
ORIGINAL RESEARCH
published: 06 February 2017
doi: 10.3389/fpls.2017.00054

Frontiers in Plant Science | www.frontiersin.org 1 February 2017 | Volume 8 | Article 54

Edited by:

Yoel Forterre,

Centre National de la Recherche

Scientifique (CNRS), France

Reviewed by:

H. Jochen Schenk,

California State University, Fullerton,

USA

Todd Edwin Dawson,

University of California - Berkeley, USA

*Correspondence:

Tiia Grönholm

tiia.gronholm@helsinki.fi

Specialty section:

This article was submitted to

Plant Biophysics and Modeling,

a section of the journal

Frontiers in Plant Science

Received: 08 July 2016

Accepted: 10 January 2017

Published: 06 February 2017

Citation:

Vesala T, Sevanto S, Grönholm T,

Salmon Y, Nikinmaa E, Hari P and

Hölttä T (2017) Effect of Leaf Water

Potential on Internal Humidity and

CO2 Dissolution: Reverse

Transpiration and Improved Water Use

Efficiency under Negative Pressure.

Front. Plant Sci. 8:54.

doi: 10.3389/fpls.2017.00054

Effect of Leaf Water Potential on
Internal Humidity and CO2
Dissolution: Reverse Transpiration
and Improved Water Use Efficiency
under Negative Pressure

Timo Vesala 1, 2, 3, Sanna Sevanto 4, Tiia Grönholm 1*, Yann Salmon 1, Eero Nikinmaa 2,

Pertti Hari 2 and Teemu Hölttä 2

1Department of Physics, University of Helsinki, Helsinki, Finland, 2Department of Forest Sciences, University of Helsinki,

Helsinki, Finland, 3 Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland, 4 Earth and Environmental Sciences

Division, Los Alamos National Laboratory, Los Alamos, NM, USA

The pull of water from the soil to the leaves causes water in the transpiration stream

to be under negative pressure decreasing the water potential below zero. The osmotic

concentration also contributes to the decrease in leaf water potential but withmuch lesser

extent. Thus, the surface tension force is approximately balanced by a force induced by

negative water potential resulting in concavely curved water-air interfaces in leaves. The

lowered water potential causes a reduction in the equilibrium water vapor pressure in

internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential

of zero, i.e., over the flat surface. The curved surface causes a reduction also in the

equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to

water. Although the water vapor reduction is acknowledged by plant physiologists its

consequences for water vapor exchange at low water potential values have received

very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon

budget have not been considered at all before this study. We use theoretical calculations

and modeling to show how the reduction in the vapor pressures affects transpiration

and carbon assimilation rates. Our results indicate that the reduction in vapor pressures

of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf

water potential of −2 MPa, and much more when water potential decreases further. The

low water potential allows for a direct stomatal water vapor uptake from the ambient

air even at sub-100% relative humidity values. This alone could explain the observed

rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal

California provided the stomata are sufficiently open. The omission of the reduction in the

water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf

internal CO2 concentration based on leaf gas exchange measurements. Manufactures

of leaf gas exchange measurement systems should incorporate leaf water potentials in

measurement set-ups.

Keywords: water potential, CO2 assimilation, carbon uptake, water uptake, Kelvin effect, water use efficiency,

redwood
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INTRODUCTION

Water potential is negative in the xylem of virtually all terrestrial
plants (Pockman et al., 1995). Water potential is lowered by
transpiration from the leaves assisted by the cohesive forces
between water molecules causing water to be under tension, i.e.,
under negative pressure. According to Young-Laplace’s formula
(e.g., Nobel, 2005), the cohesive forces are balanced by the surface
tension and the balance is manifested as curved, concave air-
water surfaces in leaves. The higher the tension is, i.e., the lower
the water potential, the stronger the concavity is. In addition to
transpiration, solutes dissolved in the xylem sap may contribute
to the decrease in xylem water potential. However, the osmotic
component of water potential in the apoplastic water is marginal
since the amount of dissolved solutes in the apoplast is typically
very small (Nobel, 2005) and we ignore the osmotic effect
here.

