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Alfalfa is the most extensively cultivated forage legume, yet most alfalfa cultivars are not

aluminum tolerant, and the molecular mechanisms underlying alfalfa responses to Al

stress are largely unknown. In this study, we aimed to understand how alfalfa responds

to Al stress by identifying and analyzing Al-stress-responsive genes in alfalfa roots at

the whole-genome scale. The transcriptome changes in alfalfa roots under Al stress

for 4, 8, or 24 h were analyzed using Illumina high-throughput sequencing platforms.

A total of 2464 differentially expressed genes (DEGs) were identified, and most were

up-regulated at early (4 h) and/or late (24 h) Al exposure time points rather than at the

middle exposure time point (8 h). Metabolic pathway enrichment analysis demonstrated

that the DEGs involved in ribosome, protein biosynthesis, and process, the citrate

cycle, membrane transport, and hormonal regulation were preferentially enriched and

regulated. Biosynthesis inhibition and signal transduction downstream of auxin- and

ethylene-mediated signals occur during alfalfa responses to root growth inhibition. The

internal Al detoxification mechanisms play important roles in alfalfa roots under Al stress.

These findings provide valuable information for identifying and characterizing important

components in the Al signaling network in alfalfa and enhance understanding of the

molecular mechanisms underlying alfalfa responses to Al stress.

Keywords: alfalfa, aluminum stress, transcriptome, differentially expressed genes, RNA-Seq, internal

detoxification mechanism

INTRODUCTION

Aluminum (Al) is a light metal and the third most abundant element in the earth’s crust (Ma,
2005). When the pH in the soil is lower than 5.0, Al is dissolved from the harmless form (oxide or
aluminosilicate form) into the soil solution, mostly in the form of Al3+, and results in phytotoxic
to most herbaceous plants even at low concentrations. In the tropical and subtropical regions, Al
toxicity has been considered as the major factor limiting crop production in acidic soils, which
account for 40% of the world’s arable land (Kochian et al., 2005). Traditionally, the application
of large quantities of lime always used to alleviate the soil Al toxicity and then sustain the crop
production. However, this practice is expensive and being unsustainable and not environmentally
friendly. Thus, understanding the nature of Al tolerance mechanisms in plants and then developing
cultivars with improved tolerance to acidic soil stress is an appealing approach to addressing this
issue.
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Up to data, they are two main Al tolerance mechanisms
in plants, namely, the exclusion mechanism and tolerance
mechanism, have been proposed. The secretion of certain organic
acids, such as citrate, oxalate and malate, are induced by Al is
one of the best proved characterization in exclusion mechanism
in plants. In Al stress conditions, organic acids able to form
strong complexes with Al3+ and then preventing the binding
of Al to cellular components to alleviate Al toxicity (Ma et al.,
2001; Ma, 2005). Many agriculturally important Al-tolerant plant
species, such as wheat (Triticum aestivum) (Delhaize et al., 1993),
snapbean (Phaseolus vulgaris) (Miyasaka et al., 1991), maize
(Zea mays) (Pellet et al., 1995), Cassia tora (Ma et al., 1997a),
soybean (Glycinemax) (Yang et al., 2000), buckwheat (Fagopyrum
esculentum) (Ma et al., 1997b), taro (Colocasia esculenta) (Ma,
1998), and rye (Secale cereal) (Li et al., 2000) release one or two of
these three organic acids in response to Al stress. Moreover, the
importance of high level of ascorbic acid to Al tolerance also has
been indicated in transgenic tobacco (Nicotiana tabacum) (Yin
et al., 2010). Through genetic and molecular analyses, various
functional genes have been identified and confirmed as important
components in Al tolerance. ALMT1 is an Al-activated malate
transporter gene identified from wheat. Overexpression of this
gene in barley confers an Al-activated efflux of malate and
results in the Al tolerance both in hydroponic culture and acid
soil (Delhaize et al., 2004). When a Pseudomonas aeruginosa
derived citrate synthase (CS) gene transformed into tobacco
genome, higher citrate synthase activity, citrate efflux and greater
Al resistance are observed in transgenic lines (de la Fuente
et al., 1997). AtALS3 (aluminum-sensitive 3) encodes a phloem-
localized ABC transporter-like protein, which is required for Al
resistance/tolerance inArabidopsis by redistributing accumulated
Al3+ away from sensitive tissues, such as root, and thus reducing
the toxic effects of Al (Larsen et al., 2005). In rice (Oryza sativa),
the disruption of OsASR5 gene resulted in hypersensitivity to
Al toxicity, and which may function as a transcription factor to
protect rice cells from Al toxicity by regulating the expression of
various genes (Arenhart et al., 2013). Recently, Yang et al. (2014)
has shown auxin is responsible for the Al-induced inhibition of
root growth and acts as the downstream of ethylene-regulated
TAA1 expression in the root-apex transition zone.

