dkv − δd, dkv + δd)

se
kuv

= fN (ek + 1,u,µ
e, (σ e)2)/‖fN (·,µe, (σ e)2)‖∞

sa
kuv

= fN (ak + 1,u,µ
a, (σ a)2)/‖fN (·,µa, (σ a)2)‖∞

(10)

where fU and fN are the probability density functions of the
uniform and normal distributions.

The d-score sd
kuv

favors the leaves that grow in the same

direction of the last leaf segment l̃k,v, with a tolerance of δd
to account for pot rotations or competition of the growing
leaves, as explained in Section 2.2.1. In practice, δd = 30◦.
As can be seen from Figure 2, it does not seem useful to take
into account the directions of the leaves ℓ̃tu for t < k: the
rotations being seemingly unpredictable, neither averaging nor
interpolating seem of any help, and the last value is the one
carrying the most information.

Data analysis of the areas and the distances of the extremities
from the mass center showed that their dynamics were sigmoid-
like, which is why the means and standard deviations in the a-
score and the e-score are obtained, whenever possible, by fitting
a sigmoid using the last 4 segments of the leaf. Since segments
might not be found on all images for a given leaf, the last 4
segments do not necessarily represent the last 4 days. More
precisely, let {tk+1−i|i ∈ [[1, 4]]} denote the days on which were
registered the last 4 segments of the v-th leaf and let s be such that:

sκ (x) = y1 +
y0

1+ exp(−k (x− x0))
, (11)

with κ = (k, x0, y0, y1).

For the prediction of the expected extremity on day k + 1, we
define:

{

κ̂e = argmin
∑4

i=1 ‖sκ (tk+1−i)− etk+1−i ,v‖
2
2,

µe = sκ̂e (k+ 1).
(12)

All the same, for the prediction of the expected area:

{

κ̂a = argmin
∑4

i = 1 ‖sκ (tk+1−i)− atk+1−i ,v‖
2
2,

µa = sκ̂a (k + 1).
(13)

The standard deviations use only the last available value, σ a =
2 akv and σ e = ekv/2. When less than 4 occurrences are available,
µe = 1.2 ekv and µa = 2 akv. Let û be the segment index with
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greatest score, û = argmaxu skuv and ŝ = skûv the corresponding
score. The safety score s0 is defined as a minimum score to
achieve to be considered a segment: hence, if ŝ > s0, the candidate
segment ℓ̃k+1,û achieving this best score is considered to be the

segment of the leaf of rank v on day k + 1, and L̃v := L̃v ∪ ℓ̃tu. In
practice, typical values of the score weights and the safety score
would be (γd, γe, γa) = (10, 1, 1) and s0 = 11, thereby prioritizing
the orientation of a leaf over its length and area.

In order to take advantage of the phyllotaxy, the preformed
leaves are first classified, the 1st and 2nd leaves first, in opposite
directions, then the 3rd and 4th (the first 2 true leaves), in
opposite directions and perpendicular to the first two. Classifying
the 5th leaf will then yield the directions of the next leaves,
which are the hardest to classify. The whole tracking strategy is
summarized on Algorithm 1.

In the next section, we will present a simple growth model for
the rosette stage of A. thaliana which will be parameterized for
each genotype using the data obtained through the image analysis
methodology.

Algorithm 1 Classification strategy (leaves 1 and 2 are the
cotyledons).

1: Track leaf 1 (randomly out of the two leaves found on day 1)
for all days.

2: Look for leaf 2 in direction d1 + 180◦ and track it.
3: Look for leaf 3 in directions such that |d3 − d1| > 60◦ and

|d3 − d2| > 60◦ and track it.
4: Look for leaf 4 in direction d3 + 180◦ and track it.
5: Track the 5th leaf to appear, whatever its growth direction.
6: Shuffle leaves 1 and 2 so that leaf 1 is closest to leaf 5

(convention).
7: Shuffle leaves 3 and 4 so that leaf 3 is closest to leaf 5

(beginning of phyllotaxy).
8: for j ≥ 1 do
9: Look for leaf 5+ j in direction d5+ j sign(d5−d4)dp and

track it.
10: end for

2.5. An Organ-Scale Plant Model
The GreenLab model (Yan et al., 2004) is a typical functional-
structural model in the sense that it combines the description
of plant architectural development and ecophysiological
functioning. A version has been developed for the full cycle
of A. thaliana growth in Christophe et al. (2008). Basically,
a developmental submodel predicts organ appearances while
source-sink dynamics is simultaneously described: biomass
production is computed via radiation interception by leaf area
and the produced biomass is allocated between all growing
organs according to individual sink strengths. Individual
leaf areas are then deduced from leaf masses. In our study,
only the rosette stage of Arabidopsis growth is considered,
which particularly simplifies the organogenesis submodel and
the number of competing sinks. Moreover, at this stage, the
senescence process has not started yet.

