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The extended superfamily of chlorophyll a/b binding proteins comprises the Light-

Harvesting Complex Proteins (LHCs), the Early Light-Induced Proteins (ELIPs) and the

Photosystem II Subunit S (PSBS). The proteins of the ELIP family were proposed to

function in photoprotection or assembly of thylakoid pigment-protein complexes and are

further divided into subgroups with one to three transmembrane helices. Two small One-

Helix Proteins (OHPs) are expressed constitutively in green plant tissues and their levels

increase in response to light stress. In this study, we show that OHP1 and OHP2 are

highly conserved in photosynthetic eukaryotes, but have probably evolved independently

and have distinct functions in Arabidopsis. Mutations in OHP1 or OHP2 caused severe

growth deficits, reduced pigmentation and disturbed thylakoid architecture. Surprisingly,

the expression of OHP2 was severely reduced in ohp1 T-DNA insertion mutants and vice

versa. In both ohp1 and ohp2mutants, the levels of numerous photosystem components

were strongly reduced and photosynthetic electron transport was almost undetectable.

Accordingly, ohp1 and ohp2 mutants were dependent on external organic carbon

sources for growth and did not produce seeds. Interestingly, the induction of ELIP1

expression and Cu/Zn superoxide dismutase activity in low light conditions indicated

that ohp1 mutants constantly suffer from photo-oxidative stress. Based on these data,

we propose that OHP1 and OHP2 play an essential role in the assembly or stabilization

of photosynthetic pigment-protein complexes, especially photosystem reaction centers,

in the thylakoid membrane.

Keywords: Early light-induced protein family, phylogeny, pigment-protein complexes, photosynthesis,

photoprotection

INTRODUCTION

Photosynthetic energy conversion in plants and algae forms the basis for almost all life on earth.
Oxygenic photosynthesis most likely evolved in ancestral cyanobacteria around 2.7–3.5 billon years
ago (Nowicka and Kruk, 2016). More than 1.5 billion years ago, engulfment of a cyanobacterium
by a eukaryotic host cell gave rise to chloroplasts and thereby photo-autotrophic eukaryotes
(Archibald, 2015). During the co-evolution of plastids and their host cells, the major part of the
organelle genome was transferred to the host nucleus, generating the need for protein import to
maintain organelle structure and function (Zimorski et al., 2014). Early on, the photosynthetic
eukaryotes split into several lineages, giving rise to the now living Glaucophytes, Chloroplastida,
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and Rhodophytes. In both the “green” and the “red” lineage,
further endocytobiosis events gave rise to secondary or even
tertiary plastids (Zimorski et al., 2014).

A common feature of all photosynthetic organisms is that the
conversion of light energy into chemical energy is performed
by large pigment-protein complexes in specialized membrane
systems, the thylakoids (Nelson and Ben-Shem, 2004). In plants,
the thylakoids are structurally and functionally heterogeneous:
Grana stacks predominantly contain the water-oxidizing
photosystem II (PSII) while stroma lamellae harbor PS I and
the ATP-synthase complex (Pribil et al., 2014). Assembling the
photosynthetic complexes in the thylakoid membrane requires a
tight coordination of protein synthesis and folding with pigment
synthesis and delivery. Failures of this coordination can lead to
protein mis-folding or accumulation of uncoupled pigments that
initiate deleterious processes rather than funneling the absorbed
energy to the photosynthetic reaction centers (Rochaix, 2011;
Komenda et al., 2012; Wang and Grimm, 2015).

Recent studies on cyanobacteria demonstrated that the family
of High Light Induced Proteins (HLIPS) plays important
functions as carriers of newly synthesized pigments during the
assembly of photosystem II and potentially also photosystem I
(Chidgey et al., 2014; Knoppová et al., 2014; Akulinkina et al.,
2015). As their name implies, HLIPs were identified by their
up-regulation during high light stress, when photo-damaged
photosystems have to be degraded and replaced. In this process,
HLIPs may additionally function in the recycling of pigments
from damaged photosystems or antennae (Dolganov et al., 1995;
Havaux et al., 2003).

HLIP-like proteins are also present in all photosynthetic
eukaryotes and are probably the evolutionary ancestors of
the Light Harvesting Complex (LHC) superfamily of proteins
(Engelken et al., 2012). The common feature of all LHCs and
LHC-like proteins are conserved transmembrane helices that
mediate the binding of chlorophyll (Chl) and carotenoids. In
higher plants, the LHC superfamily contains members with
one to four transmembrane helices. Parallel to the structural
diversification, also the function of the proteins has changed.
The three-helix LHCs form the membrane-integral inner and
outer antennae of both photosystems and thus contribute to
the efficiency of light harvesting (Büchel, 2015). In contrast, the
four-helix protein PSBS is an important factor in the induction
of excess energy dissipation within the LHC antenna (Li et al.,
2000; Niyogi and Truong, 2013). Another class of three-helix
proteins, the Early Light Induced Proteins (ELIPs) are almost
exclusively expressed during light stress and de-etiolation of
proplastids. They do not contribute to light harvesting but may
act as pigment carriers during the assembly of photosynthetic
complexes (Montané and Kloppstech, 2000; Adamska, 2001).
Mutant analyses revealed only a minor function of ELIPs in light
stress tolerance, whereas they contributed to the regulation of
germination (Casazza et al., 2005; Rossini et al., 2006; Rojas-
Stütz, 2008; Rizza et al., 2011). The two-helix LHC-like (LIL)
or Stress Enhanced Proteins (SEPs) were proposed to function
in photoprotection (Heddad et al., 2012). For two recently
diverged LIL3 isoforms in Arabidopsis, an important function in
stabilizing or localizing protein complexes mediating late steps in

Chl biosynthesis has been shown (Tanaka et al., 2010; Takahashi
et al., 2014; Lohscheider et al., 2015).

The One-helix proteins (OHPs) resemble most closely the
ancestral cyanobacterial HLIPs and almost all photosynthetic
eukaryotes contain at least one member of each of the two sub-
classes OHP1 and OHP2 (Engelken et al., 2012). Based on the
gene expression patterns of Arabidopsis OHP1 (At5g02120) and
OHP2 (At1g34000) and the localization of both OHP1 andOHP2
in thylakoid membranes, functions in light stress protection
and de-etiolation of proplastids have been proposed (Jansson
et al., 2000; Andersson et al., 2003; Stawski et al., 2014). In
this study, we analyzed the evolutionary relationship between
OHP1 and OHP2 and directly compared their gene expression
patterns under various conditions. To unravel their functions
in planta, we characterized ohp1 and ohp2 T-DNA insertion
mutants. Surprisingly, we found that ohp1 and ohp2 mutants of
Arabidopsis showed nearly identical phenotypes with chlorotic
appearance, high Chl fluorescence, strongly decreased levels of
photosystems resulting in the prevention of photoautotrophic
growth and altered thylakoid ultrastructure. Complementation
analyses confirmed the specificity of the mutant phenotypes
and demonstrated that OHP1 and OHP2 have essential, non-
redundant functions in Arabidopsis.