The negative water potential causes the vapor pressure of
water in the sub-stomatal cavities to be lowered in relation to
the vapor pressure of water at a water potential of zero, i.e.,
pure water under atmospheric pressure (Pickard, 1981; Nobel,
2005). The reduction in the vapor pressure can be also derived
from the effect the concavity of water surface makes. Over
the concave surface the equilibrium vapor pressure of water is
lowered from that over a flat surface. This is called the Kelvin
effect (see Appendix A). The former approach, based on the
concept of the potential, is used by plant scientists, whereas the
latter one, based on the curvature effect, is known by physicists.
These two approaches seem to be different, but as the water
potential is coupled with the surface curvature via Young-
Laplace’s equation, they are actually one and the same leading
to the following phenomenon: The water vapor concentration
in the internal (sub-stomatal/intercellular) cavity is lower than
that corresponding to the relative humidity (RH) of 100% of
the ambient air. The phenomenon is applied for example in
the measurement of xylem water potential by the psychrometric
technique (e.g., Boyer, 1968).

The significance of the vapor pressure decrease to leaf gas
exchange and its implications for possible foliar water uptake
by “reverse transpiration”, i.e., direct stomatal water vapor
intake, have remained unexplored in plant physiology. The
reduction of water vapor pressure at the site of evaporation in
the leaves should have significant consequences for plants, but
only at low leaf water potentials and at high RH. It is well-
recognized that foliar water uptake occurs, and its importance
is especially pronounced during water stress, in the air of
high humidity and in trees living in fogbelt regions (Breazeale
et al., 1950; Haines, 1952; Burgess and Dawson, 2004; Breshears
et al., 2008; Limm et al., 2009). An example of such is the
coastal redwood [Sequoia sempervirens (D. Don) Endl.], living
in the coastal Californian forests, which relies heavily on the
regular fog deposition for up to 30% of their yearly water
uptake (Burgess and Dawson, 2004). Water acquisition from
ambient air may also allow the coastal redwood to reach
heights of over 100m (Koch et al., 2004). However, the reverse
transpiration does not rule out the fog-droplet-mediated water
uptake. It seems that many of the plant species demonstrating

foliar water uptake are not from frequently foggy environments
and simply having periods of leaf wetness may be a primary
prerequisite for the uptake (Berry et al., 2014). Since the vapor
pressure decrease modifies the driving force (vapor pressure
difference) of the transpiration, it has also implications for
the estimation of stomatal conductance from leaf gas exchange
measurements.

The curvature does not modify only the equilibrium vapor
pressure of water but the pressures of all dissolved gases, like
CO2. This has remained almost unrecognized by the plant
science community although it is well-known in e.g., atmospheric
physics [however see Schenk et al. (2016) for the role of the
same effect for the dissolution of gases in xylem sap]. Namely,
if the air-water surfaces are concave, the equilibrium vapor
pressure of CO2 is reduced, i.e., its effective solubility to the
water phase increases (Vehkamäki, 2006; see also Lewis and
Randall, 1961; Vesala et al., 1997; Rodriguez-Navarro et al., 2002;
Mercury et al., 2003; Pera-Titus et al., 2009). The decrease in
the saturation vapor concentration of CO2 above the water-air
menisci inside the leaf increases the partitioning of CO2 from
the air phase to the aqueous phase at the air/water interface.
This further decreases leaf internal CO2 concentration and
enhances CO2 transport and assimilation rates. These together
with the reduction in transpiration improve the instantaneous
water use efficiency. The increased partitioning to the aqueous
phase should be important especially under high light, when
the photosynthetic production of plants is most limited by
the diffusion rate of CO2 from the ambient atmosphere to
the chloroplasts of the mesophyll cells (Aalto and Juurola,
2002).