Considering its complexity, it is essential to interpret the
functional elements and molecular constituents involved in
Al tolerance mechanisms on a whole-genome level in plants.
Using microarray technology, a large number of Al-responsive
genes in many plant species including Arabidopsis (Kumari
et al., 2008), soybean (Duressa et al., 2010, 2011; You et al.,
2011), wheat (Houde and Diallo, 2008), andMedicago truncatula
(Chandran et al., 2008) have been identified. In addition,
the recently developed high-throughput sequencing (RNA-Seq)
has clear advantages over microarray methods and has been
considered as the ideal option to discover new genes and estimate
transcript abundance at genome-wide scale, especially useful
for species without genome sequence (Trapnell et al., 2012;
Zeng et al., 2015). Based on RNA-Seq platforms, genome-scale
transcriptome analyses have been used to identify Al-stress-
responsive genes in rice (Arenhart et al., 2014), buckwheat
(Fagopyrum tataricum) (Yokosho et al., 2014; Zhu et al., 2015),

maize (Mattiello et al., 2014), Anthoxanthum odoratum (Gould
et al., 2015), and Medicago truncatula (Chen et al., 2012). These
Al-stress-responsive genes identified by RNA-Seq are involved in
many physiological and metabolic processes, such as protection
against cell wall toxicity and oxidative stress, organic acid
metabolism, and exudation, Al transportation, and hormone
signal transduction.

Alfalfa (Medicago sativa L.) is the most extensively cultivated
forage legume and plays vital ecological and economic roles
in agricultural systems around the world (Liu et al., 2016).
However, alfalfa is very sensitive to soil acidity, which greatly
limits its productivity and persistence performance (Khu et al.,
2013). Thus, a better understanding of themolecularmechanisms
involved in alfalfa responses to Al stress would be critical for
Al-tolerant alfalfa breeding programs. Previous studies have
shown that overexpression of endogenous malate dehydrogenase
or bacterial CS result in enhanced organic acid synthesis, Al
secretion and Al resistance (Tesfaye et al., 2001; Barone et al.,
2008). In addition to these transgenic studies, a proteomic
analysis of alfalfa after Al treatment has revealed that leaf
proteins responding to the Al stress are mainly involved in
energy metabolism and antioxidant/reactive oxygen species
(ROS) detoxification pathways (Rahman et al., 2014). Given
the relatively low-throughput characteristics of proteomics-
based approaches and the complex nature of the Al stress
and resistance mechanisms, it is necessary to identify and
functionally characterize Al-responsive genes in alfalfa on a
genome-wide scale. Currently, to our knowledge, the genome-
wide transcriptomic analysis of the Al-responsive genes in alfalfa
has not been reported, especially within the root tips, where the
primary site for Al detoxification and accumulation. Thus, in
the present study, we carried out the first global transcriptome
analysis of the alfalfa root tips during Al treatments using the
Illumina RNA-Seqmethod. The results obtained in this study will
extend the knowledge of the genetic basis of alfalfa response to Al
stress at the transcriptional level.

