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Maize (Zea mays) has traditionally been a major cereal staple in southern Ghana. Through

breeding and other crop improvement efforts, the zone of cultivation of maize has now

extended to the northern regions of Ghana which, hitherto, were the home to sorghum

and millet as the major cereals. Maize yield in the northern Ghana is hampered by three

major biophysical constraints, namely, poor soil fertility, low soil water storage capacity

and climate variability. In this study we used the DSSAT crop model to assess integrated

water and soil management strategies that combined the pre-season El-Niño-Southern

Oscillation (ENSO)-based weather forecasting in selecting optimal planting time, at four

locations in the northern regions of Ghana. It could be shown that the optimum planting

date for a given year was predictable based on February-to-April (FMA) Sea Surface

Temperature (SST) anomaly for the locations with R2 ranging from 0.52 to 0.71. For

three out of four locations, the ENSO-predicted optimum planting dates resulted in

significantly higher maize yields than the conventional farmer selected planting dates.

In Wa for instance, early optimum planting dates were associated with La Nina and El

Niño (Julian Days 130-150; early May to late May) whereas late planting (mid June to early

July) was associated with the Neutral ENSO phase. It was also observed that the addition

of manure and fertilizer improved soil water and nitrogen use efficiency, respectively, and

minimized yield variability, especially when combined with weather forecast. The use of

ENSO-based targeted planting date choice together with modest fertilizer and manure

application has the potential to improve maize yields and also ensure sustainable maize

production in parts of northern Ghana.

Keywords: DSSAT model, ENSO, maize production, nitrogen productivity, Northern Ghana, water productivity

INTRODUCTION

The northern regions of Ghana, and indeed the Sahel zones of West Africa have traditionally
been home to the small grain cereals such as millet and sorghum. This, apparently is due to their
hardiness and ability to withstand low soil fertility and poor water holding capacity (Singh and
Singh, 1995) of the dominantly Low Activity Clay (LAC) soils. Over the past few decades, however,
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maize (Zea mays), a major staple crop largely cultivated in
southern Ghana has now been extended to the northern regions,
due to breeding efforts that target yield response to small
amounts of fertilizer among others. Despite these efforts, maize
yields continue to be low, ranging from 800 to 1800 kg ha−1

without and with fertilizer application (Ragasa et al., 2014).
With increased nitrogen application of 90 kg N ha−1 or more
under good rainfall, maize yields in northern Ghana reached
4500 kg ha−1 (Naab et al., 2015). Low soil fertility, is therefore
one of the major constraints.

Increasing variability in climate (Laux et al., 2009) has also
confounded the problem of low fertility, making investments into
inputs and innovative technologies less attractive to smallholders
(Hansen, 2005). Increased rainfall variability, especially at the
onset of the season has led to staggered planting by farmers
to spread the risk of total failure from a single planting date
choice. Staggering planting dates is also a way farmers who
lack farm labor use family labor more efficiently. The farmers’
reliance on their indigenous knowledge for planning farming
operations to address the climate change and variability challenge
has increasingly been ineffective, as some of the indicators
are biological and hence not permanent (Roncoli et al., 2001).
Additionally, low water productivity associated with the soils
is due to the predominantly coarse-textured shallow soils that
render crops vulnerable to agricultural drought (the inability of
soil water storage to meet crop water requirements) during some
periods in the growing season, even if seasonal rainfall amounts
were adequate. The problems enumerated here are wide spread
in countries located in Guinea and Sudan savannah and sahelian
zones of Sub-Sahara Africa and many other parts of the world
with similar climate. In this study, Northern Ghana was used as
an example, hence, the output will be applicable to countries with
similar climatic and soil characteristics.

Most of the efforts to increase maize yields have been directed
to the alleviation of the fertility constraint by promoting fertilizer
use (Kombiok and Clottey, 2003; Fosu et al., 2004; Naab et al.,
2015). This approach alone, has, however, not resolved poor
yields in smallholder systems. With regard to climate variability
impact, it is worth noting that studies have shown that some fore-
knowledge of the coming season’s potential as well as onset could
be an important guide to successful farming (Sivakumar, 1988).
Proactive planning is required especially with regard to planting
date choice to optimize yields for the given season.

Elsewhere, the value of seasonal rainfall forecast to facilitate
agricultural decision making has been demonstrated (Carberry
et al., 2000; Hansen and Jones, 2000; Jagtap et al., 2002). They
concluded that all El Niño events are not equal in their regional
manifestation. In East Africa, Amissah-Arthur et al. (2002)
established a relationship between El-Niño-Southern Oscillation
phenomenon (ENSO) mean seasonal rainfall. Indeje et al. (2000)
in their work also indicated that ENSO plays a significant role
in determining monthly and seasonal rainfall patterns in East
Africa. Climate forecast studies are somewhat fewer in West
Africa but mention could be made of Ingram et al. (2002).
In Ghana, as in many countries in West Africa, increasing
number of studies are now conducted on the usefulness of
seasonal forecasting for guiding farm decisions. Starting from

1994, Opoku-Ankomah and Cordrey (1994) linked seasonal
rainfall in several parts of Ghana to the SST anomaly of the
Atlantic. This was followed by works by Adiku and Stone (1995),
Adiku et al. (1997), Adiku et al. (2007), McSweeney et al. (2010)
and Mawunya et al. (2011) which all linked seasonal rainfall in
Ghana to ENSO. Indeed, the seasonal rainfall in Ghana varies
considerably on inter annual and inter decadal time scale. The
most well documented cause of these variations is the El Nino
southern Oscillation (ENSO) (McSweeney et al., 2010). Their
findings showed that the ENSO correlated well with rainfall
in southern Ghana, with the cold or negative phase (La Nina)
leading to above normal seasonal rainfall, and the warm or
positive phase (El Niño) leading to below normal seasonal
rainfall. The need to explore weather forecast to support farming
operations such as planting date choice in the face of climate
change and variability cannot be overemphasized (Laux et al.,
2009). Early but erratic onset of the rains may deceitfully lure
some farmers to begin planting, only to experience early season
dry spell and poor emergence, establishment and crop failure.
Long delays in planting may be equally adversarial, especially, if
the seasons tends to be short.

Though ENSO-based weather forecast skills are not always
high (Shin et al., 2009), the plot of seasonal rainfall vs. pre-season
ENSO for the 4 locations of interest to this study shows promise
for further investigation (Figure 1).

With regard to within-season agricultural drought, alternative
soil and water management practices must be sought to reduce
the adverse effects, since irrigation is not an option for these
predominantly resource poor farmers. It is known, that soil
management practices such as residue retention or mulching can
minimize soil evaporation as well as reduce runoff and increase
infiltration, leading to increased soil water storage. This should
reduce agricultural drought in the face of rainfall variability.
Further, it has been shown that increased soil organic matter
through amending soils with organic resources can increase
the drought resistance of agricultural soils (Hudson, 1994).
Farmers in the northern regions of Ghana do not often retain
residues on their fields, but instead burn them off before season
onset.