Even if plants would not be water-limited, the enhanced CO2

solubility benefits them as the enhanced carbon uptake increases
water use efficiency. At arid environments, where low soil and
leaf water potentials are common the water use efficiency is
enhanced both by reduced water and CO2 equilibrium vapor
pressures. If these conditions are combined with e.g., high
nocturnal RH levels, plant water status can be further improved
by water vapor uptake from the air (reversed transpiration),
as a result of the Kelvin effect. However, when leaves are wet
the stomata, even if open, may be blocked with a film of
water on the cuticle. This would block the CO2 uptake but
not the reversed transpiration if the surface tension prevents
the cuticular film on penetrating into a sub-stomatal cavity.
Furthermore, the lowwater potential would hinder the formation
of the sub-stomatal water film by drawing the water into cell
walls or xylem. Then the reverse transpiration would still occur
by means of evaporation from the cuticular water film crossing
a stomatal pore and subsequent condensation on the mesophyll
surface.

In this study we use theoretical considerations and model
calculations to evaluate the significance of the reduced vapor
pressure of water and CO2 for plant leaf gas exchange. We
also quantify its contribution to plant water use efficiency.
We demonstrate that water uptake in vapor form by reverse
transpiration would be theoretically sufficient to explain the
observed rates of foliar water uptake in coastal redwood
trees.
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MATERIALS AND METHODS

Reduced Water Vapor Pressure and
Transpiration
The ratio of the saturation water vapor concentration (wi) (or
saturation water vapor pressure; for an ideal gas these are
interchangeable) over a liquid-gas interface to that over an
interface with water potential of zero (wi,0) is (Nobel, 2005)

wi

wi,0

= exp

(

ψVH2O

RT

)

(1)

whereψ is the water potential,VH20 is the molar volume of water
(18 × 10−6 m3 mol−1), R is the universal gas constant and T the
interfacial temperature (for various symbols see Table 1). In case
of water at water potential of zero, i.e., pure water at atmospheric
pressure, the ratio is one and the saturation vapor concentration
(wi,0) depends only on temperature (Nobel, 2005).

Transpiration rate (E), is proportional to the difference
between the water vapor concentration in the sub-stomatal cavity
wi and water vapor concentration in the ambient air wa

E = (wi − wa)g (2)

where g is stomatal conductance (Nobel, 2005). Inserting
Equation (1) into Equation (2) and introducing the saturation
ratio of the ambient air (S ≡

wa
wi,0

; RH being 100% × S) the

transpiration rate is expressed as

E =

(

wi,0 exp

(

ψVH2O

RT

)

− wa

)

g

= wi,0

(

exp

(

ψVH2O

RT

)

− S

)

g (3)

For the flat surface exp(ψVH2O/RT) = 1 and for negative water
potentials the term is less than one (see Figure 2) and that
facilitates the situation that the transpiration (E) turns to negative
when S > exp(ψVH2O/RT). The actual transpiration rate in
relation to the transpiration rate at a leaf water potential of zero
(E0) is then

E

E0
=

wi,0

(

exp
(

ψVH2O
RT

)

− S
)

g

(wi,0 − wa)g
=

(

exp
(

ψVH2O
RT

)

− S
)

g

(
wi,0

wi,0
−

wa
wi,0

)g

=

exp
(

ψVH2O
RT

)

− S

1− S
(4)

Also boundary layer conductance contributes to leaf water
exchange, but here it is included in the stomatal conductance
term g.

Reduced Vapor Pressure of CO2 and CO2

Assimilation Rate and the Water-Use
Efficiency
Saturation vapor concentration of CO2 over a surface of water at
water potential of zero is commonly expressed using Henry’s law

caq,0 = ciHCO2 (5)

where ci and caq,0 are the leaf CO2 concentrations in the air
and aqueous phases, and HCO2 is the Henry’s law coefficient for
CO2 in water, which is dependent on temperature and pH (Nobel,
2005). If the decrease in water potential at the site of evaporation
is caused solely by loss of water (and not osmotic concentration)
then the Henry’s law’s relation in Equation (5) is modified so that
(Vehkamäki, 2006)

caq = ciHCO2 exp

(

−
2γVCO2

rRT

)

= ciHCO2 exp

(

−
TNVCO2

RT

)

(6a)

where γ is surface tension of water, r is the radius of curvature
(defined positive for a concave surface), VCO2 is the partial
molar volume of CO2 in water (34 × 10−6 m3 mol−1), TN is
the water pressure difference over the air-water interface (TN