MATERIALS AND METHODS

Plant Materials, Growing Conditions, and
Treatments
Alfalfa seeds (cultivar Zhongmu No. 1) were surface sterilized
in 1.0% (v/v) sodium hypochlorite for 5 min, rinsed 5 times
with distilled water, and then germinated in deionized water-
moistened standard germination paper for 3 days at 25◦C in
the dark. Seedlings with uniform tap root lengths were selected
and hydroponically grown in an aerated nutrient solution as
described by Chen et al. (2012). The pH of the culture solution
was adjusted and maintained at 4.5 for the duration of the
experiment. After 7 days of culture in a growth chamber at
25◦C with a photoperiod of 16 h light/8 h dark, the seedlings
were incubated in a 0.5 mM CaCl2 solution overnight. Then,
120 seedlings were separated averagely into four groups, which
included three Al-treatment time point groups [4 (A4), 8 (A8),
and 24 (A24) h] in a 0.5 mM CaCl2 solution containing 10 mM
AlCl3 (pH 4.5) and one control (C) group, which was cultivated
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for 24 h in a 0.5 mM CaCl2 solution (pH 4.5). To reduce the
circadian rhythm effects, the seedlings of A24 and C group were
treated at the same time, and harvested after 24 h. For A8 and A4,
their seedlings began to be treated 16 and 20 h after the treat time
of A24, respectively, and harvested at the same time as A24 and
C. Root tips (approximately 1.5 cm in length) were collected and
immediately frozen in liquid nitrogen and stored at−80◦C.

cDAN Library Construction and
Sequencing
The RNA extraction, quality, and quantity measurement were
performed according to previously described methods (Liu et al.,
2016). After treated with DNase I (TaKaRa, Dalian, China), the
total RNAwas isolated with Sera-magMagnetic Oligo (dT) Beads
(Illumina) and a total of 6 µg derived mRNAs were fragmented
and used for double-stranded cDNA library construction with
random hexamer (N6) primers (Illumina). The cDNA library
was sequenced with a read length of 100 nt (paired-end) using
the Illumina HiSeq2000 System at the Beijing Genomics Institute
(BGI)-Shenzhen, China (http://www.genomics.cn/index).

Sequence Filtering, Assembly and
Annotation
Clean reads were obtained by filtering the adapter sequences
and removing low-quality sequences with ambiguous “N”
bases and reads with low Q-value (≤ 10) percentages more
than 20% using the FASTX toolkit (http://hannonlab.cshl.edu/
fastx_toolkit/). Trinity program was used for the De novo
transcriptome assembly of quality reads into unigenes (Grabherr
et al., 2011). To annotate the assembled unigenes, BLAST
searches (E < 10−5) between unigenes and various databases
like NCBI non-redundant nucleotide sequences (Nt), NCBI
non-redundant protein sequences (Nr), Swiss-Prot, Clusters
of Orthologous Groups of proteins (COG), Gene Ontology
(GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG)
databases were performed, and the unigene sequence orientation
was determined by the best results against the protein databases
with a priority order of Nr > Swiss-Prot > KEGG > COG. If
there is no significant hit against above databases, the coding
regions and the sequence orientation were further predicted by
ESTScan software (Iseli et al., 1999). Based on Nr annotation,
GO annotation regarding biological process, molecular function,
and cellular component were obtained using Blast2GO software
(Conesa et al., 2005), and the GO functional classification was
classified by WEGO (Ye et al., 2006).

Differentially Expressed Gene Analysis
SOAPaligner (v2.21) was used to map the reads to the assembled
sequences and calculate the counts for each unigene (Li et al.,
2009). Unigene expression level was determined using the
Fragments Per Kilobase per Million Fragments mapped (FPKM)
method (Mortazavi et al., 2008). The transcript fold change
was calculated by the formula of log2 (FPKM-treatment/FPKM-
control) using an MA-plot-based method with the random
sampling model in the R package DEGseq (Wang et al., 2010).
Then, differentially expressed genes (DEGs) were restricted with
the absolute value of fold change ≥ 4 and False Discovery

Rate (FDR) ≤ 0.0001 as the threshod by performing pairwise
comparisons of Al treated samples with control sample. To
examine the expression profile of DEGs, the expression data
υ (C, A4, A8, and A24) were normalized to 0, log2 (υ4/υc),
log2 (υ8/υc), and log2 (υ24/υc) and clustered using Short Time-
series Expression Miner (STEM) software with a p ≤ 0.05 (Ernst
and Bar-Joseph, 2006). The GO and KEGG pathway enrichment
analysis for DEGs were performed using agriGO (http://bioinfo.
cau.edu.cn/agriGO/) (Du et al., 2010) and KOBAS 2.0 (http://
kobas.cbi.pku.edu.cn/) (Xie et al., 2011), respectively.