It is, therefore, hypothesized that an integrated management
system that combines (i) fore-knowledge of the season’s potential
to minimize climate variability effect on yield, (ii) improved soil
management to enhance water use efficiency, and (iii) fertilizer
application to address the fertility constraint will form the
basis for a sustained maize production in the northern regions
of Ghana. The combination of these strategies for successful
maize production in the northern regions of Ghana, and many
other tropical countries has hitherto not been assessed. Though
the study focuses on Northern Ghana, the findings will be
relevant to many tropical countries with similar climatic and
soil characteristics. The effective evaluation of such options
under multi-location and multi-year situations would require a
modeling tool such as DSSAT that can integrate crop genotype,
soil profile data, weather data and crop management information
in determining crop yields. In Ghana, CERES-maize model in
DSSAT has been calibrated and used to assess the effects of
agronomic practices such as fertilizer and manure application on
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FIGURE 1 | Box plots of seasonal rainfall distributions according to the ENSO phases (1980–2009) for 4 sites in northern Ghana. Each box in the graph

shows the distribution of rainfall for a specific ENSO phase. The boundary of the box closest to zero indicates the 25th percentile, a line within the box marks the

median, and the upper boundary of the box indicates the 75th percentile. Whiskers above and below the box indicate the 95th and 5th percentiles.

maize yields in some locations including northern Ghana (Dzotsi
et al., 2010; Fosu et al., 2012; MacCarthy et al., 2012).

The aim of this paper is two-fold: First, we explored the
extent to which the pre-season ENSO can be used as a basis for
selecting the optimum maize planting date for maize production
in four (4) major farming zones in the northern regions of Ghana
(Tamale, Damongo, Wa, and Bawku). Second, we assessed the
combined effects of various seasonal forecast and soil fertility
management strategies on the long-term maize productivity in
these farming zones using the CERES-maize model.

MATERIALS AND METHODS

Locations and Physiography
The four study sites are all located in the northern regions
of Ghana with Tamale and Damongo in the Northern Region,
Bawku in the Upper East and Wa in the Upper West Region.
Tamale, Damongo, and Wa lie in the Guinea Savanna agro-
ecology while Bawku is characterized by Sudan savanna agro-
ecology. The sites were selected to represent a range of climate
and soil variability conditions commonly observed in those
regions. The rainfall gradient ranges from 900mm (Bawku) to
1400mm (Damongo) and the distribution is largely mono-modal
at all locations. The growing season in the Guinea Savanna
zone is between 5 and 6 months (May to October), followed
by dry conditions till the next raining season in the Guinea
Savanna zone whereas in the Sudan Savanna, rainfall begins in

May and spans between 4 and 5 months. In the Guinea Savanna
ecology, annual average temperature is 32◦C with the vegetation
mainly consisting of grassland with scattered trees while the
Sudan Savanna is characterized by a continuum of grassland
with scattered shrubs with average annual temperature of 33◦C.
Monthly rainfall distribution at the 4 sites over the period 1980 to
2009 (30 years) is shown in Figure 2. The soils, which are mainly
coarse-textured, have depths varying from very shallow (less than
40 cm) at Bawku to 75 cm at Damongo. The soils are generally
poor in fertility with soil organic carbon content<0.5%, and with
iron concretions present at depth of about 30 cm.

The farming system is predominantly based on smallholder
cereal-legume cultivation in both agro-ecologies. Traditionally,
crop planting is preceded by bush burning but increasingly,
conventional tillage is gaining popularity. Maize management
practices are usually sub-optimal. Even though Ministry of Food
and Agriculture’s (MoFA) N recommendation for these regions
is 60 kg N ha−1, most farmers apply less than 30 kg ha−1 on
the average and the average planting density used on these
smallholders’ fields is 3.5 plants m−2 as against 6.25 plants m−2

recommended by MoFA.

Maize Model Description
The CERES–maize module, which is a component of the
Decision Support System for Agro- technological Transfer
(DSSAT), was used in this study to simulate maize yield under
variable weather, soil conditions and management for the four
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FIGURE 2 | Annual monthly rainfall distribution for the 4 study sites in northern regions of Ghana. Each box in the graph shows the distribution of rainfall

over the 30 years simulation period. The boundary of the box closest to zero indicates the 25th percentile, a line within the box marks the median, and the upper

boundary of the box indicates the 75th percentile. Whiskers above and below the box indicate the 95th and 5th percentiles.

sites. A detailed description of the CERES–maize model of
DSSAT is available in Jones and Kiniry (1986). However, briefly,
the model utilizes data on daily weather (rainfall, minimum
and maximum temperature, solar radiation), soil profile data,
crop management and crop genetic coefficients to simulate
development, growth and yield of maize as well as soil processes.
Plant development is determined by thermal time while growth
is a function of solar radiation, water and nutrient stresses and
sub-optimal temperature. The soil organic module simulates
decomposition processes that determine nitrogen availability for
plant uptake. Further details are given in Porter et al. (2010).
Additional sources of nitrogen are from fertilizer applications.
The nutrient subroutine is closely linked to the soil water
sub-routine which describes soil water availability, as well as
movement of nutrients within the soil. Soil water dynamics is
simulated by describing water flow across layers, plant water
uptake, soil evaporation, drainage, with precipitation and or
irrigation as water input. Soil water content varies between
the lower limit (LL) and the saturated water limit (SAT).
Excess water beyond the drained upper limit (DUL) drains
to the next soil layer below. Soil surface run-off in the water
sub-routine is simulated using a modified USDA-Soil and
Conservation Service (SCS) curve number method (Williams,
1990). Priestly-Taylor/ Ritchie (1998) approach was used to
simulate evapotranspiration.

Maize Model Calibration and Evaluation
Apart from the weather data, other inputs required for modeling
in DSSAT are crop management, soil, and cultivar specific
parameters (genetic coefficients). In Ghana, CERES-maize model
has been used to assess the effects of agronomic practices
such as fertilizer and manure application on maize yields at
some locations including northern Ghana (Dzotsi et al., 2010;
Fosu et al., 2012; Fosu-Mensah et al., 2012; MacCarthy et al.,
2012). The current version of the model used in this study was
derived from a re-calibration for Obatanpa, a medium (105–110
days) maturity duration variety commonly grown throughout
Ghana including the northern regions. The calibration procedure
began with phenology, followed by growth parameters and yield
parameters. Data frommaize experiments carried out under fully
irrigated conditions at the Soil and Irrigation Research Centre
(SIREC) of the University of Ghana (located at Latitude 7◦N)
in 2014 for three planting dates was used to re-calibrate the
DSSAT maize model. Though the northern regions of Ghana
are located in the 9–11◦N bracket, the SIREC calibration results
were considered valid because the experiments were conducted
under non-limiting water and nutrient conditions, and more so,
temperature variations across Ghana are normally small. The
calibration data were from experiments in which planting density
was 6.25 plants per m2, nitrogen application was 120 kg N ha−1,
split applied at 10 and 36 Days After Emergence (DAE), P applied
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TABLE 1 | Genetic coefficients for the Obatanpa maize variety.