MATERIALS AND METHODS

Phylogenetic Analysis
Sequence data were collected from NCBI databases (http://www.
ncbi.nlm.nih.gov), protein sequences were aligned using the
ClustalW algorithm (Larkin et al., 2007) and the alignment was
manually refined in Bioedit (Hall, 1999). Phylogenetic analysis
was performed with PHYML (http://www.atgc-montpellier.fr/
phyml) with 100 bootstrap replicates (Guindon et al., 2010).

Plant Material and Growth Conditions
Arabidopsis thaliana (L.) Heynh., ecotype Col-0 was
obtained from the NASC (Stock-Nr. N60000) and T-DNA
insertion mutants ohp1-1 (GABI_362D02, N434694), ohp1-
2 (GABI_631G03, N460555), and ohp2-1 (GABI_071E10,
N406778) were obtained from the GABI-KAT project
(Kleinboelting et al., 2012). Surface-sterilized seeds were
grown on Murashige and Skoog plant medium (Duchefa
Biochemie, Harleem, The Netherlands) solidified with 0.8%
(w/v) agar and supplemented with 3% (w/v) sucrose (unless
stated otherwise), with or without 10mg L−1 sulfadiazine. Plants
were grown in a growth chamber under either continuous
illumination or a 8 h light/16 h dark cycle with light intensities of
10 to 100 µmol photons m−2 s−1 at 23◦C (±2◦C). Homozygous
and heterozygous mutants were identified by PCR on genomic
DNA using gene-specific primers in combination with a T-DNA
specific primer (Supplemental Table 1). For transcript and
protein analyses, wildtype (WT) plants were grown in individual
pots in a phytochamber with an 8 h day/16 h night cycle at
21/17◦C and a light intensity of 120 µmol photons m−2 s−1

at a relative humidity of 60%. Heterozygous mutants for seed
production were grown on soil in a greenhouse with at least 16 h
of light per day.
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Isolation of Genomic DNA and Northern
Blotting
Genomic DNA was extracted from leaves using the High
Pure GMO Sample Preparation Kit (Roche, Basel, Switzerland)
according to the manufacturer’s instructions. Total RNA was
isolated from frozen leaf material (−80◦C) using Trizol (Thermo
Fisher Scientific, Carlsbad, CA, USA) and the RNeasy Kit
(Qiagen, Hilden, Germany). Northern blots were carried out
using the DIG labeling and detection system (Roche, Basel,
Switzerland). Labeled probes comprising the entire CDS of
OHP1 or OHP2 or approximately 300 bp of ELIP1 or ACT2
were generated by PCR, column-purified and diluted in high-
SDS hybridization buffer (see Supplemental Table 1 for primer
sequences). RNA separation, transfer to a nylon membrane (Pall
Corp., Port Washington, NY, USA), hybridization and detection
were performed as described by Woitsch and Römer (2003).

Mutant Complementation
The CDSs of OHP1 or OHP2 were inserted by InFusion
cloning (Takara Bio Europe, Saint-Germain-en-Laye, France)
into a pEG100-derived plant transformation vector containing
a synthetic riboswitch in the 3′-UTR of the 35S-driven
expression cassette (Earley et al., 2006; Ausländer et al., 2010).
Agrobacterium tumefaciens strain GV3101 was used to introduce
the constructs into heterozygous ohp1-1 or ohp2-1 mutants by
floral dip (Clough and Bent, 1998).

Protein Isolation and Analysis
Plant material was frozen in liquid nitrogen and crushed using
either mortar and pestle or a Tissue Lyzer (Qiagen, Hilden,
Germany). Samples were suspended in 50 mM Tris-HCl pH 8,
5 mM MgCl2 and centrifuged at 16,000 g for 10 min at 4◦C.
Soluble and membrane-associated proteins were removed by
washing the pellet with 50 mM Tris-HCl, pH 7.5 supplemented
with increasing NaCl concentrations of 0, 250, and 500 mM.
Chl was removed by washing the pellet with 80% (v/v) acetone.
For denaturing gel electrophoresis, membrane proteins were
solubilized in sample buffer containing 50 mM Tris-HCl, pH
7.5, 2% (w/v) LDS, 50 mM DTT, 0.01% (w/v) bromphenol blue
and 10% (v/v) glycerol for 30 min at 45◦C (modified from Leto
and Young, 1984). Protein concentrations were determined using
the RC/DC Protein Determination Kit (Bio-Rad, Hercules, CA,
USA). For efficient separation of proteins bigger than 15 kDa,
SDS-PAGE was performed according to Laemmli (1970) using
Biorad Minigel Systems (Bio-Rad, Hercules, CA, USA). For the
analysis of smaller proteins, Tris-Tricine buffered SDS-PAGEwas
performed as described by Schägger and von Jagow (1987). Ten
or twenty microgram protein was loaded per lane.

Immunoblotting was carried out according to Towbin et al.
(1979) using polyvinylidene difluoride (PVDF) membranes with
0.45 µm pore size (GE-Healthcare, Little Chalfont, UK) at a
current of 0.5 mA cm−2 of membrane for 40 min for small
proteins (below 15 kDa) and 1 mA cm−2 of membrane for
60 min for proteins above 15 kDa. Membranes were blocked
in 5% (w/v) non-fat dry milk dissolved in PBS containing
0.1% (v/v) Tween 20. Horseradish peroxidase-coupled secondary
antibodies and enhanced chemiluminescence reagents (ECL Plus,

GE Healthcare, Little Chalfont, UK) were used as a detection
system. Antibody sources: anti-OHP1 (see below), anti-OHP2
(Andersson et al., 2003), anti-ELIP1 (Heddad et al., 2006), anti-
33 kDa protein of the oxygen-evolving complex (PSBO; Lundin
et al., 2008), all other antibodies were obtained from Agrisera AB
(Vännäs, Sweden).

Green-Native PAGE of total protein extracts from entire
rosettes was performed according to Allen and Staehelin (1991).

Recombinant Expression of OHP1 and
Production of Polyclonal Antibodies
The OHP1 coding sequence was amplified with specific primers
(Supplemental Table 1) from cDNA and inserted into the E. coli
expression vector pBAD/Thio-TOPO (Thermo Fisher Scientific,
Carlsbad, CA, USA). Overexpression was performed according
to the manufacturer’s protocol. The fusion protein accumulated
in inclusion bodies that were purified according to Chen et al.
(1991), resuspended in 10 mMNaHPO4 pH 7.2, 0.9% (w/v) NaCl
and used to raise a polyclonal OHP1-antiserum in rabbit (TFA,
University of Konstanz, Konstanz, Germany). The antiserum
reacted strongly with recombinant OHP1 but showed cross-
reactivity with another thylakoid protein that migrated to the
same position in SDS gels.