= Pair − Pliquid, where Pair is air pressure and Pliquid is liquid
pressure), and where the Young-Laplace equation (TN = 2γ /r)
is used for the relation between interface curvature and surface
tension. Note that in physics r is typically defined negative
for a concave surface but we follow here the convention often
used in eco-physiology of plants. Equation (6a) means that the
higher the TN, the lower the saturation vapor pressure, and
hence the larger the partitioning to the aqueous phase (the larger
“effective Henry’s law constant,” HCO2 times the exponential
term) of CO2 in water. Since the osmotic concentration of the
apoplastic water is generally assumed to be small (Nobel, 2005),
we assume in the following calculations that the water potential
at air-water interface is lowered only by TN and the osmotic
component of water potential is negligible, i.e., −ψ = 2γ /r,
leading to:

caq = ciHCO2 exp

(

ψVCO2

RT

)

(6b)

The driving force for stomatal gas exchange of CO2 is the
difference between the CO2 concentration in ambient air and
the CO2 concentration at the site of photosynthesis in the
chloroplasts cc. The pathway of CO2 movement is divided into
air and aqueous phases. In steady state, CO2 flux in the air phase
(JairCO2)

JairCO2 = (ca − ci)g
air
CO2 (7)

must equal the aqueous phase flux (J
aq
CO2)

J
aq
CO2 = (caq − cc)g

aq
CO2 (8)

where gairCO2 and g
aq
CO2 are the air and aqueous phase diffusive

conductances, respectively. Both fluxes must also equal the net
assimilation rate (A) in steady state, which we approximate to
be linearly proportional to CO2 concentration in the chloroplasts
(e.g., Mäkelä et al., 1996)

A = f cc (9)

where f is a constant of proportionality depending on
light availability, temperature, and biochemical properties
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TABLE 1 | Symbols and physical constants used in the calculations.

Symbol Meaning Units/Value (if applicable)

A CO2 assimilation rate mol m−2s−1***

A0 CO2 assimilation rate in case of water potential 0 mol m−2s−1***

caq Concentration of CO2 in aqueous phase mol m−3

caq,0 Concentration of CO2 in aqueous phase in case of water potential 0 mol m−3

ca CO2 concentration in ambient air mol m−3

ci Internal (sub-stomatal/intercellular) CO2 concentration mol m−3

ci ,app Apparent internal (sub-stomatal/intercellular) CO2 concentration mol m−3*****

cc CO2 concentration at the chloroplast mol m−3

D Diffusion coefficient of water vapor in air 2.4·10−9 m2 s−1****

E Transpiration rate mol m−2s−1***

E0 Transpiration rate in case of water potential 0 mol m−2s−1***

f A constant of proportionality between chloroplast CO2 concentration and CO2 assimilation rate m3 m−2s−1***

g Stomatal conductance ms−1***

gapp Apparent stomatal conductance ms−1*****

gairco2 Air phase diffusive conductance from ambient air to the sub-stomatal cavity m s−1***

g
aq
co2

Aqueous phase diffusive conductance from the sub-stomatal cavity to the chloroplast m s−1***

HCO2 Henry’s law coefficient for CO2 Unitless; the ratio of the gas phase CO2 concentration to

that in the liquid phase at the equilibrium ****

jairco2 Flux rate of CO2 between the ambient air and sub-stomatal cavity mol m−2 s−1***

j
aq
co2

Flux rate of CO2 between the sub-stomatal cavity and chloroplast mol m−2 s−1***

r Radius of curvature m*

R Universal gas constant 8.314 J K−1 mol−1,****

S Saturation ratio (relative humidity / 100%) –

T Temperature K

TN Water tension Pa**

VH2O Molar volume of water 18·10−6 m3 mol−1,****

VCO2 Partial molar volume of CO2 in water 34·10−6 m3 mol−1,****

wi Internal (sub-stomatal/intercellular) water vapor concentration mol m−3

wi ,0 Internal (sub-stomatal/intercellular) water vapor concentration in case of water potential 0 mol m−3

wa Water vapor concentration in the ambient air mol m−3

γ Surface tension of water 0.073 N m−1,****

ψ Water potential Pa

*Positive radius of curvature is concave, negative radius of curvature is convex.