Genetic

co-efficient

Definition Value

P1 Thermal time from seedling emergence to the end of the

juvenile phase (expressed in degree days above a base

temperature of 8◦C) during which the plant is not responsive

to changes in photoperiod.

280

P2 Extent to which development (expressed as days) is delayed

for each hour increase in photoperiod above the longest

photoperiod at which development proceeds at a maximum

rate (which is considered to be 12.5 h).

0

P5 Thermal time from silking to physiological maturity (expressed

in degree days above a base temperature of 8◦C).

750

G2 Maximum possible number of kernels per plant. 591

G3 Kernel filling rate during the linear grain filling stage and under

optimum conditions (mg/day).

7.5

PHINT Phylochron interval; the interval in thermal time (degree days)

between successive leaf tip appearances.

45

at 45 kg ha−1 at 10 days after emergence and 5 t ha−1 of manure
was applied.

For the experiment at SIREC, soil profile data were taken from
the experiment plots and the weather was recorded by SIREC
Weather Station located about 100m away from the experimental
plots. Crop and weather data were used to determine the genetic
coefficients for the Obatanpa variety such as the thermal time
units (P1, P5, and PHINT) for plant development (Table 1). The
photoperiod sensitivity (P2) was set to zero. The maximum grain
number per cob (G2) was also determined from the experiment.

The performance of the model in adequately representing
observed data was assessed using the Root Mean Square Error
(RMSE), Willmott’s d-index and coefficient of determination
(R2). The RMSE was defined as:

RMSE =

[

1

n

∑

(yieldsimulatedi − yieldobservedi )
2

]0.5

(1)

The lower the RMSE, the better the model performance and its
minimum value of zero implies a perfect model performance. The
Willmott d-index (Willmott, 1981) defined as:

d − index = 1−

∑n
i= 1

(

Observedi − Simulatedi
)

∑n
i= i

(∣

∣Simulatedi −Meanobserved
∣

∣

+

∣

∣Observedi −Meanobserved
∣

∣

)

(2)

The d-index ranges from 0 (implies model predictions are similar
to observed mean) to 1 (implies a perfect model performance).
The calibration showed that anthesis and physiological maturity
were well simulated with RMSE of 2.4 and 2 days respectively.
Grain yield was simulated with RMSE of 275 kg ha−1 and a
Wilmott d-index of 0.86 and total biomass calibrated with RMSE
of 440 kg ha−1, Wilmott d-index of 0.91.

The calibrated model was validated for the northern locations
of Ghana (Tamale: Guinea savanna and Navrongo: Sudan
savanna) using data from an agronomic survey conducted
in 2014 on 185 farms (MacCarthy et al., 2015). The survey
documented soil types, maize planting dates, planting density,

FIGURE 3 | Comparison of observed and simulated maize grain yield

from farmers’ fields under different management practices in northern

Ghana for the years 2010 and 2014.

fertilizer and manure application rates and dates and maize
yields. For this dataset, maize yields ranged from about
250 kg ha−1 to about 3800 kg ha−1, giving a wide spread over
varying management conditions. Information collected from
farmers were cross-checked with on-station trial data from
Savanna Agricultural Research Institute (SARI) at Nyankpala,
near Tamale and extraneous data were left out. The survey
revealed that the planting window spanned 3 months (May to
July) and the average farmer-level fertilizer application rate was
30 kg N ha−1. Soil survey data published by the Soil Research
Institute of Ghana served to provide some information such
as texture and bulk density. Additionally, soils sampled from
farmers’ fields were used for the determination of other model
required properties such as pH and organic carbon content.
The weather data for the survey year was obtained from the
Ghana Meteorological Agency Stations at Tamale and Navrongo.
The simulated yields agreed satisfactorily with the observed
(Figure 3) with RMSE of 325 kg ha−1, R2 = 0.73 and Willmott’s
d-index = 0.68. Thus, the maize model was considered reliable
and therefore used to simulate crop yield in response to different
soil fertility management and varied weather conditions in this
study.

Model Application Studies at the 4 Study
Locations
Soil Data
The soil data required for the maize yield simulation for the
4 study locations were obtained from previous soil surveys
and sampling campaigns carried out by the authors. The data
collected include soil depth, organic carbon, bulk density, and
soil texture. Soil water characteristics such as Lower Limit, (LL),
DUL, and Saturated Water Content (SAT) were derived from
pedo-transfer functions embedded in the DSSAT model shell.
The summary of the soil data for the locations is presented in
Table 2.

Frontiers in Plant Science | www.frontiersin.org 5 January 2017 | Volume 8 | Article 31

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


MacCarthy et al. Sustainable Climate Sensitive Maize Production

TABLE 2 | Soil Data at the Study Sites used for the simulations in Northern

regions in Ghana.

Site L LL DUL SAT BD OC pH

cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 %

Tamale 15 0.09 0.18 0.36 1.34 0.41 5.1

30 0.09 0.18 0.36 1.64 0.38 5.3

45 0.13 0.19 0.36 1.70 0.24 5.7

60 0.13 0.19 0.36 1.78 0.10 6.2

75 0.13 0.23 0.36 1.8 0.03 6.2

Damongo 15 0.092 0.176 0.359 1.43 0.45 5.5

30 0.092 0.176 0.359 1.45 0.37 5.3

45 0.113 0.192 0.36 1.45 0.37 5.3

60 0.114 0.192 0.36 1.45 0.37 5.3

Bawku 15 0.06 0.135 0.387 1.56 0.39 5.1

30 0.072 0.145 0.38 1.58 0.36 5.3

50 0.085 0.159 0.388 1.56 0.32 5.3

Wa 22 0.058 0.126 0.46 1.36 0.37 5.7

40 0.074 0.146 0.431 1.44 0.29 6

58 0.114 0.196 0.45 1.39 0.22 6.1

LL, Lower limit; DUL, drained upper limit; SAT, Saturated water content; BD, Bulk density;

OC, Organic carbon; L is layer depth. Data source: Soil physical data obtained from Soil

research Institute of Ghana. Soil organic carbon and pH were measured in 2014.