Pigment Isolation and Analysis
Plant material was processed as for membrane protein extraction,
except that pigments were extracted by vortexing and sonication
in the presence of 80% acetone. Cell debris was removed by
centrifugation for 10 min at 16,000 g and 4◦C. The absorbance
of extracts was determined at 662 nm, 645 nm and 470
nm and the pigment content was calculated as described
by Lichtenthaler (1987). To analyze pigment composition,
extracts normalized on fresh weight were analyzed by thin
layer chromatography. The stationary phase consisted of TLC
aluminum sheets coated with silica gel 60. Pigments were
separated in a mobile phase consisting of petroleum ether:diethyl
ether:chloroform:methanol:acetone at the ratio 8:2:2:1:1.

Electron Microscopy
Rosette leaves of 6-week-old Arabidopsis plants were cut into
small pieces of 2 × 3 mm and pre-fixed immediately with 2%
(v/v) glutaraldehyde in 0.1 M phosphate buffer, pH 7.2, for 2 h at
room temperature. Samples were then rinsed five times and post-
fixed with 1% (w/v) osmium tetroxide for 2 h in the same buffer
at room temperature. After dehydration in a graded ethanol
series, samples were infiltrated and embedded in a mixture of
Spurr’s and Epon/Araldite resins. After polymerization, ultrathin
sections of about 50 nm thickness were cut with a diamond knife
and mounted on copper grids. Sections were stained with uranyl
acetate first and post-stained with aqueous lead citrate (0.1 M,
pH 13). Micrographs were taken with a Hitachi H 7000 electron
microscope at 75 kV (Hitachi, Tokyo, Japan).

Pulse Amplitude Modulated (PAM)
Fluorimetry
Chl fluorescence was monitored using an Imaging PAM
Fluorometer (Walz GmbH, Effeltrich, Germany) equipped with
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a standard measuring head using the ImagingWin software
provided by the supplier. Program settings used in kinetics
experiments were: measuring light intensity 1, measuring light
frequency 1, actinic light intensity 1 or 11 (corresponding to 8
or 150 µmol photons m−2 s−1, respectively), actinic light width
0, damping 2, gain 5, saturating pulse intensity 10, yield filter
3 and Fm-factor 1.024. Before the measurements, single leaves
or whole plants were dark-adapted for 5 min and exposed to a
light regime consisting of one saturating flash in the dark-adapted
state followed by a period of actinic illumination with further
saturating flashes until the photochemical quantum efficiency
(8PSII) reached a steady state. After each measurement,
absorptivity of the leaves or seedlings was estimated as suggested
by the ImagingWin software and photosynthetic parameters were
calculated by the software.

Detection of Reactive Oxygen Species and
SOD Activity
H2O2 and O−

2 were detected in situ by infiltration of excised
mature leaves with 3,3-diaminobenzidine or NBT solution,
respectively, according to Thordal-Christensen et al. (1997)
and Bournonville and Díaz-Ricci (2011) except that 0.02%
(v/v) Silwet were included in the staining solutions. Superoxide
dismutase (SOD) and catalase activities were estimated by in-gel
activity staining according to Beauchamp and Fridovich (1971)
and Clare et al. (1984). Entire rosettes were ground in 10 ml/g
ice-cold extraction buffer [100 mM KHPO4 pH 7.5, 1 mM DTT,
3 mM EDTA, 0.4% (v/v) Triton X-100]. Soluble proteins were
obtained after centrifugation at 25,000 g for 10 min at 4◦C and
quantified with Bradford’s reagent. Per lane, 30 µg (for SODs)
or 10 µg (for catalase) of total protein was separated on native
polyacrylamide gels. After staining, digital images of the gels were
processed with the ImageJ software (Schneider et al., 2012).

RESULTS

Two Distinct Types of OHPs Are Present in
Plants
Phylogenetic analyses based on the signature element of ELIP
sequences, the conserved transmembrane helices with a predicted
chlorophyll (Chl) binding motive, had very little power to resolve
the evolutionary origin of the sub-families of OHP and SEP/LIL
proteins (Engelken et al., 2012). We used a manually refined
alignment of OHP and SEP/LIL sequences around the conserved
transmembrane helix corresponding to the entire length of
mature OHP1 to calculate a maximum likelihood tree (Figure 1
and Supplemental Figure 1). In this tree, OHP1 and OHP2
sequences are clearly assigned to separate branches, while the
bootstrap values for the individual branches between the OHP
and SEP/LIL proteins are too low to deduce an exact genealogy.
Within each branch, the topology roughly follows the species tree
of Viridiplantae (Rodríguez-Ezpeleta et al., 2005) with a separate
branch of OHP2 sequences in organisms of the red algae lineage.
In the red lineage, no nuclear-encoded OHP1 was identified,
but they contain a putatively ancestral plastid-encoded High
Light Induced Protein (HLIP) that is not present in the green

FIGURE 1 | Phylogenetic analysis of OHP1 and OHP2. OHP and SEP/LIL

sequences from selected plants and algae were aligned and used to calculate

an unrooted maximum likelihood tree (See Supplemental Figure 1 for an

excerpt of the alignment). Numbers at branching points are bootstrap values

from 100 replicates. OHP1 and OHP2 proteins belong to two evolutionary

distinct groups that most likely evolved independently in photosynthetic

eukaryotes. Notably, secondary algae in the red lineage only contain OHP2

sequences (red dotted circle) but no nuclear-encoded OHP1. For a better

overview, the highly conserved dicot (dark green) and monocot (light green)

sequences were collapsed in the OHP1 and OHP2 branches of the tree and

SEP/LIL sequences were only included from a small group of green algae and

land plants. In addition to the species mentioned, OHP1 and OHP2

sequences from the dicots apple (Malus domestica), barrel clover (Medicago

truncatula) and poplar (Populus trichocarpa) were included for the calculation

of the tree. Seed plants: Ath, Arabidopsis thaliana; Pop, Populus trichocarpa;

Zma, Zea mays, Osa, Oryza sativa; Psi, Picea sitchensis. Lower land plants:

Ppa, Physcomitrella patens; Smo, Selaginella moellendorffii. Green algae: Cre,

Chlamydonomas reinhardtii; Ota, Ostreococcus tauri; Mpu, Micromonas

pusilla. Diatoms: Ptr, Phaeodactylum tricornutum; Tps, Thalassiosira

pseudonana. Haptophyte: Ehu, Emiliana huxleyi. Cryptophyte: Gth, Guillardia

theta.

lineage (Engelken et al., 2010). Among higher plants, OHP1
sequences and likewise OHP2 sequences are highly conserved
and typically have more than 75% identical amino acids in the
analyzed region within the monocot and dicot clades, whereas
OHP1 sequences share only 10–20% identical amino acids with
OHP2 (Supplemental Figure 1).