**Tension can be expressed in terms of water potential (ψ ): For pure water TN = − ψ

***Expressed here per leaf area. The aqueous phase diffusive conductance consists also of lipid components.

****Reference from CRC handbook of chemistry and physics. 2001. At a temperature of 18◦C

*****Apparent means that it is estimated from leaf gas exchange measurements without taking into account the effect the changes in water pressure due to lowered water potential.

of the photosynthetic machinery. The relation between
CO2 assimilation rate and chloroplasts is assumed linear
in order that an analytical solution can be obtained for
assimilation rate as a function of leaf water potential. Note
that in reality, A saturates with increasing cc (this becomes
more evident at higher CO2 concentrations), and also the
compensation point of CO2 is involved in the classical
Farquhar formulation of the photosynthesis rate (Von
Caemmerer and Farquhar, 1981). However, Equation (9) is
a reasonable assumption over any small range of cc and over
the CO2 limited region of the A–cc curve (Lambers et al.,
2008).

Combining equations (6b) to (9) reveals that the relative
increase in CO2 assimilation rate resulting from the reduced
vapor pressure of CO2 can be expressed simply in terms

of the ratio between internal (air phase) and ambient CO2

concentration (see Supplementary Material for the algebraic
derivation)

A

A0
=





ci

ca





1

exp
(

ψVCO2
RT

) − 1



 + 1





−1

(10)

This formulation shows that the values for the resistances
to CO2 diffusion, light level and the absolute value of the
Henry’s law coefficient need not to be considered to evaluate the
relative effect of water potential on the CO2 assimilation rate.
Further calculations (see Supplementary Material) reveal that
the time scale required for the steady state CO2 concentration
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to be reached in the leaves after changes in water potential is
less than 1 s so the steady state approach used here is well-
justified.

Note that Equation (10) does not contain the effective
Henry’s law coefficient HCO2 including the dissociation of
CO2 into HCO−

3 at higher pH values (Taiz and Zeiger,

2002), and the aqueous phase diffusive conductance g
aq
CO2.

They are quantities of which estimation requires information
beyond the modeling framework here. The aqueous pathway
of CO2 from the mesophyll surface into the chloroplast
stroma is more complex than portrayed here, affected by
e.g., lipid phase diffusive steps or different macromolecules
obstructing diffusion (Taiz and Zeiger, 2002; Nobel,
2005).

The final note is related to assuming osmotic effects negligible.
For dilute solutions the equilibrium water vapor pressure is
lowered according to the Raoult’s law, i.e., the equilibrium
pressure of the pure water must be multiplied by the mole
fraction of water in the solution. This creates negative water
potential facilitating the negative transpiration similarly to

a non-flat surface. Then wi = wi,0XH2O exp
(

−
2γVH2O
rRT

)

(compare with Equation 1) where XH2O is the mole fraction
of water in the solution and is less than one. For CO2

the situation is more complicated and one cannot say
generally whether the osmotic effect lowers or increases the
equilibrium vapor pressure. This depends on the type of
solutes and their interactions with the dissolved CO2 and water
molecules.

Figure 1 concludes schematically the consequences of the
existence of the curved interface for transpiration and carbon
assimilation.

Finally, we define the water-use efficiency (WUE) as the ratio
of the net assimilation and the transpiration rate as

WUE =
A

E
(11)

Effects of the Reduced Vapor Pressures on
the Stomatal Conductance and the Internal
CO2 Concentration
Ignoring the reduction of vapor pressure with decreasing
water potential will also cause an error in the estimation
of the value of stomatal conductance and leaf internal CO2

concentrations from measurements of leaf gas exchange and
vapor pressure deficit (VPD), especially when the measurements
are conducted at high RH and low xylem water potential.
Using Equation 3 for the actual stomatal conductance (g) and
introducing the apparent stomatal conductance (gapp), i.e., the
stomatal conductance if the reduction in water vapor pressure is
ignored

g =
E

wi,0 exp
(

ψVH2O
RT

)

− wa

(12)

gapp =
E

wi,0 − wa
(13)