Weather Data and Determination of ENSO-Optimal

Planting Date Relationships
Two types of weather data were collected for this study. First,
the 30-year (1980–2009) historical daily data (rainfall, minimum
and maximum temperature, and solar radiation) were obtained
from the Ghana Meteorological Agency for each location. These
data were used for maize yield simulations. Second, ENSO data;
specifically, the Sea Surface Temperature (SST) anomalies for the
NiNO3 region in the tropical Pacific for the same time period
(1980–2009) were obtained from the website of the International
Research Institute for Climate Prediction, NY, USA. The SST
anomalies were sorted into 3 ENSO phases: El Niño, Neutral
and La Nina, as defined by the Japan Meteorological Agency.
Within the 30 year period, there were 5 El Niño, 9 La Nina
and 16 Neutral years. A simple correlation analysis was used
to establish relationships between the FMA SST anomalies and
seasonal rainfall for each location.

Given that one of the major aims of this study was to employ
ENSO for forecasting the optimum planting date, about 40%
(13 years) of the 30 years were selected as training data set to
derive relationships between the pre-season FMA ENSO and the
optimum planting dates. The selected years were 1981, 1984,
1986, 1987, 1991, 1992, 1995, 1996, 1997, 2000, 2003, 2004, and
2008 and this included 3 El Nino, 7 Neutral and 3 La Nina years.
The remaining years served as the test data. The selection of the
years followed stratified random approach, ensuring that each
ENSO phase was included in the training data set. The number
of years selected for each ENSO phase also varied with the size of
the phase. Based on the planting window information from the
farmer survey, maize yields were simulated for each site and for

13 training years from May 15 to July 15 at weekly time intervals
under farmer practice of 30 kgN ha−1 fertilizer applicate rate. For
a given season, planting within the week was effected anytime
the soil moisture conditions were adequate. The planting date
that resulted in the highest seasonal yield was identified as the
“optimal” planting date. For the training dataset, the planting
date that produced the highest seasonal for a given year was
identified as the “optimal” planting date for that year. Using
regression analysis, equations were derived between the FMA
SST anomaly and the “optimal” planting dates for each site.

Assessing Integrated Farm Management Strategies
The ENSO-based derived equations in Section Weather Data
andDetermination of ENSO-Optimal PlantingDate Relationship
were used to predict the optimal planting dates for the remaining
17 (test) years for several farm management strategies or
scenarios summarized in Table 3. These scenarios were derived
based on documentations of the farmer survey. The scenarios
included two planting date approaches: (i) ENSO-targeted and
(ii) conventional farmer practice; two levels of N application:
(i) 30 kg N ha−1 (average amount used in a survey) for Farmer
Practice (ii) 60 kg N ha−1 (recommended rate for farmers in
study region) for Enhanced Farmer Practice, without and with
manure application of 1000 kg ha−1 (which is the average amount
applied in the study area).

For a given scenario, the simulated yield corresponding the
ENSO-based predicted optimal planting date was compared with
that of the conventional planting date by the farmer. The latter
was derived as an average of yields over all planting dates, because
different farmers plant at different times throughout the whole
planting window, and there was no information to determine
their preferred planting. Moreover, farmers are unlikely to adhere
to any particular planting date in all years. A flowchart showing
the sequence of determinations is shown in Figure 4.

Comparisons between the different scenarios were based on
summary statistics of maize yield under various scenarios and
Student t-test with significance level set at 5%. A simple ratio
of grain yield to the simulated cumulative evapotranspiration
(ET) was used an index of water productivity (or Water Use
Efficiency: WUE). The partial factor productivity of nitrogen (or
the Nitrogen Use Efficiency: NUE) was also defined as the ratio
of grain yield to N applied. For each location the WUE and NUE
for the various management scenarios were expressed in terms of
Cumulative Distribution Function (CDF) (Anderson et al., 1977).

RESULTS

ENSO-Rainfall and Optimal Planting Date
Relationships
The correlation coefficient between the FMA SST and the
seasonal rainfall were −0.43 (p = 0.02) for Tamale, −0.44 (p =

0.01) for Damongo, −0.35 (p = 0.08) for Wa, and −0.20 (p =

0.25) for Bawku. The negative relationship indicated that rainfall
increased with the negative ENSO phase (La Nina) as depicted in
Figure 1. The correlations were weak at Wa and Bawku.

The relationships between the FMA SST anomalies and
optimal planting dates were non-linear and followed polynomial
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TABLE 3 | Farm management strategies simulated.

Scenario Description

Low-input farmer practice (LFP) For this scenario, the planting density was set to 3.5 plants m−2 which is commonly observed on farmers’

fields and the nitrogen application was 30 kg N ha−1. Maize yields were simulated starting from the 15th of

May to 15th July at weekly intervals for each of the 4 sites. Planting was effected in each week when soil

moisture in the top 30 cm of the soil attained between 60 and 100% moisture conditions.

Enhanced low-input farmer practice (ELFP) This scenario is similar to 1, except that farmers receive seasonal weather forecast to choose the optimum

planting date using the ENSO-based equations derived above.

Medium-input farmer practice (MFP) For this scenario, the planting density was increased to 6.6 plants m−2 which is the recommended plant

density for the sites with 60 kg ha−1 N (optimum N requirement). As for 1, maize yields were simulated

starting from the 15th of May to 15th July at weekly intervals for each of the 4 sites.

Enhanced medium-input farmer practice (EMFP) This scenario is similar to scenario 3 except that the planting date was ENSO-based (as for 2).

Improved low-input framer practice (ILFP) Scenario 1 + 1000 kg ha−1 manure.

Improved enhanced low-input framer practice (IELFP) Scenario 2 + 1000 kg ha−1 manure.

Improved medium input farmer practice (IMFP) Scenario 3 + 1000 kg ha−1 manure.

Improved enhanced medium input farmer practice (IEMFP) Scenario 4 + 1000 kg ha−1 manure.

FIGURE 4 | Flowchart illustrating the chronology of activities undertaken in this study.

functions for all the sites (Figure 5). The relationships for Bawku
and Damongo could be described by cubic polynomials whereas
those of Wa and Tamale fitted polynomials of the 4th degree.
There were no consistent patterns for all locations, even though,

early optimum planning date appeared to be associated with
negative SST anomalies (La Nina). At Tamale, optimum planting
dates for La Nina were from julian Days 150 to 170 (late May to
mid June), and similar optimal planting date could be made for
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FIGURE 5 | Relationships between the FMA SST anomaly and optimum planting date (Julian) for the study sites; Tamale, Damongo, Bawku, and Wa.

FMA and SST are February March April and Surface Sea Temperature respectively.

