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Soybean canopy outline is an important trait used to understand light interception ability,

canopy closure rates, row spacing response, which in turn affects crop growth and

yield, and directly impacts weed species germination and emergence. In this manuscript,

we utilize a methodology that constructs geometric measures of the soybean canopy

outline from digital images of canopies, allowing visualization of the genetic diversity

as well as a rigorous quantification of shape parameters. Our choice of data analysis

approach is partially dictated by the need to efficiently store and analyze large datasets,

especially in the context of planned high-throughput phenotyping experiments to capture

time evolution of canopy outline which will produce very large datasets. Using the

Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines

of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a

wide variety of maturity, seed weight, and stem termination were investigated in a field

experiment planted as a randomized complete block design with up to four replications.

Canopy outlines were extracted from digital images, and subsequently chain coded,

and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors.

These coefficients successfully reconstruct the canopy outline, and were used to

measure traditional morphometric traits. Highest phenotypic diversity was observed for

roundness, while solidity showed the lowest diversity across all countries. Some PI lines

had extraordinary shape diversity in solidity. For interpretation and visualization of the

complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI

lines were grouped in terms of origins, maturity index, seed weight, and stem termination

index. No significant pattern or similarity was observed among the groups; although

interestingly when genetic marker data was used for the PCA, patterns similar to canopy

outline traits was observed for origins, and maturity indexes. These results indicate the

usefulness of EFT method for reconstruction and study of canopy morphometric traits,

and provides opportunities for data reduction of large images for ease in future use.
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INTRODUCTION

Soybean [Glycine max (L.) Merr.] is a leguminous plant and
an important source of protein and oil for a wide range of
end users across the world. Given the recent rate of climatic
change and predictions for worsening environmental conditions,
coupled with a growing global population (O’Neill et al.,
2010), breeders are pressed to meet multi-objective requirements
(increasing yield, decreasing resource requirement, increasing
stress resiliency) during breeding. A promising approach to
breeding involves rapid and accurate screening of a large
number of plots under various conditions, in order to identify
genotypes that maximize production potential under specific or
broad environments and allow mapping the genes conditioning
adaptation to varying stresses.

A critical aspect to this approach is accurate measurement of
traits important to key physiological processes of the plant, which
will enable breeders to evaluate and select from the pool of genetic
diversity. It also follows that starting from a large, diverse pool
of genetic diversity is important to efficiently attain these multi-
objective requirements. It is imperative to note that the amount
of genetic diversity used in modern soybean breeding is severely
limited (Gizlice et al., 1994); therefore, the potential for finding
useful alleles for traits of interest is very high by looking at the
larger collection of soybean diversity. However, to characterize
the genetic diversity present in germplasm, methods that are
amenable to high throughput as well as automated applications
are required. This is because quantifying traits manually/visually
is difficult (especially when considering large, diverse planting
populations), and is often done with high error or user bias.
High throughout phenotyping along with computer vision has
enabled a revolution in crop phenotype collection to reduce
reliance on visual ratings while improving accuracy (Singh et al.,
2016). Image based phenotyping allows the collection of plant
and canopy morphological traits on spatial and temporal scales
enabling the monitoring of physiological development and to
quantify abiotic and biotic stresses (Pauli et al., 2016).

In this context, our focus is on evaluating the soybean
canopy outline. Yield potential is a function of products of
incident solar radiation, conversion, and partitioning efficiencies,
and linear improvements have been observed in each of the
three efficiencies (Koester et al., 2014). For continued yield
increase these three efficiencies need to be increased, therefore,
necessitating continued research on canopy traits. Canopy
outline is important to evaluate light interception ability. Light
interception, measured as a function of ground surface area
shaded by at least one leaf, directly factors in to the yield potential
equation (Koester et al., 2014). Canopy closure rates will affect
the light interception rate of soybean by capturing incident
sunlight sooner over a greater area. Increased canopy closure
rates also have secondary effects by inhibiting weed species
germination and emergence, which may provide a source of
protection against difficult to control weeds (Harder et al., 2007;
Evers and Bastiaans, 2016). We therefore, focus on traits that
quantify soybean canopy outline and structure that are important
to evaluate differences in light interception ability, canopy closure
rates, and row spacing response. To analyze the canopy outline,

generally, digital image of a canopy is captured by high resolution
cameras. Traditional morphometric traits including aspect ratio,
roundness, circularity, and solidity (Olson, 2011; Chitwood et al.,
2014a), while useful are not sufficient to capture the complexity
of shapes, especially when considering shape evolution. In this
manuscript, we utilize a methodology [based on Elliptic Fourier
descriptors (EFD)] that provides reduction in data, enables
visualization of diversity and results in a rigorous quantification
of shape. The EFD has been used in various studies in past for
plant species identification (Neto et al., 2006), tomato leaf shape
(Chitwood et al., 2014a), leaf shape and venation (Chitwood et al.,
2014b), flower petal shape (Iwata and Ukai, 2002; Yoshioka et al.,
2004) and soybean pod diversity (Truong et al., 2005). In the
present study EFD is used for soybean canopy outline diversity
analysis.