Quantitative Real-Time PCR (qRT-PCR)
Analysis
Total RNA of C and A4 sample used for the RNA-Seq analysis
were also used for qRT-PCR validation. The single-strand cDNAs
used for qRT-PCR were synthesized from 2.5 µg of total RNA
with MMLV reverse transcriptase (TaKaRa, Dalian, China).
The qRT-PCR was performed using SYBR Premix Ex Taq II
Kit (TaKaRa, Dalian, China) on a 7500 Fast Real-time PCR
system (Applied Biosystems, USA). Fifteen genes involved in
ribosome, TCA cycle, and molecule transport were selected for
the qRT-PCR assays. Gene-specific primers were designed using
Primer Express software (Applied Biosystems) and are shown
in Table S1. Three technical replicates were carried out for each
sample, and the relative expression levels were normalized to the
expression of theMedicago actin gene (AA660796) and calculated
using the 2−11CT method.

RESULTS

Transcriptome Sequencing, Assembly and
Annotation
In order to gain a general overview of the gene expression profiles
of alfalfa roots under Al stress, four cDNA libraries representing
one control (C, without Al stress) and three treatments at
different time points (A4, A8, and A24) were designed for
high-throughput RNA-Seq, and a total of 221,271,740 raw reads
were ultimately obtained (Table 1). After removing the adaptor
sequences, the ambiguous nucleotides and low-quality sequences,
a total of 210,270,746 high quality clean reads remained,
constituting over 15.9 GBase, with each library more than 4.0
GBase (Table 1). With the Trinity assembly software, a total of
185,454 contigs (≥ 200 bp) were obtained, and the contig sizes
ranged from 200 to 10,138 bp, with a mean size of 612 bp.
There were 29,626 (19.97%) contigs longer than 1000 bp. The
more detail of the quality of the assembly transcripts is shown
in Figure S1.

A total of 75,903 all-unigenes were assembled from the total
contig assembly, and 62,906, 62,166, 61,209, and 61,862 unigenes
were identified for the C, A4, A8, and A24 groups, respectively
(Table 1). The length of these 75,903 all-unigenes ranged from
200 to 13,488 bp, with an N50 length of 968 bp (Figure 1). The
relationships among the unigenes from the three treatments and
the control are shown in Figure S2. For the functional annotation
of all the unigenes, BLAST searches (E ≤ 10−5) against six
public databases revealed that the number of the unigenes with
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TABLE 1 | Summary of the sequence data analysis.

Sample Total raw reads Total clean reads Total clean nucleotides (nt) Q20 (%) Unigenes

C 54,642,438 54,642,438 4.9G 98.63 62,906

A4 45,729,878 45,729,878 4.1G 98.61 62,166

A8 61,211,992 54,849,606 4.9G 98.53 61.209

A24 59,687,432 55,048,824 5.0G 98.55 61,862

Summary 221,271,740 210,270,746 15.9G 75,903

FIGURE 1 | Length distribution of the assembled unigenes.

significant similarity to the sequences in these databases ranged
from 16,131 (21.25%, COG) to 54,075 (71.24%, Nt). Among
the all-unigenes, 65,055 (85.71%) and 11,494 (15.14%) unigenes
were annotated in at least one database and in all six databases,
respectively (Table 2).

Among the 75,903 all-unigenes, nearly half of them (35,807)
were assigned to 5288 GO annotations, and grouped into
three main categories (Table S2). In the biological process (BP),
unigenes were highly represented in “cellular process” (21,761),
“metabolic process” (21,195), and “response to stimulus”
(10,029). Within the cellular component (CC), “cell” and “cell
part” (24,047 for both) were the most abundant groups, followed
by “organelle” (17,692). For the molecular function (MF), the
top 3 highly represented terms are “binding” (19,564), “catalytic
activity” (18,332), and “transporter activity” (2128).

All of the unigenes were further assigned to the COG and
KEGG pathway databases. A total of 16,131 unigenes were
assigned to 25 COG functional classes (Figure S3). The largest
group was “General functional prediction only,” followed by
“Replication and repair,” “Transcription,” “Translation,” and
“Post-translational modification, protein turnover, chaperon.” In
addition, 25,386 all-unigenes were annotated in 276 individual
KEGG pathways, with “Signal transduction” (5811, 4.39%) most
highly represented, followed by “Translation” (2672, 6.62%),
“Carbohydrate metabolism” (2638, 6.53%), and “Endocrine
system” (2264, 5.61%) (Figure S4).