El Niño. The optimum planting window for the Neutral ENSO
phase had a wide range (Julian Day 130–180; late May to late
June). The curve fitted the data quite well with an R2 = 0.65. At
Damongo, not only was the curve fit somewhat poor (R2 = 0.52)
but there was also no clear pattern. The relationship between
ENSO and optimum planting date at Bawku followed that for
Tamale and the curve fit quite well (R2 = 0.71). For Wa, early
optimum planting dates were associated with La Nina and El
Niño (Julian Days 130 to 150; earlyMay to lateMay), whereas late
optimum planting was associated with the Neutral ENSO phase.
The curve fitting was also satisfactory (R2 = 0.57).

Evaluation of Farm Management Strategic
Options
Themajor goal of this study was to investigate the extent to which
the combination of ENSO-targeted planting date choice, soil
organic resource management and fertilizer application could
improve and sustain maize production in the northern regions
of Ghana. Our results showed that except for Tamale, the ENSO-
targeted planting date strategy resulted in significant maize yields
(Table 4). At all locations except Tamale, mean simulated yields
based on the ENSO-based optimum planting dates were higher
than farmer planting under both 30 and 60 kg N ha−1 application
rates. Yield increases were between 6 and 19% and between 6 and
23%, for the low and high fertilizer application rates, respectively.

Generally, the number of times (Hits) the ENSO-based planting
date choice resulted in higher yields than the farmer planting date
were as high as 80% for the Bawku site but somewhat lower at
Tamale and Damongo (65%).

The addition of manure further increased the maize yields
both under farmer practice and ENSO-based practice, indicating
that the combination strategy was still superior (Figure 6). For
example, under the farmer practice (30 kg N ha−1) at Bawku,
addition of manure increased the yield from 854 to 1053 kg ha−1

(23%) whereas that for ENSO-targeted planting increased yield
by 25% from 1014 to 1273 kg ha−1. For the Enhanced farmer
practice where 60 kg N ha−1 was applied, manure addition under
farmer planting date increased the yield from 1210 to 1474 kg
ha−1 (22%) while ENSO-based planting date increased the yield
from 1499 to 1763 kg ha−1 (15%). The differences between farmer
planting date and ENSO-based planting date were significant
(p = 0.04). Similar trends could be observed at all locations
(Figure 6).

Water and Nitrogen Productivity under the
Different Scenarios
The cumulative frequency distribution (CDF) of the WUE are
shown in Figure 7 for the various strategies. Strategies whose
CDFs fall to the right are considered dominant or preferred.
However, where there is incomplete dominance, i.e., where the
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TABLE 4 | Simulated maize yields at the various locations for ENSO-targeted planting and farmer chosen planting dates at two levels of nitrogen

fertilization in four sites in northern Ghana.

LOCATION

Statistics Bawku Wa Damongo Tamale

Farmer ENSO Farmer ENSO Farmer ENSO Farmer ENSO

A. 30kg N ha−1

Mean (kg ha) 854 1014 1087 1212 1046 1111 1305 1384

Maximum (kg ha−1) 1102 1377 1406 1681 1238 1353 1532 1736

Minimum (kg ha−1) 653 728 828 894 830 836 1054 895

SD (kg ha−1) 139.5 208.6 133.1 205.7 100.6 157 134.7 225.1

CV (%) 15.6 20.5 12.2 17 9.6 14.1 10.3 16.3

T-test p p = 0.02 p = 0.04 p = 0.16 p = 0.22

Hit (%) 80 76 65 65

B. 60kg N ha−1

Mean (kg ha−1) 1210 1499 1756 1964 1746 1954 2100 2236

Maximum (kg ha−1) 1543 1947 2284 2563 2045 2667 2448 3170

Minimum (kg ha−1) 876 505 1403 1318 1363 1336 1598 1479

SD (kg ha−1) 200.5 354 234 357.7 157.1 371.4 250.5 444.7

CV (%) 16.6 23.6 13.3 18.2 9 19 11.9 19.9

T-test p p = 0.01 p = 0.05 p = 0.04 p = 0.28

Hit (%) 80 65 71 71

CV and SD are coefficient of variation and Standard deviation respectively.

curves cross, the median maize yield was used to judge strategy
performance. Figure 7 shows that at all sites, the lowest water
productivity factor was observed for the conventional farmer
planting date + 30 kg N ha−1 and the highest was for ENSO-
targeted planting date, 60 kg N ha−1

+ manure application
of 1000 kg ha−1. At Tamale, the WUE ranged from 3.0 to
10 kg mm−1, and that for Damongo was from 4 to 9.0 kg mm−1.
Bawku and Wa had somewhat slightly lower values of 3.5–8.0 kg
mm−1. Though ENSO-targeted planting date, high N and
manure application generally increased the WUE, the variability
of the factor also increased considerably under this strategy.

Unlike the water productivity, the highest NUE was generally
associated with the ENSO-targeted planting date, 30 kg N ha−1

and manure application across sites (Figure 8). Also, the
performance of the various strategies were similar at Damongo
as the CDFs were close with the median NUE ranging from 25
to 40 kg grain kg−1 N. The widest separation of the strategy
CDFs was observed at Tamale with the median values ranging
from 30 kg grain kg−1 N (farmer planting + 30 kg N ha−1)
to 100 kg grain kg−1 N (for ENSO-targeted planting date +

30 kg N ha−1
+ manure 1000 kg ha−1). The magnitude of

the productivities, however, varied across sites with the highest
median yield obtained for Tamale and the least for Bawku.

DISCUSSION

There is a need for improving ENSO-based approaches for
forecasting seasonal rainfall at the study locations. The relatively
low correlation coefficients (−0.2 to −0.43) between seasonal
rainfall amounts and the ENSO SST anomalies and the fact that

the correlation was only significant for two locations indicates
that further research is needed to improve the predictive skill.
Furthermore, the literature indicates that for crop growth, not
only the seasonal rainfall but also parameters such as onset, and
within-season variability of rainfall, among others, are important
aspects (Shin et al., 2009; Kassie et al., 2014). Phillips et al.
(1998) in their study in Zimbabwe also reported that forecast
based on ENSO alone is unlikely to provide adequate information
for maize decision making. However, attempts to forecast the
season onset from ENSO was not successful in East Africa but
it is generally recognized that seasonal climate forecast provides
the potential to help farmers decision making (Amissah-Arthur,
2005).

Given the difficulty in adequately predicting the season onset
with ENSO, the current study, explored the use of ENSO and
DSSAT as decision support tools to select optimum planting date
(not onset) and combined these with soil fertility management
for sustainable maize production. This was successful in 3 out of
the 4 study sites. But, here too, there is need for further research.
Though the ENSO selected optimal planting dates resulted
in higher yields that farmer planting dates, there was higher
yield variability associated with the former. This is undesirable,
because yield fluctuations would handicap adoption of new agro-
technologies (Hansen, 2005). In effect, farmers may shy away
from utilizing ENSO-based planting date strategy.