FIGURE 1 | Over a curved water/air meniscus at the air-mesophyll

interface the equilibrium vapor concentrations for both water vapor

and CO2 are lowered. Consequently, the exchange rates of water vapor and

CO2 are affected. The radius of curvature r of the meniscus is given by the

Young-Laplace equation linking the surface tension γ and water potential ψ .

the relationship between two conductances can be written as

g =

E

wi,0 exp
(

ψVH2O
RT

)

−wa

E
wi,0−wa

gapp =
wi,0 − wa

wi,0 exp
(

ψVH2O
RT

)

− wa

gapp

=
wi,0(1− S)

wi,0

(

exp
(

ψVH2O
RT

)

− S
) gapp =

1− S

exp
(

ψVH2O
RT

)

− S
gapp

(14)

The error made in the estimation of stomatal conductance
will also propagate into the calculation of the internal CO2

concentration (ci). Formulating the CO2 exchange by means of
the two conductances as

ca − ci =
A

g
(15a)

ca − ci,app =
A

gapp
(15b)

where ci,app is the internal CO2 concentration, the ratio of the
difference of the ambient CO2 concentration and the internal
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FIGURE 2 | Equilibrium vapor pressure of liquid water (black dashed

line) and dissolved carbon dioxide (gray dashed line), normalized to

the flat surface value, and the radius of curvature of the water

meniscus as a function of the absolute value of the water potential.

The radius of concave surface is positive.

CO2 concentration to the difference against the apparent internal
CO2 concentration can be written as

ca − ci

ca − ci,app
=

A
g

A
gapp

=
gapp

g
=

exp
(

ψVH2O
RT

)

− S

1− S
(16)

RESULTS

Effects of Reduced Vapour Pressure on
Transpiration, Assimilation, and Water-Use
Efficiency
Decreasing leaf water potential decreases the saturation vapor
concentration of both water and CO2, albeit more so in the
latter than the former (Figure 2). This is because the partial
molar volume of CO2 in the water solution is larger than that
of the molar volume of water (see Table 1). Decreasing water
potential lowers the CO2 saturation vapor pressure resulting in
enhanced partitioning of CO2 to water. For example, at water
potential of −0.5, −2.0, and −10.0 MPa, the partitioning of CO2

to water is 100.6, 102.8, and 114.6%, respectively, compared to
that at water potential of zero, based on Equation (6b). Typical
values of leaf water potential for C3 plants are between −1 and
−2 MPa (Mencuccini, 2003), down to −4 MPa in species in
arid zones, and as low as −10 MPa in the most extreme cases
(Tyree, 1997).”

The transpiration rate decreases as the leaf water potential
decreases and the ambient RH increases. In the case that water
potential is very low and RH is very high transpiration is
predicted to turn into water uptake (see Equation 4). The “reverse
transpiration” occurs along the zero contour in Figure 3A, being
approximately at 94% and−10 MPa, and 98.9% at−2 MPa.

The increase in CO2 assimilation rate with decreasing water
potential becomes more pronounced with increasing internal
CO2 concentration (Figure 3B), i.e., under conditions of high
stomatal conductance and/or low light. The daytime ratio of

internal to ambient CO2 concentration varies typically from 0.5
to 1 (e.g., Steudle, 2001), and even at low internal concentrations
CO2 (half of the ambient one), CO2 assimilation rate increases
by 1.7 and 8.7% for water potentials of −2.0 and −10 MPa,
respectively. At water potentials of −10 MPa many plants will
close their stomata (e.g., Pockman and Sperry, 2000). Naumburg
et al. (2004) have reported non-zero stomatal conductances down
to−7 MPa and Garcia-Forner et al. (2016) down to−5 MPa.

WUE, the ratio of assimilation and transpiration rates,
increases with decreasing water potential and increasing RH
and internal CO2 concentration (Figure 4) as a result of the
simultaneous decrease in transpiration rate and increase in CO2

assimilation rate. For example, let us consider representative
conditions at temperate/boreal zone: Intermediate RH of 50%,
internal CO2 concentration ratio of 0.7 and leaf water potential
of −2 MPa. At these conditions WUE increases approximately
5% due to the decreased leaf water potential. The increase in
WUE would naturally be more pronounced at lower leaf water
potentials and higher RH, being 28%, if the potential was −5
MPa and RH 80% with the CO2 concentration ratio remaining
0.7. However, one should note that the stomatal closure ignored
here would partly mask the reduced vapor pressure effect.