TABLE 2 | BLAST analysis of the non-redundant unigenes against public

databases.

Annotated database Number of unigenes Percentage (%)

Annotated in Nr 48,339 63.69

Annotated in Nt 54,075 71.24

Annotated in SwissProt 29,385 38.71

Annotated in GO 35,807 47.17

Annotated in KEGG 25,386 33.45

Annotated in COG 16,131 21.25

Annotated in all databases 11,494 15.14

Annotated in at least one database 65,055 85.71

Total unigenes 75,903 100

DEGs in Response to Al Stress
Upon comparison with control group, the unigenes with gene
expression fold changes greater than or equal to four and with
an FDR value below 10−4 were defined as DEGs. Based on
these strict criteria, 1435 (1162 up-regulated and 273 down-
regulated), 529 (231 up-regulated and 298 down-regulated),
and 1702 (1306 up-regulated and 414 down-regulated) DEGs
responded to Al stress within the A4, A8, and A24 were
detected, respectively (Figures 2A,B), indicated that Al stress
caused significant changes in gene expression in alfalfa roots.
Particularly, the substantial modulation of gene expression was
observed in 4 and 24 h stresses, whereas the number of DGEs
in 8 h stress was significantly reduced. In addition, a total of
2464 DEGs were detected after 24 h Al treatment, and 166
were common to all three time points, suggested these genes
were continuously significantly modulated during the 24 h Al
stress treatment (Figure 3). Furthermore, there were 516, 173,
and 723 DEGs specifically modulated in A4, A8, and A24,
which representing early, medium, and late responsive DEGs,
respectively.

All 2464 DEGs could be clustered into 15 profiles with
the STEM software, in which 1618 DEGs were clustered into
3 profiles (p ≤ 0.05), including one down-regulated pattern
(profile 0 and profile 2) and one up-regulated pattern (profile 12)
(Figure 4). Profile 0 and profile 2 contained 133 and 169 DEGs,
respectively, while profile 12 contained 1098 DEGs.

GO Functional Analysis of the DEGs
A total of 39 GO categories were assigned to the 2464 DEGs that
responded to Al treatment (Figure S5). In the biological process
category, “metabolic process” (59.7%) was the most dominant
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FIGURE 2 | Identification of the DEGs in response to Al stress. (A) Volcano plots display log2 converted fold changes and FDR values. (B) The number of up-

and down-regulated DEGs at each treatment time point compared with the control.

group, followed by “cellular process” (56.0%) and “response to
stimulus” (27.0%). Regarding the molecular function category,
51.0% of the unigenes were assigned to “binding” followed by
“catalytic activity” (48.7%) and “structural molecule activity”
(15.1%). In the cellular component category, “cell” and “cell
part” (64.3% for both) were the dominant categories, followed by
“organelle” (50.9%) and “organelle part” (27.0%).

To reveal the significantly enriched GO terms among the
DEGs, we used 1006 GO terms annotated from all DEGs as
study set and 5288 GO terms annotated from all unigenes
as references, and carried out a GO functional-enrichment
analysis via the agriGO website with a p score cut-off of 0.05.
Among the 91 assigned GO terms, 32, 19, and 40 belonged
to the “biological process,” “molecular function,” and “cellular
component” categories, respectively. The 10 most significantly
over-represented GO terms in each category are shown in
Figure 5.

KEGG Pathway Enrichment Analysis of the
DEGs
To characterize the complex biological behaviors of the
transcriptome, all of the DEGs were subjected to a KEGG
pathway enrichment analysis. In total, 417 (16.92%) Al
stress-responsive DEGs were assigned to 90 different KEGG

pathways. The top 20 KEGG pathways with the highest
representation of the DEGs are shown in Figure 6. The
“ribosome (ko03010),” “protein processing in endoplasmic
reticulum (ko04141),” “carbon fixation in photosynthetic
organisms (ko00710),” “oxidative phosphorylation (ko00190),”
“TCA cycle (ko00020),” and “riboflavin metabolism (ko00740)”
categories were significantly enriched.