We collected canopy images in a replicated field experiment
using 446 soybean PI lines acquired from the USDA soybean
germplasm collection. This is a very diverse set of germplasm,
from over 25 different countries exhibiting a wide variety of
maturity, seed weight, and stem termination. Digital images
of the canopy were available for analysis, which were taken
using a standard imaging protocol (Zhang et al., submitted).
The images produced 8 GB of data. We deployed the analysis
framework to reduce the useful storage size required while
retaining information related with canopy outline, and evaluate
shape descriptors/traits to investigate shape diversity among
the lines. This paper represents the first stage of our analysis
program. After evaluating and quantifying the shape diversity
exhibited by this set of lines, we envision (in subsequent work)
utilizing this framework to analyze and evaluate time-dependent
geometric canopy traits to isolate genetic pathways that control
various stress adaptation mechanisms.

MATERIALS AND METHODS

Plant Material, Field Phenotyping and Data
Acquisition
A total of 446 soybean PI lines from 25 different countries
acquired from the USDA soybean germplasm collection, grown
near Ames, IA, in 2015, were used for this study (Figure 1).
These lines also differ from one another in terms of maturity,
seed weight, and stem termination. The field experiment was
organized as a randomized complete block design with four
replications. The germplasm accessions were planted in hill plots
of five seeds per plot at one foot between plots and two feet
between rows. The images were taken at 2 weeks after second
trifoliate leaf stage using a Canon EOS REBEL T5i camera with
the Scene Intelligent Auto model. All images were stored in
RAW image quality. An umbrella was always used to shade the
area under the camera view, and the flash function was kept
off to maintain consistent illumination. Also, at the beginning
of imaging operations and every 20 min thereafter or whenever
the light condition changed (e.g., cloud cover), a picture of
the X-Rite Color Checker Color Rendition Chart was taken
to calibrate the illumination and the color of canopy image.
Whenever possible, weeds and other plant residuals, connected
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to the plant canopy in the view of camera, were removed for easy
image processing and enhanced efficiency of subsequent image
processing. After checking for quality of image (removing images
that did not follow the imaging protocol, that exhibited disease
symptoms or that did not have an intact canopy), around 1200
images were used for subsequent analysis. The single nucleotide
polymorphism (SNP) dataset for the panel was prepared in a
previous study (Song et al., 2013) and was acquired from the
SoyBase site (http://soybase.org/).

Image Data Processing
First, each image was segmented. Then they were converted
from native RGB to hue-saturation-value format to efficiently
segment the foreground (the plant) from the background. The
background of an image (soil) contains more gray pixels than
the foreground (plant) and lacks in green and yellow hue values;
therefore, most of the background was removed by excluding
pixels that had a saturation value below a predefined threshold
and hue values outside of a predefined range. The saturation
threshold value was obtained by identifying the saturation values
of the background in 148 diverse images. The hue range was
simply obtained from the hue color wheel, removing pixels that
were neither green nor brown.

Once segmentation was done, the connected components
labeling method (Suzuki et al., 2003; Gonzales and Woods, 2008;
Wodo et al., 2012; Samudrala et al., 2013; Pace et al., 2014)
was used on the processed image to remove spurious outliers
and noise from the image (e.g., plant debris on soil). This was
accomplished by identifying clusters of pixels that connected
to one another, followed by labeling them, and identifying the
largest connected component (i.e., plants in a plot). Cleaning
was done by removing any other connected components that
contained fewer pixels than the largest connected component.
Then, a mask of the isolated plant was applied to the binary
image. In contrast to other commonly used thresholding

methods (Otsu, 1975; Browning and Browning, 2009; Lee
et al., 2016; Naik et al., submitted), no significant pixel loss was
observed.