The ability to target a planting date based on a prior
knowledge of the coming season’s potential thus offers an
opportunity to minimize the risks of missing fertilizer and
manure application benefits. The decision on when to sow
can also be determined by socioeconomic situations such as

Frontiers in Plant Science | www.frontiersin.org 9 January 2017 | Volume 8 | Article 31

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


MacCarthy et al. Sustainable Climate Sensitive Maize Production

FIGURE 6 | Comparison of ENSO informed planting and conventional planting at different fertility management strategies at four sites in Northern

Ghana. Each box in the graph shows the distribution of grain yield over the simulation period. The boundary of the box closest to zero indicates the 25th percentile, a

line within the box marks the median, and the upper boundary of the box indicates the 75th percentile. Whiskers above and below the box indicate the 95th and 5th

percentiles.

availability of draft power. However, if these are not influencing
farmers’ decision making, the traditional approach of choice of
planting date can be minimized. Our approach to minimizing
the yield fluctuations, which may be attributed to within season
water availability, was to improve soil management to reduce soil
water and nutrient loss. With regard to water, Wallace (2000)
indicated that on sandy soils as much as 40–50% of rainfall is
lost via runoff, deep drainage and soil evaporation. In particular,
where plant populations are low as is typical in many traditional
farming systems the soil evaporation component may be high,
especially soon after rainfall events. At least, the evaporation
component should be offset by surface mulching and manure
application (Chikowo et al., 2010). Hudson (1994) also showed
that for every 1% increase in soil organic matter, the available
water holding capacity increases by 3.7, which would imply that
even under prolonged dry spells, strategies that increase manure
application would result in less water stress. Lal (2006) indicated
that maize yield would increase between 30 and 300 kg ha−1 for
every 1000 kg ha−1 increase in soil carbon in the root zone. The
simulated yields from this study are within the ranges reported
by other studies (Fosu et al., 2012; Ragasa et al., 2014; Naab
et al., 2015). Indeed, our simulations in this study showed that
the water use efficiency was enhanced under a combination of
ENSO-based planting date choice and manure application.

The lingering question is how to access sufficient quantities
of organic resources for use as mulch and manure, given that
farmers have other uses for crop residues such as fodder and
building materials, or in many cases, simply burn off crop
residues at the onset of the season. In the case of manure,
the challenge with gathering enough manure has to do with
the fact that cattle are usually not kept in kraal except in the
night, hence significant amount of the manure is not easily
available for collection. Also, manure has multiple uses such as
building material restricting its availability for large application
to farmlands. Research by Adiku et al. (2009) showed that a
maize-pigeon pea rotation could generate sufficient residue in
situ from the pigeon pea fallow which was applied as mulch
in every maize growing season and also used to feed livestock.
This rotation could sustain the soil carbon in the medium term.
Such management practices may form the basis for policies
to promote the planting of fast growing leguminous shrubs
for residue generation and soil fertility enhancement. Specific
policies may be required to incentivize manure application
on farms due to the overall soil productivity enhancement.
The combination of manure + modest fertilizer application is
therefore a soil management practice that is worth exploring
as drought tolerance strategy that is within the reach of a
farmer. This study has shown that a given foreknowledge of
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FIGURE 7 | Frequency distribution of water use efficiency (productivity) factor under ENSO informed and conventional planting strategies with

different soil fertility management strategy for the study sites; Tamale, Damongo, Bawku, and Wa.

FIGURE 8 | Frequency distribution of nitrogen use efficiency (productivity) factor under ENSO informed and conventional planting strategies with

different soil fertility management strategy for the study sites; Tamale, Damongo, Bawku, and Wa.
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ENSO is useful for farmer-level practical decision making (a
decision making tool) in terms of predicting optimal planting
time. The approach may not have worked elsewhere but that
need not preclude further testing at other locations since ENSO
signal strength varies globally. This study provides a first strong
evidence that the approach already works in 3 out of 4 locations
in Ghana but further work is required to find further support for
this approach which should also replicated in other areas with
similar climatic conditions.

In summary, our study clearly demonstrated the advantages
of the combined planting date choice and soil management,
however, there remain challenges that require further research.
First, research into seasonal forecasting is still rudimentary
in Ghana. Secondly, access to affordably-priced fertilizer and
manure continues to elude the traditional farmer. Third, the
utility of crop modeling for decision support is still not
widespread in many tropical countries. In this study, it could
be demonstrated that the CERES maize model enabled the
evaluation of maize performance not only over many years but
also across many planting dates as well as at several locations.
Though model use in decision making has become common
place in many industrialized countries, model use in Africa
continues to lag behind. Much more support is required to
increase modeling not only for research but also for practical
decision making and agricultural planning.

CONCLUSIONS

This study employed simulation modeling to assess the value
an integrated ENSO-targeted planting date+ tailored soil

management strategy for increasing and sustain maize yields
in the northern regions of Ghana. It could be shown that the
optimum planting date for a given year was predictable from the
February-to-April (FMA) SST anomaly for the locations with R2

ranging from 0.52 to 0.71. The use of ENSO-targeted planting
date management strategy was superior to the traditional
farmer practice at 3 out 4 locations. The application of a
modest fertilizer (60 kg N ha−1) and 1000 kg ha−1 manure
could sustain maize yields at 2360 kg ha−1 across years
and sites. This was more than 53% yield increase over the
traditional farmer practice. In effect, farmer yield levels could
be substantially improved and yield fluctuations minimized.
The improvement of seasonal rainfall forecasting, affordable
fertilizer pricing policy and increasing the availability of
organic manures remain challenges that require further research
attention.

AUTHOR CONTRIBUTIONS

DM, SA, BF, FG, and AK: contributed in conceptualizing
and designing this study, data acquisition, analysis,
interpretation, drafting of the manuscript and
reviewing it critically, approved the version to be
published.

FUNDING

The authors are grateful to the CRP MAIZE, CIMMYT/CGIAR
(A4032.09.34), and SARD-SC projects whose financial support
made this research possible.

REFERENCES

Adiku, S. G. K., Dayananda, P. W. A., Rose, C. W., and Dowuona, G. N. N. (1997).

An analysis of the within–season rainfall characteristics and simulations of

daily rainfall in two savanna zones in Ghana. Agric. For. Meteorol. 86, 51–62.

doi: 10.1016/S0168-1923(96)02414-8

Adiku, S. G. K., Jones, J. W., Kumaga, F. K., and Tonyigah, A. (2009). Effects of

crop rotation and fallow residue management on maize growth, yield and soil

carbon in a savannah-forest transition zone of Ghana. J. Agric. Sci. Camb. 147,

313–322. doi: 10.1017/S002185960900851X

Adiku, S. G. K., Mawunya, F. D., Jones, J. W., and Yangyuoru, M.