2.5.1. Organogenesis
As detailed in section 2.2.1, leaves first appear in pairs (1st and
2nd leaves together, then 3rd and 4th leaves) before the following
ones start appearing rhythmically. The time span between
the appearances of two successive leaves is called phyllochron
Wilhelm and McMaster (1995). It is mostly driven by the
thermal time, that is to say the accumulated growing degree days.
However, in controlled and constant thermal conditions as in
the Phenoscope, it amounts to considering the calendar time as
the main driver of organogenesis. For a better understanding
of the source-sink dynamics in this first stage of study, we
consider that the leaf appearance times of the first 4 leaves are
known, whereas those of the subsequent leaves are such that their
difference is always the phyllochron φ (in h).

2.5.2. Biomass Production
Plant growth starts when the thermal time becomes sufficient
(germination). At this time, the biomass is supposed to be that
of the seed q0. To take into account the photoperiod and the
differences in temperature between day and night, the time step
is taken to be the hour. Once growth has started, the biomass
produced at time step t is given by

q(t) = r(t) µ s



1− exp



−
k

s e

∑

v∈[[1,n(t)]]

Qv(t)







 (14)

where r(t) is the photosynthetically active radiation (in
MJ cm2 h−1), µ is the radiation use efficiency (in gMJ−1) and s is
related to the projected area of the plant (in cm2), k is the Beer–
Lambert law coefficient of light extinction (dimensionless), e is
the leaf mass per surface area (in g cm−2), n(t) is the number of
leaves of the plant at time step t and Qv(t) is the biomass of the
v-th leaf (in g).

2.5.3. Biomass Allocation
The pool of produced biomass is then allocated to the different
organs of the plant. In the present case, that is to say the rosette
stage, only the leaves are considered. The biomasses allocated to
the different leaves are proportional to their respective demands,
or sink strengths, which are functions of their expansion stage,
i.e., the thermal time since appearance. In previous Greenlab
models, Beta distributions were used for the sink functions. This
is not possible in the present case since (i) the expansion period of
the leaves is not known and (ii) over the period of time of interest,
some of the leaves still grow significantly. Instead, lognormal
distributions were used instead as they allow for a similar growth
dynamics with an ever ongoing growth. As was suggested by the
analysis of the areas of the different leaves, two different functions
were used for the first 4 (preformed) leaves on the one hand and
the leaves with rank higher than 5 on the other, the demand of
the v-th leaf hence being:

dv(t)=

{

flogN (τ (t)− τv,µ1, σ
2
1 )/‖flogN (·,µ1, σ

2
1 )‖∞ if v ≤ 4,

ρ flogN (τ (t)− τv,µ2, σ
2
2 ) / ‖flogN (·,µ2, σ

2
2 )‖∞ if v > 4.

(15)

Dividing by the uniform norms ensures that dv(t) ∈ [0, 1] for
all v ∈ N

⋆ and t ∈ N
⋆, in order to avoid a bias resulting from
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the variation of the function maximum with their parameters,
though a coefficient ρ ≈ 1 allows for a different intensity of
the two different kinds of leaves. Here, flogN is the probability
density functions of the lognormal law, τ (t) is the thermal
time at time step t and τv is the accumulated thermal time of
the v-th leaf since its emergence (both in ◦Ch). (µ1, σ

2
1 ) and

(µ2, σ
2
2 ) are the parameters of the lognormal distributions for the

preformed leaves and those with rank higher than 5 respectively.
The biomass allocated to a leaf is then the relative demand of the
available produced biomass:

qv(t) =
dv(t)

∑

w∈[[1,n(t)]]

dw(t)
q(t), (16)

which allows to update the cumulated biomasses:

Qv(t) = Qv(t − 1)+ qv(t), (17)

and compute the related leaf areas, with e the leaf mass per surface
area:

Av(t) =
1

e
Qv(t). (18)

3. RESULTS

3.1. Estimation of Leaf Areas through
Image Processing
The results for the first 8 leaves (including the 2 embryonic
leaves) of the 4 different genotypes are summarized on Figure 6,
where the true results obtained with manual segmentation of
the images, displayed as a continuous line, are compared to the
results of the segmentation-tracking algorithm, displayed as filled
circles. It has to be noted that the manual extraction of the
leaf areas partly took into account the petiole, which is why the
algorithmic results are on average lower than the manual ones.