Effects on the Estimation of the Stomatal
Conductance and the Leaf Internal CO2

Concentration
If the reduction in vapor pressure due to decreasing water
potential is not taken into account, the calculation of stomatal
conductance from transpiration and ambient air VPD will
yield an underestimation of the actual stomatal conductance
(Figure 5A). The error becomes noticeable when water potential
is low and RH is high. The error in the estimation of stomatal
conductance also propagates to the estimation of leaf internal
CO2 concentration (Figure 5B). The actual value of leaf internal
CO2 concentration is then underestimated.

Reduced Water Vapor Pressure and Water
Uptake by “Reverse Transpiration”
We analyse the case of a coastal redwood tree (Sequoia
sempervirens) since it grows under the conditions where water
uptake by leaves is known to be significant and the relevant
information is available from several references. We consider a
fog event during a dry season when RH is 100% (Burgess and
Dawson, 2004) and temperature is 20◦C. This means that the
saturation vapor concentration over a surface of water potential
zero (wi,0) is 0.92mol m−3 (Haynes, 2010). The realistic leaf
water potential values can be assumed to vary from −0.5 to
−2.2 MPa (Ambrose et al., 2016). It is difficult to assess what
the actual value for stomatal conductance would be during
such conditions due to the difficulty in measuring the actual
stomatal conductance (see Figure 5A) and also due to technical
limitations of measuring small transpiration rates at high RH,
when the transpiration may be also masked by condensation on
the surfaces (e.g., Altimir et al., 2006). The maximum stomatal
conductance for coastal redwood is likely to be around 5 mm
s−1 (Ambrose et al., 2009). Caird et al. (2007) compiled values of
nocturnal stomatal conductance measured across many different
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FIGURE 3 | Transpiration rate as a function of the saturation ratio S (S = RH/100%) and the water potential (A) and the CO2 assimilation rate as a function

of the CO2 concentration in the internal (sub-stomatal/intercellular) cavity and the water potential (B), both gas exchange rates normalized to the flat surface value.

species and the largest values of c. 5 mm s−1 were for deciduous
trees and shrubs. Increased stomatal conductance due to foggy
conditions has been reported in many studies (Dawson et al.,
2007; Reinhardt and Smith, 2008; Alvarado-Barrientos et al.,
2015). We assume that the realistic conductance values vary from
1 to 5 mm s−1. By using Equation (3) with the fixed value of RH
(100%) and the temperature (20◦C) and the above-mentioned
ranges for the water potential and stomatal conductance we
obtain the range of the reverse transpiration rates shown in
Figure 6. If the conductance is 2.5 mm s−1 and the potential−1.5
MPa, the reverse transpiration is 0.5×10−3 gm−2s−1. The reverse
transpiration may be short-lived if it equilibrates the leaves.
However, the obtained estimate for the reverse transpiration rate
is of the same order of magnitude as the measured downwards
sap flow in these trees (1.5 L h−1, which equals 0.6 × 10−3 g
m−2 s−1 given a total leaf area of 660 m2 (Burgess and Dawson,
2004). This sap flow rate is equal to∼5–7% of maximum daytime
transpiration values (Burgess and Dawson, 2004). Transpiration
will remain negative as long as RH is higher than 99% given a leaf
water potential of−1.5 MPa.