Verification of the DEGs
To confirm the reliability of our transcriptome data, the
expression fold change of 15 candidate DEGs were determined
using qRT-PCR and further compared with those of RNA-
Seq data. These candidates included 7 up-regulated and 8
down-regulated DEGs and involved in ribosome, TCA cycle,
and molecule transport pathways. In our analysis, a positive
correlation coefficient (R2 = 0.9092) was obtained by the linear
regression analysis, suggested that the expression of these selected
unigenes in our transcriptome data were generally in good
agreement with qRT-PCR results (Figure 7).

DISCUSSION

Plants frequently encounter Al stress in acid soils and have
thus evolved a series of responses and adaptive mechanisms to
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FIGURE 3 | The number of DEGs expressed at one Al-stress time point

and at overlapping time points compared with the control.

cope with Al stress. Understanding the molecular mechanisms
underlying Al stress responses is important for Al-tolerant crop
breeding program. Using microarray and newly developed deep
sequencing technologies, the transcriptomic responses of many
plants to Al stress have been comprehensively documented;
however, most of these efforts have focused on model plants,
such as Arabidopsis (Kumari et al., 2008), soybean (You et al.,
2011), maize (Maron et al., 2008; Mattiello et al., 2014), and
rice (Arenhart et al., 2014). In the present study, we analyzed
the transcript profiles of alfalfa roots in response to Al stress
by using the Illumina deep sequencing system and identified
a total of 75,903 unigenes in the four sample libraries, which
was more than previously reported for alfalfa root transcriptome
analyses (Postnikova et al., 2013). Of these unigenes, more than
85% had significant similarity (BLAST, E ≤ 10−5) to genes in the
public databases (Table 2). Using the more stringent criteria of
both FDR ≤ 0.0001 and an expression difference greater than
four-fold, our results detected 2464 Al stress-related DEGs after
treatment with Al for 24 h compared with the control, thus
indicating that these genes responded to Al stress in alfalfa. We
further classified these Al stress-related DEGs into three groups
on the basis of their expression patterns. As shown in Figure 4,
most DEGswere up-regulated, a result consistent with those from
previous reports in other plants under Al stress (You et al., 2011;
Yokosho et al., 2014; Chen et al., 2015). The number of genes
down-regulated by Al remained nearly constant over the course
of the treatment, whereas the number of up-regulated genes had
a dramatically different trend in which many responsive genes
were observed at the early (4 h) and/or late (24 h) Al time
points compared with those observed at the middle time point
(8 h) (Figures 2A,B). These results contrast with those from

previous microarray and RNA-Seq analyses of plant response to
Al and other types of abiotic stress (Kumari et al., 2008; Xu et al.,
2014), suggesting a diverse and complex mechanism by which
alfalfa responded to Al stress. Furthermore, the qRT-PCR results
showed a significantly positive correlation (R2 = 0.9092) between
the fold-changes of the gene expression ratios obtained by RNA-
Seq and those obtained by qRT-PCR (Figure 7), indicating that
our RNA-Seq experimental results are valid, and that RNA-
Seq data is an accurate method to identify transcripts that are
differentially regulated in response to Al. These results will greatly
aid in our understanding of the molecular processes associated
with Al stress responses and provide further insight for the
Al-tolerant alfalfa breeding programs.

Previous studies have shown that some plant species can
form sufficiently strong complexes with Al3+ to protect the
roots from Al stress by releasing organic acids, such as citrate,
oxalate, and malate (Kochian et al., 2015). In the present
study, the KEGG pathway enrichment analysis of the DEGs
indicated that some key genes related to citrate biosynthesis
in the TCA cycle were also significantly enriched after Al
treatment (Figure 6). These key genes included citrate synthase
(CS), phosphoenolpyruvate carboxylase (PEPC), and malate
dehydrogenase (MDH). Alterations in the activities of these
enzymes may lead to accumulation of citrate in the cytoplasm
(Ma et al., 2001). Overexpression of CS genes increases citrate
efflux in cultured carrot cells (Koyama et al., 1999), Arabidopsis
(Koyama et al., 2000), canola (Anoop et al., 2003), and tobacco
(de la Fuente et al., 1997). When soybean roots are exposed
to Al, the activities of mitochondrial MDH and CS have been
found to increase in an Al-dose-dependent manner (Xu et al.,
2010). In the present study, all of the key genes encoding
enzymes involved in citrate biosynthesis mentioned above were
identified, and the expression levels of the 4 PEPC, 3 MDH, and
3 AC genes were significantly increased during the Al treatment
process (Figure S6A). These results suggested that organic acid
production in response to Al occurs in the alfalfa roots.