(2007). “Can ENSO help in agricultural decision–making in ghana?” in

Climate Prediction and Agriculture; Advances and Challenges, eds M.

V. K. Sivakumar and J. Hansen (Berlin; Heidelberg: Springer-Verlag),

205–212.

Adiku, S. G. K., and Stone, R. C. (1995). Using the Southern Oscillation

index for improving rainfall prediction and agricultural water management

in Ghana. Agric. Water Manage. 29, 85–100. doi: 10.1016/0378-3774(95)

01181-1

Amissah-Arthur A. (2005). Value of climate forecasts for adjusting farming

strategies in sub-saharan africa. GeoJ. 62, 181–189. doi: 10.1007/s10708-005-

8179-5

Amissah-Arthur, A., Jagtap, S., and Rosenzweig, C. (2002). Spatio–temporal effects

of El Nino events on rainfall and maize yield in Kenya. Int. J. Climatol. 22,

1849–1860. doi: 10.1002/joc.858

Anderson, J. A., Dillon, J. L., and Hardaker, J. B. (1977). Agricultural Decision

Analysis. Ames, IA: University Press.

Carberry, P., Hammer, G., Meinke, H., and Bange, M. (2000). “The potential value

of seasonal climate forecasting in managing cropping systems,” in Application

of seasonal climate forecasting in Agricultural and Natural Ecosystems: The

Australian experience, eds G. L. Hammer, N. Nicholls, C. Mitchell (Dordrecht:

Springer Science+Business Media), 167–181.

Chikowo, R., Corbeels, M., Mapfumo, P., Tittonell, P., Vanlauwe, B., and Giller,

K. E. (2010). Nitrogen and phosphorus capture and recovery efficiencies, and

crop responses to a range of soil fertility management strategies in sub–Saharan

Africa. Nutr. Cycl. Agroecosyst. 88, 59–77. doi: 10.1007/s10705-009-9303-6

Dzotsi, K. A., Jones, J. W., Adiku, S. G. K., Naab, J. B., Singh, U., Porter, C. H., et al.

(2010). Modelling soil and plant phosphorus within DSSAT. Ecol. Modell. 221,

2839–2849. doi: 10.1016/j.ecolmodel.2010.08.023

Fosu, M., Buah, S. S., Kanton, R. A. L., and Agyare, W. A. (2012). “Modelling

Maize response to mineral fertilizer on silty clay loam in the Northern Savanna

of Ghana Using DSSAT model,” in Improving Soil Fertility Recommendations

in Africa Using the Decision Support Systems for Agro–technology Transfer

(DSSAT), eds J. Kihara, D. Fatondji, J. W. Jones, G. Hoogenboom, R. Tabo and

A. Bationo (Springer Science+ Business Media, B. V), 157–168.

Fosu–Mensah, B. Y., MacCarthy, D. S., Vlek, P. L. G., and Safo, E. Y. (2012).

Simulating impact of seasonal climatic variation on the response of maize (Zea

mays L.) to inorganic fertilizer in sub–humid Ghana. Nutr. Cycl. Agroecosyst.

94, 255–271. doi: 10.1007/s10705-012-9539-4

Fosu, M., Kuhne, R. F., and Vlek, P. L. G. (2004). Improving maize yield in

the Guinea Savannah zone of Ghana with leguminous cover crops and PK

fertilization. J. Agron. 3, 115–121. doi: 10.3923/ja.2004.115.121

Hansen, J. W. (2005). Integrating seasonal climate prediction and agricultural

models for insights into agricultural practice. Philos. Trans. R. Soc. B. 360,

2037–2047. doi: 10.1098/rstb.2005.1747

Hansen, J. W., and Jones, J. W. (2000). Scaling–up crop models for climatic

variability applications. Agric. Syst. 65, 43–72. doi: 10.1016/S0308-521X(00)

00025-1

Hudson, B. D. (1994). Soil organic matter and available water capacity. J. Water

Conserv. 49, 189–194.

Frontiers in Plant Science | www.frontiersin.org 12 January 2017 | Volume 8 | Article 31

https://doi.org/10.1016/S0168-1923(96)02414-8
https://doi.org/10.1017/S002185960900851X
https://doi.org/10.1016/0378-3774(95)01181-1
https://doi.org/10.1007/s10708-005-8179-5
https://doi.org/10.1002/joc.858
https://doi.org/10.1007/s10705-009-9303-6
https://doi.org/10.1016/j.ecolmodel.2010.08.023
https://doi.org/10.1007/s10705-012-9539-4
https://doi.org/10.3923/ja.2004.115.121
https://doi.org/10.1098/rstb.2005.1747
https://doi.org/10.1016/S0308-521X(00)00025-1
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


MacCarthy et al. Sustainable Climate Sensitive Maize Production

Indeje, M., Semazzi, F. H. M., and Ogallo, L. J. (2000). ENSO

signals in East African rainfall seasons. Int. J. Climatol. 20, 19–46.

doi: 10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0

Ingram, K. T., Roncoli, M. C., and Kirshen, P. H. (2002). Opportunities

and constraints for farmers of West Africa to use seasonal precipitation

forecast with Burkina Faso as a case study. Agric. Syst. 74, 331–349.

doi: 10.1016/S0308-521X(02)00044-6

Jagtap, S. S., Jones, J. W., Hildebrand, P., Letson, D., O’Brien, J. J.,

Podesta, G., et al. (2002). Responding to stakeholder’s demands for climate

information: from research to applications in Florida. Agric. Syst. 74, 415–430.

doi: 10.1016/S0308-521X(02)00048-3

Jones, C. A., and Kiniry, J. R. (1986). CERES–Maize: A Simulation Model of Maize

Growth and Development. Texas, TX: A&M University Press.

Kassie, B. T., Van Ittersum, M. K., Hengsdijk, H., Asseng, S., Wolf, J., and

Rötter, R. P. (2014). Climate–induced yield variability and yield gaps of maize

(Zea mays L) in Central Rift Valley of Ethiopia. Field Crops Res. 160, 41–53.

doi: 10.1016/j.fcr.2014.02.010

Kombiok, J. M., and Clottey, V. A. (2003). Maize yield and soil N as affected by

date of planting Mucuna intercrop in a maize/mucuna intercropping system in

Ghana. Trop. Agric. 80, 77–82.

Lal, R. (2006). Enhancing crop yields in developing countries through restoration

of the soil organic pool in agricultural lands. Land Degrad. 17, 197–209.

doi: 10.1002/ldr.696

Laux, P., Wagner, S., B’ardossy, A. W. A., Jacobeit, J., and Kunstmann, H. (2009).

Modelling daily precipitation features in the Volta basin of West Africa. Int. J.