For the first two leaves (the cotyledons), no segments are
found from day 15 (or even before sometimes), as these leaves
are rapidly completely masked by younger leaves. On some days,
no segments were found: for instance, for the 6th leaf of the Bur
genotype, the first segment is found on day 10 but from day
11 up to day 13, no segment is found. Such a situation arises
because of overlappings and (i) either the segmentation step is
unable to identify segments at all for this leaf on these days or
(ii) segments are found but they do not achieve a sufficient score
to be considered as belonging to this leaf. In the latter case, it is
preferable to discard these segments so as not to introduce too
noisy data. Another scenario for missing data occurs when the
growth curve of a leaf displays an unusual shape as is the case of
the 4th leaf of the Col genotype, with a sharp increase after day
10. The predicted area obtained by fitting a sigmoid using the last
4 segments of this leaf is therefore too low compared to that of
the segment yielding an insufficient overall score to be accepted.
In any case, this does not, fortunately, prevent the algorithm to
find new segments on future days: starting from day 14 for the
6th leaf of the Bur genotype, or from day 13 for the 4th leaf of

the Col genotype, therefore highlighting the robustness of the
method toward missing data.

The evaluated leaf areas will be used to estimate the
parameters of the GreenLab functional-structural plant model
presented in the next section, by model inversion. For a given
leaf, only conserving segments in which there is a very high
level of confidence might seem overly cautious. However, since
the architecture is in itself representative of the whole plant
functioning, there is a lot of redundant information contained
in leaf area at close enough times. The daily image acquisition of
the Phenoscope is thus in excess with respect to the time scale
of A. thaliana source-sink dynamics. Overall, all the accepted
points have a very low error compared to the true values and the
amount of very precise data this method yields for a given plant
(more than 60 values for each genotype) will prove sufficient for
an accurate parameter estimation of the model.

If y = (yi)1≤i≤N denotes the true dataset to estimate and ỹ =
(ỹi)1≤i≤N the corresponding estimates, the modeling efficiency ǫ

Wallach (2006) (also called the coefficient of determination) and
the accuracy α with which the leaf area has been estimated can be
calculated as:







ǫ = 1−
∑N

i=1(yi − ỹi)
2 /

∑N
i=1(yi − ȳ)2

α = 1
N

∑N
i=1

∣

∣

∣

ỹi
yi

∣

∣

∣

(19)

where ȳ is the mean value of y. The higher the modeling efficiency
and the closer to one the accuracy, the better. Different such
criteria were computed for completeness: one per individual leaf
to account for the fact that the mean leaf area can be of different
orders of magnitudes for different leaves, one per genotype for
the different leaves, one per leaf for the different genotype and a
global one taking into account all the data available. The results
are displayed in Figure 7. All the modeling efficiencies are greater
than 0.93 except for the first two leaves of the Sha genotype,
highlighting the overall excellent quality of the data extracted
from the Phenoscope images for the leaf area. It has to be noted
that the accuracy is most often below 1, which means that the
results are a bit underestimated on average. This is mostly due to
taking into account the insertion of the leaf when extracting areas
manually.

3.2. Model Parameterization
The leaf areas obtained through image processing are used to
calibrate the model: for each genotype, such data can be seen
as a vector of vector of areas (one vector of area per leaf)
with possibly missing data. The observations of the model are
then set accordingly for each leaf and both the simulation and
observation data can be flattened into a single vector. Such a
parameterization of the GreenLabmodel using a generalized least
squares procedure with multiplicative noise has been extensively
described in Cournède, P.-H. et al. (2011). Here the parameter
subset θe = (φ, e,µ1, σ1,µ2, σ2, ρ, q0) ⊂ θ was estimated. The
results of the estimated parameters are given in Figure 8 for
the different genotypes. The estimation accuracy given by the
standard errors are satisfactory, and the estimated parameter set
differs substantially from one genotype to another. In Figure 9,
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FIGURE 6 | Results obtained manually (continuous line) and via the segmentation-classification approach (filled circles) for the first 8 leaves of the 4

genotypes.
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Gen. Leaf 1 Leaf 2 Leaf 3 Leaf 4 Leaf 5 Leaf 6 Leaf 7 Leaf 8 All
Modeling efficiency