Currently, two main types of Al resistance mechanisms
have been documented that allow plants to cope with Al
toxicity: one is Al exclusion mechanism, which prevents Al
from entering the root apex (both apoplasm and symplasm) and
the Al internal detoxification mechanism, in which Al enters
the plant and is detoxified and sequestered (Kochian et al.,
2015). Both mechanisms use organic acid anions. In the present
transcriptome analysis, although the genes encoding TCA cycle
enzymes were up-regulated, the related organic acid transporter
genes, which are induced in other plants under Al stress, such
as aluminum sensitive malate transporter (ALMT) and NRAMP
aluminum transporter 1 (NRAT1), were not found. One gene
belonging to the multidrug and toxin extrusion (MATE) family,
which has been widely reported to function as citrate transporters
in the induction of Al tolerance of many plants (Delhaize et al.,
2012), was identified, but its transcript abundance was down-
regulated (Figure S6B). These results further support the idea
that there is no apparent correlation between the Al-induced
expression of organic acid biosynthetic enzymes and increased
exudation of organic acids (Chandran et al., 2008) and that
the biosynthesis rather than exudation of organic acids is more

Frontiers in Plant Science | www.frontiersin.org 6 February 2017 | Volume 8 | Article 26

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Liu et al. Transcriptomes Analysis of Alfalfa under Al Stress

FIGURE 4 | Differentially expressed gene expression profiles.

FIGURE 5 | GO enrichment analysis of the DEGs. The genes were assigned to three main categories: biological process, molecular function, and cellular

component. The names of the GO categories are listed along the x-axis. The degree of GO enrichment is represented by the FDR value and the number of unigenes

enriched in each category. The FDR value indicates the corrected p-value, ranging from 0 to 1, and an FDR value closer to 0 indicates greater enrichment.

critical for Al response in alfalfa roots. However, one gene and
8 genes that showing similarity to the aluminum-sensitive 1
(ALS1) and major facilitator superfamily (MFS) protein genes,
respectively, were identified (Figure S6B). Previous studies
have shown that these genes are involved in internal Al
detoxification mechanisms by sequestering the Al-organic acid
anion complexes inside the vacuoles of root cells (Huang et al.,
2012; Yokosho et al., 2014). The up-regulation of these two
types of genes in our RNA-Seq data suggested their involvement
in the internal Al detoxification mechanism, although further

functional analysis is required. In addition to the organic acid
transporters, transporters for other small molecules/ions were
also found to be up-regulated in alfalfa roots (Figure S6B),
such as sugar transporters, sulfate transporters, vacuolar iron
transporters, zinc transporters, and nitrate transporters, thus
indicating that the uptake and translocation of other nutrients
is affected by Al stress. Similar results have also been observed
in buckwheat (Yokosho et al., 2014) and hydrangea (Chen et al.,
2015), and additional investigations are necessary for further
understanding this mechanism of Al responses in alfalfa.
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FIGURE 6 | KEGG pathway enrichment scatter diagram of DEGs. Only the top 20 most strongly represented pathways are displayed in the diagram. The degree

of KEGG pathway enrichment is represented by an enrichment factor, the FDR value, and the number of unigenes enriched in a KEGG pathway. The enrichment factor

indicates the ratio of differential expression unigenes enriched in this pathway to the total number of annotated unigenes in this pathway. The names of the KEGG

pathways are listed along the y-axis. The FDR value indicates the corrected p-value, ranging from 0 to 1, and an FDR value closer to 0 indicates greater enrichment.

Ribosomes are essential ribonucleoprotein complexes that
are engaged in protein synthesis and thus are indispensable
for metabolism, cell division, and growth (Wang J. Y. et al.,
2013). In addition to their housekeeping functions, increasing
evidence has suggested that ribosomal proteins also play more
regulatory roles in leaf development, auxin responsiveness,
wounding, and biotic/ abiotic stress responses (Liu et al., 2016).
It has been reported that ribosomal protein genes can be
differentially regulated by various environmental conditions. For
example, up-regulation of several ribosomal proteins genes has
been observed in maize exposed to UV-B light (Casati and
Walbot, 2003), whereas the DEGs that respond to Al stress
in the maize root are down-regulated (Maron et al., 2008). In
Anthoxanthum, both up-regulated and down-regulated DEGs
were identified in tolerant and sensitive genotypes when exposed
to Al treatment (Gould et al., 2015). Microarray analyses have