Climatol. 29, 937–954. doi: 10.1002/joc.1852

MacCarthy, D. S., Adiku, S. G. K., Narh, S., and Abdulai, A. L. (2015). Using

Decision Support Tools to Develop Innovative Maize-Based Technologies for

Enhancing Crop Output in Northern Ghana. Project Report (A4032.09.34),

University of Ghana to CIMMYT.

MacCarthy, D. S., Vlek, P. L. G., and Fosu–Mensah, B. Y. (2012). “The

response of maize to N fertilization in a sub–humid region of ghana;

understanding the processes using a crop simulation model,” in Improving Soil

Fertility Recommendations in Africa Using the Decision Support Systems for

Agrotechnology Transfer (DSSAT), eds J. Kihara, D. Fatondji, J. W. Jones, G.

Hoogenboom, R. Tabo, and A. Bationo (Springer Science+ Business Media, B.

V), 157–168.

Mawunya, F. D., Adiku, S. G. K., Laryea, K. B., Yangyuoru,M., and Atika, E. (2011).

Characterisation of Seasonal Rainfall for Cropping Schedules.West Afr. J. Appl.

Ecol. 19, 107–118.

McSweeney, C., New, M., and Lizcano, G. (2010). UNDP Climate Change

Country Profiles, Ghana. Available online at: http://www.geog.ox.ac.uk/

research/climate/projects/undp-cp/ (Accessed 27th October, 2016).

Naab, J. B., Mahama, G. Y., Koo, J., Jones, J. W., and Boote, K. (2015).

Nitrogen and phosphorus fertilization with crop residue retention enhances

crop productivity, soil organic carbon, and total soil nitrogen concentrations

in sandy–loam soils in Ghana. Nutr. Cycl. Agroecosyst. 102, 33–43.

doi: 10.1007/s10705-015-9675-8

Opoku-Ankomah, Y., and Cordrey, I. (1994). Atlantic sea surface temperatures

and rainfall variability in Ghana. Am. Meteorol. Soc. 7, 551–557.

doi: 10.1175/1520-0442(1994)007<0551:asstar>2.0.co;2

Phillips, J. G., Cane, M. A., and Rosenzweig, C. (1998). ENSO, seasonal rainfall

patterns, and simulated maize yield variability in Zimbabwe. Agric. For.

Meteorol. 90, 39–50. doi: 10.1016/S0168-1923(97)00095-6

Porter, C. H., Jones, J. W., Adiku, S., Gijsman, A. J., Gargiulo, A. O., and

Naab, J. B. (2010). Modelling organic carbon and carbon–mediated soil

processes in DSSAT V4.5. Operat. Res. 10, 274–278. doi: 10.1007/s12351-00

9-0059-1

Ragasa, C., Chapoto, A., and Kolavalli, S. (2014). Maize Productivity in Ghana.

Ghana Strategic Support Program. Policy Note 5. Accra: IFPRI.

Ritchie, J. T. (1998). “Soil water balance and plant water stress,” in Understanding

Options for Agricultural Production, eds G. Y. Tsuji, G. Hoogenboom, and

P. K. Thornton (Dordrecht, The Netherlands: Kluwer Academic Publishers),

41–54.

Roncoli, C., Ingram, K., and Kirshen, P. (2001). The costs and risks of coping with

drought: livelihood impacts and farmers’ responses in Burkina Faso. Clim. Res.

19, 119–132. doi: 10.3354/cr019119

Shin, D.W., Baogorria, G. A., Lim, Y. K., Cocke, S., Larow, T. E., O’Brien, J. O., et al.

(2009). Assessing maize and peanut yield simulations with various seasonal

climate data in the south eastern United States. J. Appl. Meteorol. Climatol. 49,

592–603. doi: 10.1175/2009JAMC2293.1

Singh, B. R., and Singh, D. P. (1995). Agronomic and physiological responses

of sorghum, maize and pearl millet to irrigation. Field Crops Res. 42, 57–67.

doi: 10.1016/0378-4290(95)00025-L

Sivakumar, M. V. K. (1988). Predicting rainy season potential from the onset of

rains in southern Sahelian and Sudanian climatic zones of West Africa. Agric.

For. Meteorol. 42, 295–305. doi: 10.1016/0168-1923(88)90039-1

Wallace, J. S. (2000). Increasing agricultural water use efficiency to

meet future food production. Agric. Ecosyst. Environ. 82, 105–119.

doi: 10.1016/S0167-8809(00)00220-6

Williams, J. R. (1990). The erosion–productivity impact calculator (EPIC)

model: a case history. Philos. Trans. R. Soc. B Biol. Sci. 329, 421–428.

doi: 10.1098/rstb.1990.0184

Willmott, C. J. (1981). On the validation of models. Phys. Geogr. 2, 184–194.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 MacCarthy, Adiku, Freduah, Gbefo and Kamara. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Plant Science | www.frontiersin.org 13 January 2017 | Volume 8 | Article 31

https://doi.org/10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0
https://doi.org/10.1016/S0308-521X(02)00044-6
https://doi.org/10.1016/S0308-521X(02)00048-3
https://doi.org/10.1016/j.fcr.2014.02.010
https://doi.org/10.1002/ldr.696
https://doi.org/10.1002/joc.1852
http://www.geog.ox.ac.uk/research/climate/projects/undp-cp/
http://www.geog.ox.ac.uk/research/climate/projects/undp-cp/
https://doi.org/10.1007/s10705-015-9675-8
https://doi.org/10.1175/1520-0442(1994)007<0551:asstar>2.0.co;2
https://doi.org/10.1016/S0168-1923(97)00095-6
https://doi.org/10.1007/s12351-009-0059-1
https://doi.org/10.3354/cr019119
https://doi.org/10.1175/2009JAMC2293.1
https://doi.org/10.1016/0378-4290(95)00025-L
https://doi.org/10.1016/0168-1923(88)90039-1
https://doi.org/10.1016/S0167-8809(00)00220-6
https://doi.org/10.1098/rstb.1990.0184
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Using CERES-Maize and ENSO as Decision Support Tools to Evaluate Climate-Sensitive Farm Management Practices for Maize Production in the Northern Regions of Ghana
	Introduction
	Materials and Methods
	Locations and Physiography
	Maize Model Description
	Maize Model Calibration and Evaluation
	Model Application Studies at the 4 Study Locations
	Soil Data
	Weather Data and Determination of ENSO-Optimal Planting Date Relationships
	Assessing Integrated Farm Management Strategies


	Results
	ENSO-Rainfall and Optimal Planting Date Relationships
	Evaluation of Farm Management Strategic Options
	Water and Nitrogen Productivity under the Different Scenarios

	Discussion
	Conclusions
	Author Contributions
	Funding
	References