Next, contour/outline of canopy was defined from the locations
of boundary pixels of the image. Any empty space inside the
canopy was filled, and the outline of the canopy was obtained
from the filled binary image. The extracted outline of the
canopy was represented as a sequence of x and y coordinates of
boundary pixels (see Figure 2 for a schematic of the operation).

FIGURE 2 | Sequence of the canopy outline extraction process from an

image captured by digital camera: (A) original image; (B) cleanup,

segmentation and conversation of the RGB image to binary image; (C) filling of

empty spaces inside the binary image; (D) extraction of outline from the filled

image.

FIGURE 1 | Origins of the lines. (A) Shows the distribution of the 446 lines/genotypes based on origins, collected from USDA soybean line collection. China and

Japan are the highest contributors in the selected collection. (B) Shows the origins in terms of percentage contribution from different countries. Yellow shows

countries with <1% contribution, i.e., four genotypes or less.
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The MATLAB image processing toolbox was for all image data
processing operations.

Geometric and Shape Descriptors Details
Both traditional and EFD are utilized for subsequent analysis.
The traditional shape descriptors/traits, including aspect ratio,
roundness, circularity, and solidity are defined as follows:

• aspect ratio = the ratio of the major to minor axis of the
best-fitted ellipse on the canopy;

• roundness= 4 Area

π(Major axis)
2 ; it indicates closeness of the shape

of the canopy to a circle;
• circularity= 4π Area

(Perimeter)2
; it indicates closeness of the form of

the canopy to a circle;
• solidity= Area

Convex Area .

For EFD, the extracted outline was chain coded and expanded
into a shape spectrum by obtaining the Fourier coefficients.
Summations of the harmonics of the resulting series approximate
the outline of the original shape. Each harmonic was represented
by four set of Fourier coefficients. The coefficients are descriptors
of the shape of the canopy outline/contour. Finally, the
descriptors were made invariant of shape, rotation and starting-
point of the contour by standardization (Kuhl and Giardina,
1982).

Each contour was chain coded following standard practice
(Freeman, 1974). Then linear interpolation was used to represent
contour between the two chain-coded points [e.g., (i−1)th and
ith]. The x and y coordinates of any point, pth, were expressed as

xp =

p
∑

i=1

1xi and yp =

p
∑

i=1

1yi (1)

where 1xi and 1yi are the differences along the x and y axes
between the (i−1)th and the ith points.

The length of the contour from the starting point to the pth

point and the perimeter of the contour are denoted by tp and T,
respectively.

tp =

p
∑

i=1

1ti and T = ts (2)

where 1ti is the distance between i−1th and ith points, and s is
the total number of the chain coded points on the contour.

The co-ordinates in Equation (1) were expressed using elliptic
Fourier expansion as

xp = A0 +

∞
∑

N=1

(

aN cos
2Nπ tp

T
+ bN sin

2Nπ tp

T

)

(3)

and

yp = C0 +

∞
∑

N=1

(

cN cos
2Nπ tp

T
+ dN sin

2Nπ tp

T

)

(4)

where the coefficients of the Nth harmonic were

aN =
T

2N2π2

k
∑

p=1

1xp

1tp

(

cos
2Nπ tp

T
− cos

2Nπ tp−1

T

)

(5)

bN =
T

2N2π2

k
∑

p=1

1xp

1tp

(

sin
2Nπ tp

T
− sin

2Nπ tp−1

T

)

(6)

cN =
T

2N2π2

k
∑

p=1

1yp

1tp

(

cos
2Nπ tp

T
− cos

2Nπ tp−1

T

)

(7)

dN =
T

2N2π2

k
∑

p=1

1yp

1tp

(

sin
2Nπ tp

T
− sin

2Nπ tp−1

T

)

(8)

For a shape representation using N harmonics, 4N coefficients
were evaluated and were subsequently used as descriptors of the
shape. The original shape of canopy outline was reconstructed
using inverse Fourier transform from these shape descriptors.
The accuracy of the reconstruction depends on the number
of harmonics (N) used. We defined the deviation of the
reconstructed shape from the original as

EN =

max

[

√

(

xp − xNp

)2
+

(

yp − yNp

)2
]

2L
× 100% (9)

where xNp and yNp are the approximated co-ordinates using N
harmonics, and L is half of the length of the major axis (semi-
major axis) of the best-fitted ellipse to the shape (estimation of
L is presented in the standardized shape descriptors section).
As with any approximation scheme, increase in the number
of harmonics results in high accuracy of reconstruction, but
requires more processing time and storage. We next detail
an approach of identification of the optimal number of
harmonics to use that represents a balance between accuracy and
computational requirement.