Arabidopsis OHP Genes Are Expressed
Constitutively and Are Upregulated upon
Light Stress
As expected for thylakoid membrane proteins, transcripts of
both OHP genes showed the highest abundance in leaves and
were present in all green plant tissues, whereas both OHP1
and OHP2 transcripts were undetectable in roots (Figure 2A).
Diurnal regulation of OHP1 expression had been described
previously (Jansson et al., 2000). We observed that transcript
levels of OHP1 and OHP2 showed very similar fluctuations
during an 8 h light/16 h night cycle with the highest transcript
levels before the onset and during the first half of the photoperiod
being 25% higher than during the second half of the light phase
and the beginning of the night (Figure 2B). Like other members
of the ELIP family, OHP1 and OHP2 have been implicated in
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FIGURE 2 | Light regulation of OHP1 and OHP2 expression. Transcript

levels of OHP1, OHP2, ELIP1, and ACT2a in Col-0 (WT) plants were analyzed

by northern blotting. (A) Different organs from mature plants in the

reproductive phase were analyzed separately. R, Roots; L, Leaves; S, Stems;

B, Buds; F, Flowers. Detection of ACT2 demonstrates the successful isolation

of mRNA from roots. EtBR-stained 18S rRNA and chloroplast rRNAs (cp

rRNA) are shown as loading control. (B) Diurnal regulation of OHP1 and OHP2

transcript levels in mature leaves of 6-week-old WT plants cultivated in an 8 h

light/16 h dark cycle at a light intensity of 120 µmol photons m−2 s−1. The

light period (10 a.m. to 6 p.m.) is indicated as a white bar on top of the time

scale. (C) Light stress was induced by exposing detached leaves of plants

cultivated at 120 µmol photons m−2 s−1 to a light intensity of 1000 µmol

photons m−2 s−1. Induction of ELIP1 expression served as a control to

demonstrate the presence of light stress. (D) De-etiolation was induced by

exposing 2-week-old, dark-grown WT seedlings to white light at an intensity of

100 µmol photons m−2 s−1. Again, expression of ELIP1 served as a control

to monitor the progression of de-etiolation. In (B–D), EtBR-stained 25S rRNA

serves as loading control.

light stress responses (Jansson et al., 2000; Andersson et al., 2003).
We confirmed that mRNA levels of both OHP1 and OHP2 were
increased by approximately 40 and 60%, respectively, after 3 h
of exposure to excess light (Figure 2C). In comparison to ELIP1,
the increase in transcript levels was less pronounced for OHP1
andOHP2, especially since bothOHP genes showedmuch higher
basal expression levels. ELIP1 transcript levels were shown to
increase during de-etiolation similarly to the response to light
stress (Casazza et al., 2005). Also transcript levels of both OHP1
and OHP2 increased transiently by more than 100% during de-
etiolation of dark-grown seedlings, peaking together with ELIP1
after 2–4 h of exposure to light (Figure 2D).

Co-expression analysis of OHP1 and OHP2 using AttedII
revealed that OHP1 and OHP2 expression is similarly regulated:
both fall within the top 60 of co-expressed genes for each other
(Obayashi et al., 2014). The top 100 lists of co-expressed genes
for OHP1 and OHP2 share 22 common entries. Analysis of the
complete ranked list of co-expressed genes for enriched GO
terms for processes with GOrilla suggested a strong connection of
OHP1 and OHP2 with glyceraldehyde-3-phosphate metabolism,
isopentenyl pyrophosphate (IPP) metabolism and thylakoid
membrane organization, along with other important chloroplast-
associated processes (Eden et al., 2009).

T-DNA Insertion Mutants of OHP1 or OHP2
Show Pale Green Phenotypes and Are
Infertile
To unravel the function of OHP1 and OHP2 in thylakoids,
we identified and characterized Arabidopsis T-DNA insertion
mutants (Figure 3 and Supplemental Figure 2). The segregation
of sulfadiazine resistance in the progeny of heterozygous plants of
the T-DNA insertion line GABI_362D02 (ohp1-1) was consistent
with a single T-DNA insertion (data not shown). As reported
in the Chloroplast Function Database (Myouga et al., 2013),
roughly one fourth of the progeny from plants heterozygous
for the T-DNA insertion in OHP1 stayed very small and were
of pale green color (Figure 3A). PCR analysis of the pale green
plants confirmed that they were homozygous for the T-DNA in
the OHP1 gene (Supplemental Figure 2). No OHP1 transcripts
could be detected in these plants (Figure 3B), demonstrating
that ohp1-1 is a complete loss-of-function mutant. A polyclonal
antiserum raised against recombinant OHP1 detected residual
amounts of a protein with the same molecular weight as OHP1
in protein extracts of homozygous ohp1-1 mutants, indicating
that the serum is not monospecific (Figure 3C). So far, we did
not identify the cross-reacting protein. In MS-based protein
detection of gel regions corresponding to the expected position
of OHP1, three tryptic peptides of OHP1 were detected a total
of 18 times (corresponding to 3.5% of all peptides identified
unambiguously) in a wildtype (WT) sample (Supplemental
Figure 2). In a corresponding gel slice with proteins from
ohp1-1 mutants, no OHP1-specific peptides were detected while
peptides derived from other thylakoid proteins were detected
with similar counts as in the WT sample, strongly suggesting
the actual lack of the OHP1 protein in the ohp1-1 mutant.
Heterozygous ohp1-1 mutants were indistinguishable from WT
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FIGURE 3 | Characterization of ohp1 and ohp2 mutants. (A)

Representative images of 3-week-old homozygous (hom) or heterozygous

(het) ohp1-1 and ohp2-1 mutants in comparison to Col-0 WT plants of the

same age. The plants were grown in axenic culture with continuous light. (B)

Northern blot analysis of OHP1 and OHP2 transcript levels in the respective

homozygous or heterozygous mutants in comparison to WT Col-0 plants.

Fifteen microgram of total RNA were loaded per lane and EtBR-stained 25S

rRNA is shown as loading control. (C) Western blot analysis of OHP1 and

OHP2 protein levels in corresponding samples. Ten microgram of

LDS-solubilized insoluble proteins were loaded per lane and

Coomassie-stained LHC proteins are shown as loading control. (D) Pigments

from leaves of Col-0 WT plants or heterozygous and homozygous ohp1-1

mutants were extracted with 80% acetone and quantified photometrically.

Values represent the mean±SD (N = 4), Asterisks indicate significant

differences from the respective WT value (p ≤ 0.01 by Student’s t-test). (E)

Pigments of homozygous ohp1-1 mutants and WT seedlings separated by

thin layer chromatography.

plants in size and coloration but they displayed reduced levels of
OHP1mRNA (Figures 3A,B). In a second T-DNA insertion line,
GABI_631G03 (ohp1-2), the T-DNA is located 72 bp upstream
of the start codon of OHP1. Homozygous ohp1-2 mutants
showed low levels of residual OHP1 expression and a similar
but less severe mutant phenotype compared to ohp1-1 mutants
(Supplemental Figure 2D).