Bur 0.9677 0.9617 0.9931 0.9951 0.9960 0.9379 0.9729 0.9801 0.9869
Col 0.9630 0.9455 0.9848 0.9942 0.9917 0.9873 0.9974 0.9941 0.9943
Sha 0.8231 0.7547 0.9830 0.9897 0.9979 0.9946 0.9986 0.9765 0.9955
Tsu 0.9588 0.9737 0.9944 0.9984 0.9992 0.9967 0.9958 0.9446 0.9874
All 0.9689 0.9430 0.9905 0.9955 0.9970 0.9857 0.9880 0.9683 0.9903

Accuracy
Bur 0.9562 0.9524 0.9719 0.9668 1.0265 0.9852 0.8810 0.9832 0.9707
Col 0.9540 0.9329 0.9540 0.9374 1.0340 0.9629 0.9993 0.9838 0.9678
Sha 0.9249 0.8923 0.9679 0.9571 1.0149 0.9853 1.0000 1.0183 0.9685
Tsu 0.9551 0.9597 0.9554 0.9770 0.9846 0.9759 0.9988 0.9864 0.9712
All 0.9485 0.9318 0.9615 0.9598 1.0144 0.9759 0.9676 0.9919 0.9696

FIGURE 7 | Modeling efficiency and accuracy for the different leaves and genotypes.

Gen. φ e µ1 σ1 µ2 σ2 ρ q0

E (Bur) 8.069e+00 1.677e-03 4.250e+00 3.362e-01 5.136e+00 4.501e-01 9.894e-03 6.528e-05
E (Col) 8.007e+00 1.648e-03 4.368e+00 3.187e-01 5.317e+00 3.118e-01 7.454e-03 4.870e-05
E (Sha) 8.099e+00 1.710e-03 4.008e+00 3.542e-01 5.121e+00 4.549e-01 3.134e-04 5.123e-05
E (Tsu) 8.000e+00 1.324e-03 4.289e+00 4.850e-01 4.989e+00 5.214e-01 1.230e-01 3.368e-05

σ/E (Bur) 8.431e-03 6.801e-02 4.927e-02 2.764e-01 4.157e-02 6.901e-01 1.595e+00 2.439e-01
σ/E (Col) 2.085e-04 6.340e-02 4.739e-02 2.584e-01 3.969e-02 5.142e-01 1.341e+00 2.618e-01
σ/E (Sha) 1.008e-02 6.086e-02 8.532e-02 2.315e-01 3.346e-02 6.721e-01 1.734e+00 2.553e-01
σ/E (Tsu) 2.613e-04 4.572e-02 4.725e-02 1.642e-01 1.329e-02 1.833e-01 5.139e-01 2.424e-01

FIGURE 8 | Estimated parameters for the 4 genotypes (mean values and relative errors obtained by dividing the standard errors by the means).

we illustrate the fitting of the leaf areas observed vs. those
predicted by the model, with a proper adequation. To emphasize
the capability of the whole methodology comprising image
analysis and model calibration, the normalized root mean square
error (NRMSE) (Wallach, 2006) between the data obtained by
simulation with the estimated set of parameters for genotype i
vs. the experimental data for genotype j were computed. For
the experimental data of a given genotype i, the lowest NRMSE
was always found for the data simulated using the estimated
set of parameters for this genotype, confirming the capacity of
the model to correctly differentiate between genotypes. These
results are displayed in Figure 10. Even if some further statistical
analysis beyond the scope of this paper should be conducted
to analyze the differences between genotypes, these encouraging
results pave the way for the implementation of the methodology
at larger scales with the hope of new tools for the analysis of
genotypic differences.

4. DISCUSSION

The Phenoscope, a high-throughput phenotyping platform,
provided images of A. thaliana for different genotypes grown
in the same environmental conditions. The behavior similarities
and differences of some variables on these images for the different

genotypes, such as orientation, distance from the mass center
or area of the different leaves, were highlighted. They helped
build a two-step algorithm for leaf segmentation and tracking,
allowing to reconstruct the whole history of the different leaves.
The comparison of the results obtained for leaf area with the
true results, extracted from the images manually, showed that
this procedure yields numerous and very precise data. Having
obtained such data for the different leaves of the plant makes
it possible to design an organ-scale plant model, based on the
existing GreenLab model, and better understand the dynamics of
leaf growth regulation and disentangle the effects of leaf growth
and leaf emission rates (Tisné et al., 2010). The experimental data
obtained with the help of the segmentation-tracking algorithm
was used to parameterize the model for the different genotypes
using a generalized least squares estimator. Primary results show
that the optimal estimated parameter set is different for the 4
genotypes.