Choice of Number of Harmonic Descriptors
We first identified the most complex canopy (that would require
the most number of harmonics to accurately represent) from
the set of all available canopies. We then evaluated the optimal
number of harmonics, N, needed to represent this canopy
and subsequently utilize this number N for all other canopy
descriptors. This ensures consistency while ensuring that a
desired threshold of accuracy is met. Figure 3 illustrates this idea
using a flowchart format.

To identify the most complex canopy, error between outline
from each original image and the Fourier approximation
using the first ten harmonics of that image was calculated
using Equation 9. The canopy with the highest deviation
exhibits the most complex shape (and is shown in Figure 4A).
Harmonic representation of this canopy outline using increasing
number of harmonics (from 10 to 1000 in steps of 10) was
constructed and the error was computed. Figure 4B shows how
the error decreases as the number of harmonics used for shape
representation is increased.We choseN = 500 as this is where the
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FIGURE 3 | Flowchart to evaluate EFDs for a set of images. First canopy outline/boundary from all the images were captured and expressed using 10 elliptic

Fourier harmonics. The worst (in terms of deviation from the original outline) reconstructed outline (which is also the most complex outline) from the EFDs was

identified. Optimal number of harmonics of the complex outline was identified, and all the outlines were expressed using that optimal number of harmonics.

FIGURE 4 | (A) Identification of the complex canopy outline in the dataset. The identification was performed by evaluating deviation of the reconstructed outlines

using ten harmonics from the original outline (Equation 9). Plant with Id# 246 shows the highest deviation/error and was considered as the most complex canopy

outline. (B) Identification of optimal harmonics for the plant Id# 246, shown in inset. The % normalized error value reaches near 1% around 500 harmonics, and the

inset shows that 500 harmonics (red line) outlines is in good agreement with the original outline. This value, 500, was considered as the optimal number of harmonics.

normalized error reaches around 1%. Thus, each canopy outline
is subsequently represented using a 500 harmonic representation.

Standardized Shape Descriptors
The descriptors were made invariant in size, rotation, shift by
standardizing the coefficients (Kuhl and Giardina, 1982), using
the size and spatial location on the ellipse represented by the first
harmonic. The standardized coefficients are

[

a∗N b∗N
c∗N d∗N

]

=
1

L

[

cosψ sinψ
− sinψ cosψ

]

[

aN bN
cN dN

] [

cosNθ sinNθ
− sinNθ cosNθ

]

(10)

where L =

√

[

(A0 − xm)
2
+

(

C0 − ym
)2

]

is half of the length of

the major axis of the ellipse from 1st harmonic, (A0,C0) is the
center of the ellipse, (xm, ym) is the location of modified starting
point (point on the major axis of the ellipse), θ =

2π tm
T and

ψ = tan−1
[

ym −C0
xm −A0

]

, is the angle between the major axis of the

ellipse and x axis. After standardization, three Fourier coefficients
became constant (a∗1 = 1, b∗1 = 0 and c∗1 = 0). An in-house
code was developed (using MATLAB) to implement the above
methods. This code is available upon request.

Analysis Procedure
After each canopy outline is represented using 500 Fourier shape
descriptors, traditional morphometric traits are evaluated from
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the shape. For comparative assessment of the utility of Fourier
shape descriptors, the traits obtained from EFD reconstructed
canopy outlines are compared with traits obtained from the
original images. Diversity of the traits among the lines/genotypes
based on the country of origin is investigated. For visualization
and interpretation of diversity, PCA on the EFD is next deployed.
Data visualization based on the first two principle components
is performed with a focus on four classifications including
country of origin, maturity index, stem termination index and
seed weight. Finally, the canopy descriptors that are suitable for
genetic improvement were suggested.

Trait Heritability Estimate
The model for the phenotypic trait with a single trial of
randomized complete block design was yik = µ + gi + bk
+ eik, where yik is the trait observation/estimate of the ith

genotype at the kth block, µ is the total mean, gi is the genetic
effect of the ith genotype, bk is the block effect, and eik, is
a random error following N(0, σ 2

e). Accordingly, the broad-
sense heritability on an entry-mean basis of each trait was
calculated as H2

=σ 2
g/[σ

2
g + σ

2
e/k], where σ

2
g is the genotypic

variance, k is the number of replications. The analysis of variance
was implemented in R via the ANOVA function. The variance
components were calculated with all effects considered to be
random.