The line GABI_071E10 (ohp2-1) initially carried at least two
T-DNA insertions. After backcrossing to Col-0 plants, a line with
a single insertion in OHP2 was identified. After self-fertilization,
this line showed approximately 3:1 segregation of the sulfadiazine
resistancemarker and, surprisingly, homozygous ohp2-1mutants
phenocopied ohp1-1 mutants (Figure 3A). OHP2 transcripts
and protein were undetectable in homozygous ohp2-1 seedlings
(Figures 3B,C). The similar mutant phenotypes of ohp1-1 and
ohp2-1 mutants indicated that OHP1 and OHP2 might act
together in the same process despite their different evolutionary
origin. Strikingly, hardly any OHP2 protein was detected in
ohp1-1mutants and similarly, OHP1 protein levels were strongly
reduced in ohp2-1 mutants. In contrast, the transcript level of
OHP1 was not affected in ohp2-1 mutants and likewise, ohp1
mutants had unchanged transcript levels of OHP2.

The reduced growth and the pale color of ohp1 and
ohp2 mutants indicated severe deficits in photosynthesis,
which might cause problems during photosynthetically active
phases of embryo development. Indeed, the occurrence of
homozygous ohp1-1 mutants was 34% less frequent than
expected (Supplemental Figure 2G). Also among the progeny
of heterozygous ohp2-1 mutant plants, 28% less homozygous
individuals than expected were observed, explaining the slightly
lower than expected proportion of sulfadiazine-resistant plants.
The defects of ohp1-1 and ohp2-1 seedlings in post-embryonic
development could be a symptom of starvation as a result of
impaired photosynthesis. In the absence of external sucrose,
seedlings of both mutant lines were not able to develop beyond
cotyledon stage, while increasing the sucrose concentration from
2 to 3% (w/v) improved the growth of the mutants (data not
shown). Even in the presence of high sucrose concentrations,
a developmental arrest and rapid bleaching of most ohp1-1
and ohp2-1 seedlings was observed in a day/night cycle with
a light intensity of 100 µmol photons m−2 s−1. Illumination
with very low light (10 to 15 µmol photons m−2 s−1), lowering
the temperature from 23◦ to 19◦C and/or supplementing
the growth medium with Gamborg’s vitamin mix allowed
homozygous ohp1-1 and ohp2-1 mutants to develop further
(data not shown). However, even under improved cultivation
conditions photosynthetic performance remained very low. Not
all homozygous mutants survived until flowering and none of
them produced seeds (data not shown).

The modified growth regime allowed the generation of
sufficient biomass of ohp1-1 seedlings to investigate the
pigmentation defect in more detail. Chl and carotenoids
were extracted and quantified photometrically (Figure 3D).
Confirming the visual impression, the pigment concentrations
were very similar in WT and heterozygous ohp1-1 mutants.
In contrast, homozygous ohp1-1 mutants had less than 50%
of the Chl a concentration of WT seedlings and also Chl b

Frontiers in Plant Science | www.frontiersin.org 6 January 2017 | Volume 8 | Article 7

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Beck et al. One-Helix Proteins in Arabidopsis

and carotenoids were lower in ohp1-1 mutants, although to
a lesser extent than Chl a (Chl b: 68%, carotenoids 65%).
The differential reduction in pigment concentrations was also
reflected in altered pigment ratios. The Chl a to Chl b ratio and
the total Chl to carotenoids ratio were reduced by 30 or 20%,
respectively, in ohp1-1mutants as compared toWT plants. Thin-
layer chromatography of isolated pigments demonstrated that
mainly a decrease in β-carotene was the cause for the reduced
carotenoid concentration in ohp1-1 mutants, while xanthophyll
levels were very similar compared to WT plants (Figure 3E).

Chloroplast Ultrastructure Is Altered in
ohp1 Mutants
In a previous study the pale green appearance of homozygous
ohp1 mutants in the Ler background had been associated
with altered chloroplast ultrastructure (Chloroplast Function
Database, Myouga et al., 2013). To verify the requirement of
OHP1 expression for normal thylakoid architecture, we analyzed
the Col-0-derived mutant line ohp1-1 by transmission electron
microscopy (Figure 4). Micrographs of sections of true leaves
showed identical pictures for WT plants and heterozygous
ohp1-1 mutants with well-differentiated grana stacks and stroma
lamellae with interspersed plastoglobules. In contrast, stroma
lamellae were virtually absent in leaves of homozygous ohp1-1
mutants and plastoglobules appeared fragmented. Grana stacks
were present in chloroplasts of ohp1-1 mutants, but in non-
appressed regions at grana stackmargins the thylakoid lumenwas
strongly inflated. In comparison to the stroma, the content of the
marginal thylakoids had a very low electron density, indicating
that it contained only a low concentration of macromolecules.
Additionally, starch grains were virtually absent in leaves of
homozygous ohp1-1 mutants, while they occurred with similar
frequencies in plastids of WT plants and heterozygous ohp1-1
mutants (data not shown). The structural aberrations observed
in our specimens were different from the ones in the pictures
contained in the Chloroplast Function Database, indicating
ecotype- or tissue-specific effects of OHP1 depletion (Myouga
et al., 2013).

ohp1 and ohp2 Mutants Are Impaired in
Photosynthesis
To examine whether reduced pigment content of ohp1-1
and ohp2-1 mutants impaired photosynthesis, we monitored
Chl fluorescence using pulse amplitude-modulated (PAM)
fluorimetry. During de-etiolation all seedlings showed similar
levels of ground state fluorescence (F0). In WT and heterozygous
seedlings F0 declined during further development, whereas
homozygous ohp1-1 and ohp2-1 maintained a high F0 that
only declined when the leaves bleached and died (Figure 5A
and data not shown). Induction kinetics showed typical
fluorescence traces in WT plants and heterozygous ohpmutants.
In contrast, fluorescence emission in homozygous ohp1-1 and
ohp2-1 mutants was nearly independent of the light intensity
(Figure 5B and Supplemental Figure 3). In mature true leaves
of homozygous mutants, F0 values were six to nine times as
high as in heterozygous or WT plants (Figure 5C). Maximal

FIGURE 4 | Chloroplast ultrastructure is altered in ohp1-1 mutants.