revealed that the transcript abundance for 5 ribosomal genes is
increased after 6 h Al treatment, whereas after 48 h exposure,
the transcripts for 5 ribosomal genes increase and the transcripts
for 3 ribosomal genes decrease in abundance, thus indicating
that there may be increased demand for specific ribosomal
components during Al exposure (Kumari et al., 2008). In the
present study, the KEGG pathway with the largest number
of significantly enriched DEGs was “ribosome.” In contrast
to previous studies in which fewer Al-response DEGs were
detected, many more (157) DEGs were identified in our study,
and most are components of large or small ribosomal subunits
(Figure S6C). Among these DEGs, the transcript abundances for
93 DEGs were up-regulated during the 24 h treatment, and the
remaining DEGs were down-regulated, which suggested a high
biological importance for ribosomal genes in response to Al stress
in alfalfa.
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FIGURE 7 | Validation of the expression changes (log2-fold) of selected

genes from RNA-Seq using qRT-PCR. The results are plotted for genes

that show significant up- or down-regulation in alfalfa roots upon Al stress. The

linear trend line and the R2-value are shown.

Heat Shock Proteins (HSPs) are important in stabilizing,
folding, and degrading damaged proteins. In addition, numerous
studies have determined that HSPs also function as molecular
chaperones and protect plants from damage under stress
conditions, such as Al- (Kumari et al., 2008; Duressa et al.,
2011), NaCl- (Jiang and Deyholos, 2006), and heat temperature-
induced stress (Sung et al., 2001). In the present study, there were
28 transcripts encoding HSPs (14 HSP70s, 7 HSP20s, 5 HSPs,
and 2 HSP80s) that were enriched in the “protein processing in
endoplasm reticulum” KEGG pathway (Figure S6D), which was
the second most significantly enriched term. HSP70s is one of
the most important members of the HSP protein family. The
major role of HSP70 is to prevent protein aggregation and assist
in protein refolding, import, translocation, signal transduction,
and transcriptional activation (Wang Y. et al., 2013). In this
transcriptome analysis, more than 53.8% of the HSPs were
HSP70s, and 8 of these genes were up-regulated, whereas 6 were
down-regulated, thus indicating that HSP70 may play important
roles in Al stress responses in alfalfa.

Plant hormones are signaling molecules that regulate a wide
range of metabolic and development processes at extremely
low concentrations. Ethylene mediates root growth inhibition,
whereas increased auxin biosynthesis in roots further facilitates
ethylene-dependent growth inhibition (Swarup et al., 2007). Al
has also been shown to affect root growth by modifying the levels
of auxin (Ponce et al., 2005) and ethylene (Sun et al., 2007). It
is well known that auxin response factors (ARFs) are a family
of transcription factors that specifically bind to auxin-response
elements of primary/early auxin response genes, whereas auxin-
responsive proteins (AUX/IAA) repress the activity of ARFs,
and thus this interaction plays a pivotal and concerted role in
regulating the auxin response pathway (Dharmasiri and Estelle,
2004). Small auxin up RNA (SAUR) genes can be readily induced
by exogenous auxins and function as negative regulators of auxin
synthesis and transport (Kant et al., 2009). Ethylene responsive
factors (ERFs) are plant-specific transcription factors belonging
to the AP2/ERF family and have been reported to bind to the
GCC-box found in the promoter of ethylene-inducible genes,

thus acting as transcriptional activators of the ethylene response
cascade and protecting cells from damage caused by metal
stresses in plants (Makhloufi et al., 2014). In this transcriptome
analysis, genes encoding enzymes involved in auxin homeostasis
and response pathways, such as SAUR (CL3536.Contig2_All)
and AUX/IAA (Unigene9889_All) were down-regulated, whereas
the ARF (Unigene30886_All) was up-regulated through the Al
treatment. In addition, the transcript abundances of most ERF
genes were also increased (Figure S6E). These results suggested
that both the inhibition of auxin production and the downstream
signal transduction of these two hormones may be adopted in
alfalfa in response to the root growth inhibition caused by Al
stress.
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