RESULTS AND DISCUSSION

Traditional Morphometric Traits Evaluation
and Their Fidelity
The accuracy of reconstruction was checked by comparing traits
obtained from original images and traits evaluated from the
reconstructed outlines using 500 harmonics. Figure 5 shows
excellent agreement with the traits evaluated from original
images and reconstructed outlines. In our study, data size of an
image captured by camera is ∼15 MB (RAW format), and size
of the 500 harmonics used for reconstruction is ∼5 kB. In other
words, EFD requires two orders of magnitude less memory with
minimal computational overhead to evaluate traditional traits.

Shape Diversity Based on the Traditional
Traits
To investigate the shape diversity based on the traditional traits,
the traits are grouped based the origin of the lines, and presented
in box plots (Figure 6A). The plots indicate that lines from
France have less spread in all the traits. Lines from North Korea
have the highest spread in aspect ratio and circularity. In brief,
there is considerable variation in traits regardless of country of
origin. Roundness has almost three times more spread than the
other traits for all countries (Figure 6B). Fifty-five individual
plants were identified as canopy outline outliers (red “+” symbol
in Figure 6A). Fifty lines were outliers in only one of the
four replications, suggesting that non-genetic factors including
differences in growth stage at imaging (such as due to delayed
emergence) as well as unequal number of seeds per plot could be

FIGURE 5 | Fidelity checks of the reconstructed outlines. Traditional

morphometric traits, (A) aspect ratio, (B) roundness, (C) circularity, and (D)

solidity were evaluated from the reconstructed outlines, and also from the

original images. Inset shows the definition of the traits. Aspect ratio and

circularity are related with the shape of the outline, and roundness and solidity

are related with the form or area enclosed by the outline.

the causal factors for the observed variation. These fifty plants are
removed from the data set for subsequent analysis.

Two lines are outliers for solidity, and occur as outliers in
two of three reps (Figures 6C,D), i.e., around 67%. Six canopies
were outliers for two traits simultaneously. These traits were
paired as circularity with either solidity or aspect ratio, with two
thirds of the circularity outliers also showing up as outliers for
another trait. In spite of this, when comparing trait relationships
using the complete data set, the pairings of (1) roundness with
solidity, and (2) aspect ratio with circularity were the only
two combinations with an |r| (correlation coefficient) >0.75.
The genotypes lines with these outliers are strong candidates
for extreme variation among canopy traits, and are interesting
for additional studies to determine if they may provide unique
ideotypes for practical applications. Furthermore, the study of
genetic variation in canopy traits on a temporal and spatial scale
will require inclusion of diverse germplasm in environments that
may differ in latitude, longitude, water and nutrient stresses,
planting date, and row spacing, in order to ultimately associate
canopy traits with productivity and resiliency.

Shape Diversity Based on EFDs
We perform principal component analysis (PCA) on the EFD.
PCA facilitates dimension reduction of the data set and permits
efficient summarization of the information contained by the
coefficients. The first 30 principal components express around
90% of the total variability, and first and second components
describe, respectively, around 17 and 10% of the total variability.
These two components are used in the subsequent sections for
diversity visualization and interpretation. Figure 7 illustrates the
first two PCA coefficients, color-coded according to four different
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FIGURE 6 | (A) Boxplots showing the variation of traditional traits among the plants with different countries of origin. The blue circle shows the mean value of a trait in

an origin and gray horizontal line indicates overall mean value the trait including all the origins. (B) Coefficient of variance of the canopy morphometric traits among

major geographical countries of origin. Roundness has the highest diversity and solidity has the lowest diversity in all the countries. (C,D) Representative images of

canopies those are outliers in solidity (in A). (C) A canopy of line/genotype PI567159A from china and (D) a canopy of line/genotype PI594170B from Japan.

classes (Figure 7A), country of origin; (Figure 7B), maturity
index; (Figure 7C), stem termination index; and (Figure 7D),
seed weight.