Mature leaves of 6-week-old plants cultivated at 15 µmol photons m−2 s−1 in

an 8 h light/16 h dark cycle were analyzed by transmission electron

microscopy. The micrographs show representative sectors of chloroplasts

from WT plants in comparison to homozygous and heterozygous ohp1-1

mutants. While heterozygous mutants have plastids with a similar appearance

as the WT, homozygous ohp1-1 mutants display strongly disturbed thylakoid

ultrastructure.

fluorescence values (Fm) during a saturating light flash were
only slightly higher than F0 in homozygous ohp1-1 and ohp2-1
mutants. Fm values were approximately 1.5- or 1.9-fold higher in
homozygous ohp1-1 or ohp2-1 mutants, respectively, compared
to heterozygous mutants and WT plants. Maximum quantum
efficiency of PSII in the dark-adapted state (Fv/Fm) was close to 0
in homozygous mutants, whereas heterozygous mutants andWT
plants showed values close to 0.8 typical for photosynthetically
fully competent leaves (Björkman and Demmig, 1987; Johnson
et al., 1993). The Fv/Fm values in homozygous ohp1-1 mutants
were highest (up to 0.13) in very young leaves but rapidly
declined to 0 with increasing leaf age (Supplemental Figure
3). The quantum efficiency of PSII in the light acclimated
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FIGURE 5 | Photosynthetic performance of ohp1 and ohp2 mutants. (A)

F0 images of WT plants, heterozygous and homozygous ohp2 mutants were

recorded 5, 10, and 20 d after germination. Plants were grown in a 12 h

light/12 h dark cycle at a light intensity of 10 µmol photons m−2 s−1 at 18◦C.

(Continued)

FIGURE 5 | Continued

The bar below represents the color to numeric value conversion. The F0 values

indicated in the panels are the average over the area of one cotyledon (5 and

10 d after germination) or a true leaf (at 20 d). (B) Fluorescence traces (blue

lines) of an induction kinetic using mature true leaves of 3-week-old

homozygous and heterozygous ohp1 mutants as well as WT plants. The

plants were exposed to blue actinic illumination of 8 µmol photons m−2 s−1,

which is corresponding to the cultivation conditions with 15 µmol photons

m−2 s−1 white light. The operating efficiency of PSII (8PSII ) is shown in red.

(C) Fluorescence-derived photosynthetic parameters of mature leaves

analyzed as described above. F0, Minimal fluorescence of dark-adapted

leaves; Fm, Maximal fluorescence of dark-adapted leaves; Fv/Fm, Maximal

photochemical efficiency of dark-adapted leaves; NPQ, Non-photochemical

quenching; Abs, Relative absorptivity of the leaves. Values are mean±SD (N =

5). Homozygous mutants differed significantly from WT and heterozygous

plants in all analyzed parameters (Student’s t-test, p < 0.05).

state (8PSII) was typically below 0.1 in leaves of homozygous
ohp1-1 and ohp2-1mutants, compared to expected values around
0.7 in heterozygous mutants and WT plants. Upon exposure
to high light (150 µmol photons m−2 s−1), the fluorescence
dropped rapidly in photosynthetically competent young leaves
of homozygous ohp1-1 mutants concomitant with a transient
increase in NPQ values. In contrast, fluorescence stayed at
levels similar to F0 in older leaves and NPQ remained low
(Supplemental Figure 3).

PSI and PSII Reaction Centers Are
Affected by Depletion of OHP Proteins
The similar regulation of OHP1 and OHP2 expression and
the nearly identical mutant phenotypes indicated that OHP1
and OHP2 are required for PSII function and that both
proteins might be functionally linked. Our western blot analysis
revealed that only low levels of OHP2 protein were detected
in homozygous ohp1-1 mutants, and likewise, ohp2-1 mutants
lacked OHP1 protein (Figure 3). Comparative analysis of
photosynthetic complexes by native gel electrophoresis showed
that homozygous ohp1-1 mutants lack several components of
the photosynthetic machinery (Figure 6). To further investigate
these defects in both ohp1-1 and ohp2-1mutants, we analyzed the
levels of photosynthetic proteins in 10-week-old plants cultivated
at 15 µmol photons m−2 s−1 with a short-day light regime.
The abundance of several antenna proteins of PSII and PSI
was reduced in ohp1-1 and ohp2-1 mutants compared to WT
plants (Figure 6 and Supplemental Figure 4). Strikingly, levels
of the reaction center (RC) proteins of both PSII (PSBA) and
PSI (PSAB) were near or below the detection limit. Furthermore,
the 33 kDa-subunit of the oxygen-evolving complex (PSBO)
and PSAK, another subunit of PSI, were strongly reduced in
ohp1-1 mutants. These differences became more pronounced
when comparing older plants or when plants were grown at an
illumination intensity of 50 µmol m−2 s−1 (data not shown).
Interestingly, homozygous ohp1-1 and ohp2-1 mutants but not
heterozygous mutants orWT plants showed expression of ELIP1,
a phenomenon generally associated with light stress (Adamska
et al., 1992).
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FIGURE 6 | Deletion of OHP1 affects specific pigment-protein

complexes in the thylakoid membrane. Total membrane protein extracts of

entire rosettes of 10-week-old homozygous and heterozygous ohp1-1mutants

and WT plants cultivated at 15 µmol photons m−2 s−1 in an 8 h light/16 h

dark cycle were analyzed by green native PAGE or Western blotting after

denaturing SDS-PAGE. Equal amounts of protein were loaded in each lane.

Loss of OHP1 Causes Induction of the
Antioxidant Defense
The high Chl fluorescence yield and almost complete absence
of reaction centers observed in homozygous ohp1-1 and ohp2-
1 mutants indicated poor usage of excitation energy, which is
very likely to cause increased formation of reactive oxygen species
(ROS). Staining of leaves with trypan blue revealed that ohp1-1
mutants did not contain elevated levels of dead cells (data not
shown). Staining of leaves for O−

2 and H2O2 levels produced very
similar pictures for homozygous ohp1-1 mutants and WT plants
(Figure 7). Therefore, we analyzed the activity of superoxide
dismutase (SOD) and catalase in leaf extracts. The activities of
catalase and Mn-SOD were very similar in WT plants and ohp1-
1mutants. In contrast, the activities of Fe-SOD and Cu/Zn-SOD
were increased in homozygous ohp1-1mutants, especially Cu/Zn
SOD, for which the activity was increased approximately 2-fold.