This work represents the first step of a study of genotypic

differentiation withinA. thaliana, and further investigation is still

needed on several fronts. First, even though the results obtained

on the limited (though genetically diverse Simon et al., 2012;
McKhann et al., 2004) sample of Bur, Col, Sha, and Tsu are so far
very encouraging, the image processing routine must be tested
on many more image series that the Phenoscope can provide
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FIGURE 9 | Comparison of the areas of the different leaves (in cm2) with respect to time (in hours) for genotypes Bur (top left), Col (top right), Sha

(bottom left), and Tsu (bottom right). Data obtained through image processing is represented by filled circles while predictions of the calibrated model are

represented by dashed lines.

Legend: 1 2 3 4 5 6 7 8

Gen. Bur Col Sha Tsu

Bur 1.162e-01 4.638e-01 3.168e-01 2.224e-01
Col 5.924e-01 2.203e-01 3.752e-01 5.384e-01
Sha 3.471e-01 3.297e-01 1.148e-01 3.900e-01
Tsu 2.208e-01 4.470e-01 3.899e-01 1.391e-01

FIGURE 10 | Matrix of the normalized root mean square error: the component (i, j) is the normalized RMSE between the simulated data of genotype i

with the estimated set of parameters vs. the experimental data of genotype j. The lowest values are on the diagonal, confirming the capability of the model to

correctly distinguish between genotypes.

(Tisné et al., 2013), for several dozens of genotypes with different
individuals within each genotype to allow statistical testing of
genotypic differentiation (Reymond et al., 2003). Environmental
conditions such as altitude, rainfall, soil nutrient content, etc.
influence leaf size (McDonald et al., 2003; Scoffoni et al.,
2011), but environmental influences, in particular light, can also
influence leaf shape (Tsukaya, 2005), even though the underlying
mechanisms are not yet fully understood. Therefore, it is all the
more important to test whether more sophisticated shape models
(Herdiyeni et al., 2015; Simek and Barnard, 2015) could replace
our relatively simple ellipse-based one and help estimate leaf
areas more precisely or even increase the rate of leaf detection.

Likewise, regarding leaf tracking, a promising approach would
be to develop an iterative method in which, after a first step
based on our original approach, the parameterized model thus
obtained could be used instead of the sigmoid extrapolation to
predict individual leaf areas at the next time step. In our original
approach, there were many cases in which leaf segments were
discarded in the tracking step due to a low score resulting from
a bad performance of the sigmoid growth function (for example
because there were not enough segments of the corresponding
leaf in the previous steps). Therefore, we expect that model-based
predictions could significantly improve the number of detected
segments for each leaf.
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As underlined above, we used a very cautious approach and
discarded data for which we did not get a very high level
of confidence. Indeed, owing to the redundant information
contained in the sequence of plant architectural descriptions,
already pointed out in Godin et al. (1999), we expected that
it would not impact the quality of model identification. Our
results seem to support this hypothesis. However, it would also
be interesting to study more carefully the impact of the safety
score s0 on the rate of detection (both in terms of true positive
rate and false positive rate), but also on the quality of model
estimation. There are two aspects to this last question: how
does the model estimation handle false data, and how does
missing data impact the uncertainty in parameter estimates.
Obviously, every refinement of the method that could help
reduce such uncertainty will be profitable. Similarly, designing
new data collection protocols for the Phenoscope that are
adapted to the model identification objective could also be
considered (for example by measuring plant organ masses, using
several individuals of the same genotype to take into account
inter-individual variability, etc.). Optimal experimental design
methodology could help us for this purpose (Pieruschka and
Poorter, 2012; Craufurd et al., 2013).

More generally, the statistical evaluation of model parameter
estimation is a crucial issue in order to properly assess whether a
model has the capacity to differentiate between genotypes. When
can two genotypes be considered to have significantly different

parameters? Can a parameter be considered stable in a family
of genotypes or environments? A proper statistical approach has
to be implemented for this purpose. In particular, to account
for the interindividual variability, the use of statistical models
such as multilevel/hierarchical models (Gelman and Hill, 2007)
or mixture models (Tatarinova and Schumitzky, 2015), should
be investigated. A methodology involving hierarchical mixed
effects models and testing of variance components is proposed
in Baey et al., (in preparation) and should be used in order to
clearly identify which parameters can be considered constant or
varying among the population of genotypes. Finally, being able to
identify plant model parameters varying among genotypes from
high-throughput phenotyping data is the first step toward the
integration of genetic control into plant models (Baldazzi et al.,
2016; Xu and Buck-Sorlin, 2016) via QTL or association mapping
(Myles et al., 2009).
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