In Figure 7A, lines from China and Japan show the most
variation. This is consistent with their status as centers of
diversity for the domesticated soybean (Hymowitz and Harlan,
1983; Zhou et al., 2015; Valliyodan et al., 2016). No significant
pattern/classification among the countries is observed in the
PCs representation in Figure 7A. The reconstructed canopy
outlines from 30 PCs, did not show significant diversity among
the countries of origin (Figure S1). When grouped in terms of
maturity indexes (I, II, or III), our results showed that each
maturity group has similar variation of canopy outline, and
soybean maturity is not correlated with the canopy outline
(Figure 7B). Likewise, similar results were observed for the PCA
using SNP genetic marker when country origin and maturity
were used to cluster (Figure S2). One possible explanation to this
phenomena was that the panel in this study is a subgroup of the
USDA soybean core collection and it was designed to maximize
the representative of the diversity of all the germplasm lines of
maturity index I, II, and III, (Oliveira et al., 2010; Valliyodan et al.,
2016). Based on the stem growth habit, the lines are classified
into three major categories: determinate (D), semi-determinate
(S) and indeterminate (N). For the determinate soybean cultivars,

the stem elongation stops soon after photoperiod-induced floral
transition of the shoot apical meristem (SAM) from vegetative
growth to reproductive growth (Bernard, 1972). In contrast,
the transition of SAM to reproductive growth is suppressed in
indeterminate cultivars and vegetative growth continues until a
cessation is caused by the demand of developing seeds (Tian
et al., 2010). Therefore, stem growth habit has broad effects on
soybean canopy architecture. Although there is no clear border
among subpanels of different stem growth habit, we observed a
wide variation of canopy outline in semi-determinate soybean
germplasm lines followed by determinate and indeterminate
subpanels (Figure 7C). Also, in this study, these images were
taken at relatively early vegetative stages of the plants, and
differences in canopy architecture related to stem growth habit
is less apparent before reproductive stages. Figure 7D indicates
that large seeded varieties have significantly less variation in the
PC factors, indicating a specific type of ideotype.

Genetic Control of the Soybean Canopy
Outline
Genetic improvement of plant canopy has long been a challenge
of soybean genetic improvement programs because of the
complexity of the trait and the difficulty of measurement. We
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FIGURE 7 | Representation of the diversity of canopy outline among (A) the origins, (B) maturity index, (C) stem termination index, and (D) weight of 100 seeds

(in grams). In (A) the black * shows all the plants. Areas of different colors represent the diversity. The areas were generated from the convex hull of the plants

belonging to a diversity group.

investigated the genetic effect underlying each of the four shape
traits/descriptors. The analysis of variance implied that the
genetic effect of all traits, except aspect ratio, were significant
(Table 1). Further analysis showed that solidity and roundness
have similar, large broad sense heritability, much higher than that
of circularity (Table 1). These results suggest that performance of
solidity and roundness, rather than aspect ratio and circularity, is
predominated by the genetic effects and thus are suitable indexes
of soybean canopy improvement. Further dissecting the genetic
basis of canopy solidity and roundness will be of great interest.

CONCLUSIONS

Characterizing and understanding canopy outline variations is
important for breeding. This work discusses a framework for
efficient representation of complex canopy outlines using EFD.
We detail how the choice of the number of harmonics is made to
ensure consistency while ensuing a balance with computational
effort. We rigorously show that traditional traits/descriptors can
be easily, and very accurately reconstructed from the elliptic
Fourier representation of the canopy outline. We utilized this

TABLE 1 | Heritability estimates of the canopy outline descriptors.

Trait FG
† Heritability‡

Aspect ratio 1.10 0.03

Roundness 3.13*** 0.68

Circularity 1.27* 0.22

Solidity 3.46*** 0.71

†
FG represents the F value for genotypic effects.

‡
The estimates are based on 154 lines that have 3 replications.

*P < 0.05, ***P < 0.001.

framework to explore the diversity in canopy outline using a
diverse panel of soybean plants.

In the near term, we envision that this approach will allow for
design and utilization of a high throughput canopy morphology
phenotyping platform. Such a platform will allow systematic
canopy outline analysis while maintaining the integrity of the
shape. The use of EFD provides an attractive alternative to
conventional canopy phenotypes. Genotypic differences within
a species, as well as morphological differences under differing
environmental andmanagement conditions, can be characterized
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without bias, allowing identification of desirable lines/genotypes,
as well as providing a proxy for rapidly measuring important
plant canopy and growth traits. The approach presented in
our paper may also find applications in the hyperspectral and
multispectral imaging of disease and other causal damage that is
observable on canopy during the crop growing season (Roschera
et al., 2016). We also anticipate that this framework will find
utility for time series analysis of the canopy throughout the
growing season. Our future work is targeted toward providing
biological relevance of these canopy traits to soybean productivity
and stress tolerance, and thereby their utilization in genetic
enhancement. Finally, we think that the approaches presented in
paper can be translated to investigations on canopy traits in other
crops with similar canopy characteristics to soybean.
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