OHP1 and OHP2 Are Not Functionally
Redundant
The highly similar phenotypes of ohp1-1 and ohp2-1 mutants
despite the distinct evolutionary origin of both proteins

FIGURE 7 | ROS staining and ROS-scavenging enzyme activities in

ohp1-1 mutants. (A) Leaves of 4-week-old ohp1-1 mutants and WT plants

cultivated under continuous illumination at 15 µmol photons m−2 s−1 were

stained for H2O2 content with 3,3-diaminobenzidine or for O−
2 content with

NBT. Leaves were vacuum-infiltrated with staining solution and incubated for 2

h or 20 min, respectively, at 15 µmol photons m−2 s−1. Three representative

leaves of each genotype are displayed. (B) Relative activities of the three

superoxide dismutase (SOD) isoforms and catalase were quantified in leaf

extracts by in-gel staining after native gel electrophoresis. SOD activities were

normalized by the total SOD activity of WT leaves for each gel. Values

represent the mean ± SD in relative units (N = 8 for SODs, N = 3 for catalase),

asterisks indicate significant difference from the respective activity in WT

leaves (p ≤ 0.02 in a Student’s t-test).

suggested that they might either have a redundant, dose-
dependent function or act together in the assembly or
maintenance of photosynthetic complexes. To test for functional
redundancy and the specificity of the mutant phenotypes,
we transformed heterozygous mutants with constructs for
overexpression of OHP1 or OHP2. Already in the T1 generation,
homozygous ohp1-1 plants with WT-like appearance were
identified in lines carrying a 35S-OHP1 construct but never
with a 35S-OHP2 construct. In the T2 generation, also the
offspring of heterozygous ohp1-1mutants carrying the 35S-OHP1
construct contained homozygous ohp1-1 mutants that showed
normal growth and pigmentation and had a photosynthetic
capacity (Fv/Fm) similar to WT plants (Figure 8A). Among
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FIGURE 8 | Complementation of ohp mutants. (A,B) Photos and Fv/Fm
images of 2-week-old WT plants, homozygous ohp1-1 or ohp2-1 mutants and

complemented mutants (T2 generation). Color scale for Fv/Fm is shown

between (A,B). In the T1 generation after transformation of heterozygous ohp

mutants with OHP overexpression constructs, plants homozygous or

heterozygous for the ohp1-1 or ohp2-1 T-DNA insertions were identified by

PCR. T2 plants were selected for BASTA resistance conferred by the

overexpression constructs, sulfadiazine resistance conferred by the

KO-constructs and transferred to plates without herbicide 5 days after

germination. (C) Transcript analysis of plants from the cross-complementation

attempt. Transcripts of the rescue constructs (35S-OHP1 and 35S-OHP2) can

be distinguished from endogenous transcripts by their bigger size due to

artificial UTRs. Fifteen microgram of total RNA were loaded per lane and

EtBR-stained 25S rRNA is shown as loading control.

the offspring of heterozygous ohp1-1 mutants carrying the
35S-OHP2 construct, all homozygous ohp1-1 mutants were
pale and showed high Chl fluorescence independent of the
presence of the 35S-OHP2 construct (Figure 8B). Likewise,
35S-OHP2 but not 35S-OHP1 complemented the phenotype
of homozygous ohp2-1 mutants. Transcript analysis confirmed
that the complementation constructs, which produce longer
transcripts due to the insertion of a riboswitch in the 3′-
UTR, were expressed even in the lines that failed to show

cross-complementation (Figure 8C). These findings demonstrate
that the loss of OHP expression is the definite cause for the
mutant phenotypes and that OHP1 and OHP2 have clearly
distinct functions.

DISCUSSION

OHP1 and OHP2 Proteins Are Highly
Conserved
It is striking that all well annotated genomes of phototrophic
eukaryotes except dinoflagellates and chlorarachniophytes
contain at least one HLIP-encoding (glaucophytes and red
algae) or OHP1-encoding (green algae and plants) gene and
one gene encoding an OHP2 protein (Engelken et al., 2012).
Despite the similar predicted secondary structure with a single
transmembrane helix, OHPs are most likely not a monophyletic
group of proteins (Figure 1; Engelken, 2010). The phylogenetic
tree derived from the alignment comprising the entire sequence
of the mature OHP1 protein roughly displays the expected
species topology in the green lineage with a gradual evolution
via green algal, bryophyte and pteridophyte OHP1 sequences
to higher land plants (Rodríguez-Ezpeleta et al., 2005). While
OHP1-type proteins were probably directly derived from
cyanobacterial HLIP ancestors, OHP2-type proteins are more
closely related to the eukaryotic Light Harvesting-Like proteins
(LILs) than to OHP1 and HLIPs and have probably evolved
by the loss of the second transmembrane helix present in LILs
(Figure 1; Engelken et al., 2012).

The broad abundance and strong conservation can be taken
as an indication that both OHP1 and OHP2 fulfill essential
functions in thylakoids. In contrast to the high diversity of
HLIPs and their variable number per organism, OHP1 and
OHP2 sequences typically occur as one copy per organism and
they are highly conserved, especially in land plants including
mosses (Figure 1 and Supplemental Figure 1). Synechocystis
mutants missing all four HLIPs were not viable while growing
under high light conditions and it could be shown that
HLIPs in cyanobacteria stabilize PSI trimers under exposure
to high irradiance (He et al., 2001; Wang et al., 2008). More
recently, cyanobacterial HLIPs were associated with delivery
of newly synthesized or recycled pigments during assembly of
photosystem II and potentially also Photosystem I (Komenda and
Sobotka, 2016). They were found to interact in pairs or as dimers
with photosystems and other proteins involved in pigment
synthesis and pigment-protein assembly factors (Chidgey et al.,
2014; Knoppová et al., 2014; Akulinkina et al., 2015; Staleva et al.,
2015). The strong conservation suggests that OHPs in plants
fulfill similar functions while some of the functions of HLIPs
might be taken over by LILs or ELIPs in plants, thus allowing the
reduction to one copy each of OHP1 and OHP2.

Co-regulation of OHP1 and OHP2
Expression Suggests a Common Function
Expression of both OHP1 and OHP2 was found to be regulated
at the transcript level in response to different light conditions
(Jansson et al., 2000; Andersson et al., 2003; Stawski et al., 2014).
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Our detailed expression analysis revealed that OHP1 and OHP2
transcript levels are co-regulated during the diurnal light cycle,
during de-etiolation and in response to excess light (Figure 2).
In contrast to ELIP1 transcripts, OHP1 and OHP2 mRNAs were
detected under all conditions in photosynthetically active tissues,
indicating that the function of OHPs is not limited to light
stress protection. Transcript levels of OHP1 and OHP2 were
increased by approximately 25, 50, and 100% at the beginning
of the light phase, in response to high light stress and during de-
etiolation of dark-grown seedlings, respectively, indicating that
OHP proteins may be especially important when the synthesis or
repair rates of photosynthetic protein complexes in the thylakoid
membrane are high. A high degree of co-expression across
the total range of transcriptome analyses summarized in the
AttedII database indicates that co-regulation ofOHP1 andOHP2
expression may not be limited to light responses (Obayashi
et al., 2014). OHP1 and OHP2 expression was additionally
co-regulated with genes of the IPP metabolism, which is the
starting point for isoprenoid biosynthesis (Vranová et al., 2013).
Among the isoprenoids, especially the terpenoids like phytols,
tocopherols and carotenoids are essential for assembly and
functionality of photosynthetic pigment-protein complexes as
well as for photoprotection (Domonkos et al., 2013; Mokrosnop,
2014).

OHP1 and OHP2 Are Essential for
Functional Photosystems in Arabidopsis
Based on expression patterns during light stress, photoprotective
functions were proposed for ELIP family members, both in
cyanobacteria and higher plants (Heddad et al., 2012). However,
detailed information about the molecular and physiological
functions of proteins of the ELIP family is still scarce. Most of the
functional studies were performed on three-helix ELIPs or two-
helix LILs/SEPs in higher plants and on HLIPs in cyanobacteria.
Besides light stress protection, interaction studies and mutant
analyses indicated functions in pigment synthesis, pigment
transfer and recycling as well as pigment protein complex
assembly (Heddad et al., 2012; Sinha et al., 2012; Yao et al., 2012;
Stawski et al., 2014; Takahashi et al., 2014; Lohscheider et al.,
2015; Komenda and Sobotka, 2016).

In this study, we demonstrate that OHP1 and OHP2
play a crucial role in assembly or maintenance of functional
photosystems in Arabidopsis thylakoidmembranes. The stepwise
assembly of photosystem II in higher plants and the repair
cycle that enables selective replacement of damaged D1 proteins
in photosystem II reaction centers has been analyzed in great
detail and many structural and accessory proteins have been
identified (Järvi et al., 2015; Lu, 2016). However, none of the
studies on these topics have identified a contribution of OHP1
or OHP2. As described in the present study, the depletion
of OHP1 and OHP2 led to drastically reduced levels of both
photosystem II and photosystem I reaction center proteins
(Figure 6) concomitant with impairment or complete loss of
photosynthesis in ohp mutants (Figure 5 and Supplemental
Figure 3). Induction kinetics of Chl fluorescence quenching
demonstrated that leaves of ohp mutants rapidly lost any

detectable photochemical quenching which is in accordance with
the loss of reaction centers. Also inducible non-photochemical
fluorescence quenching was barely detectable in ohp mutant
leaves although a fraction of the LHC antenna was expressed at
almost the same level as in WT plants. Pigment concentrations
in ohp mutant leaves were strongly reduced, especially of Chl
and β-carotene. Xanthophyll levels were very similar in leaves
of WT plants and ohp1 mutants, indicating that xanthophyll-
mediated light harvesting or energy dissipation in the antenna
are not the primary targets of OHP action. Despite the low Chl
concentration, ground state fluorescence (F0) wasmuch higher in
ohpmutants than inWTplants, indicating that either the antenna
had insufficient possibilities to dissipate the excitation energy
or that additionally free pigments accumulated in the mutants.
Probably the early seedling lethal phenotype has prevented the
identification of ohp mutants in previous screens for altered Chl
fluorescence (Meurer et al., 1996; Shikanai et al., 1999).

The loss of reaction centers and photosystems also resulted
in drastic changes of thylakoid ultrastructure in ohp1-1 mutants
(Figure 4). The presence of LHCII antenna probably stabilized
the remaining grana stacks, while the absence of stroma lamella
and the swelling of the marginal thylakoids clearly indicate that
OHP proteins are essential to build or maintain the correct
architecture of the thylakoids. Interestingly, the changes observed
in an ohp1 mutant in the Ler background were different from
what we observed in the Col-0-derived mutant (Myouga et al.,
2013). It remains to be determined if these difference reflect an
ecotype-specific effect or are due to differences in cultivation
conditions or the age of the analyzed leaves.

By complementation of the ohp1-1 and ohp2-1 mutants
we demonstrated that the mutant phenotypes are specific and
exclusively caused by the loss of expression of individual OHPs
(Figure 8). Cross-complementation was not observed, indicating
that OHP1 and OHP2 have separate functions, although they
may act together in the same process. The downregulation of
OHP1 protein levels in ohp2 mutants and vice versa complicates
the assignment of a specific function to either of the OHP
proteins in Arabidopsis. To get more detailed information
about the molecular function of OHPs in higher plants, the
identification of interaction partners and potential pigment
binding capacities need to be determined in the future. We aim
to use riboswitch-mediated de-stabilization ofOHP transcripts in
our complemented lines to investigate the consequences of OHP
depletion in fully developed chloroplasts.

For cyanobacterial HLIPs, homodimer or heterodimer
formation has been postulated as a prerequisite of pigment
binding (Knoppová et al., 2014; Staleva et al., 2015; Komenda
and Sobotka, 2016). Binding of HLIPs to photosystem II reaction
centers has been clearly demonstrated, while also an association
with photosystem I complexes is still debated (Akulinkina
et al., 2015; Komenda and Sobotka, 2016). Mutant analyses and
characterization of isolated protein complexes indicate a function
of HLIPs in pigment delivery and energy dissipation during early
steps of reaction center protein assembly (Komenda and Sobotka,
2016).

In a similar manner a complex comprising both OHP1 and
OHP2 may be formed in higher plants, depending on either
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protein for functionality. Such a complex might not interact
strongly with the structural photosystem components but might
be essential for pigment delivery to both reaction centers during
biogenesis or repair, which would explain the severe mutant
phenotype. Loss of one OHP might not only abolish the function
of such a complex, but additionally cause de-stabilization
of the other OHP protein, which would explain the nearly
identical mutant phenotypes. Similar stabilizing interactions
have been observed previously for other thylakoid proteins,
e.g., Geranylgeranyl Reductase was found to be unstable in the
absence of LIL3 proteins in Arabidopsis and point mutations
in Synechocystis Cytochrome b559 de-stabilized the entire PS II
complex (Hung et al., 2007; Tanaka et al., 2010).

Oxidative Stress in ohp Mutants
High Chl fluorescence is typically caused by an increased lifetime
of excited Chl molecules, which at the same time increases the
risk that excitation energy or excited electrons are transferred to
molecular oxygen, leading to the formation of singlet oxygen or
superoxide radicals, respectively (Pospíšil, 2012). Superoxide is
rapidly converted to the more stable hydrogen peroxide either by
chemical dismutation or by the action of superoxide dismutases
(Alscher et al., 2002). We did not detect elevated levels of
superoxide or hydrogen peroxide in ohp1-1 mutants, indicating
that oxidative stress is not the major reason for the seedling
lethality of the mutants. Nevertheless, upregulated activity of
chloroplastic FeSOD and Cu/ZnSOD activities indicated that
ROS levels or ROS signaling were disturbed in ohp1-1 mutants
(Alscher et al., 2002; Pilon et al., 2011). The absence of strong
oxidative stress in ohp mutants indicates that OHP proteins
do not primarily function in protection against excess light
stress.

Based on the improved growth of ohp mutants by
external supply of sugar and vitamins together with the
selective absence of reaction centers, we propose that OHP
proteins fulfill a crucial function in either assembly or
maintenance of photosynthetic reaction center complexes,
similar to their evolutionary ancestors, the cyanobacterial
HLIPs.
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