DISCUSSION

Our theoretical calculations demonstrate that the decrease in
vapor pressure in the sub-stomatal cavity in the leaves due
to negative water potential has a significant role in plant leaf
gas exchange. It will also induce foliar water uptake through
the stomata from ambient air even at RHs slightly below
100%. Although the effect of decreasing vapor pressure of
water and gases with decreasing water potential is a well-
recognized phenomenon in many other fields of science, its role
in plant stomatal water and CO2 exchange has been ignored. The
potential main reason for this is that its effect on stomatal gas
exchange is masked by other factors and therefore, it is difficult to
observe via standard gas exchange measurements. The masking
factors are (1) Differences in temperature between the ambient

air and the leaf will lead to a deviation of leaf internal vapor
pressures from the one calculated based on the air temperature;
(2) Stomata also typically close with decreasing water potential
(e.g., Buckley, 2005) to prevent e.g., excess xylem embolism
formation (Tyree and Sperry, 1989), and this increases WUE
independently (e.g. Brodribb, 1996); (3) Low leaf water potentials
can induce adverse effects on CO2 assimilation and WUE due to
metabolic impairment of photosynthesis (Flexas and Medrano,
2002, Chaves et al., 2003) and decreased mesophyll conductance
(Warren et al., 2004, Grass and Magnani, 2005) acting in the
opposite direction to decrease water use efficiency during low
water potentials.

Our calculations predict that the increase in WUE resulting
from the decreased vapor pressures of water and CO2 alone
is more than 5% in typical conditions of moist climates and
much larger in arid regions. This result suggests that interpreting
measured, drought-induced reduction in transpiration and
increase inWUE directly as stomatal closure without considering
the changes in vapor pressure of water and CO2 leads to biased
conclusions about leaf gas exchange during drought. In general,
the increase in the ratio of the aqueous to air phase concentration
with decreasing water potential applies also to the exchange
of other gases. For example, decreasing water potential would
also increase the solubility of oxygen to water at the air-water
interfaces, which would affect photorespiration. The solubility of
volatile organic compounds to the xylem sap would also increase
with decreasing water potential. The effect would be even
stronger for many of the biogenic volatile organic compounds in
comparison to CO2 since their partial molar volume is typically
larger than that of CO2.

Water uptake via leaves can be an ecologically important water
resource (Munné-Bosch et al., 1999; Caird et al., 2007; Breshears
et al., 2008; Limm et al., 2009). While other mechanisms of
water uptake operate simultaneously (e.g., foliar uptake through
the cuticle), (e.g., Kerstiens, 1996; Eller et al., 2013), reversed
transpiration by capillary condensation through stomata is based
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FIGURE 4 | Water use efficiency, normalized to the flat surface value,

as a function of the saturation ratio S (S = RH/100%) and the ratio of

the internal CO2 concentration to the ambient one, for three water

potential values: −1 MPa (A), −2 MPa (B), and −5 MPa (C).

on ubiquitous connection of sub-stomatal interfaces to apoplastic
water and only requires RH to be close to 100%. Therefore, it
may be an efficient, naturally occurring means of water uptake
for plants occupying areas of regular fogs such as the Californian
coast, the Namib Desert in southern Africa, or the Chilean
highlands. For example, tree structure and dynamics of stomatal
control in coastal redwood in the coastal Californian forest
would give good conditions for “reverse transpiration.” Coastal
redwoods have one of the largest leaf area indices known and
exert only weak stomatal control during nights (Burgess and
Dawson, 2004), while stomatal conductance during times of
CO2 assimilation have been found to be amongst the smallest
encountered anywhere (Koch et al., 2004). Recent studies have
reported foliar water uptake, and subsequent improvement of

FIGURE 5 | The ratio of the actual stomatal conductance to the

apparent stomatal conductance (see Equation 14) as a function of the

saturation ratio S (S = RH/100%) (A), and the ratio of the difference of

the ambient CO2 concentration and the internal CO2 concentration to

the difference against the apparent internal CO2 concentration as a

function of S (B) (Equation 16), both for three water potential values.

plant water status also in tropical cloud forests (Eller et al., 2013;
Goldsmith et al., 2013; Gotsch et al., 2014), and in boreal forests
(Berry and Smith, 2014).Water may also enter the leaves in liquid
form through stomata mediated by the presence of bacteria,
fungal hyphae and mucilage, or by a decrease in surface tension
by aerosol deposition (Burkhardt et al., 2012). Interestingly,
many species have been reported to gradually increase stomatal
opening during predawn hours (Caird et al., 2007), which is
exactly when RH is typically at its highest.

As we have shown bymodel calculations, decreasing leaf water
potential lowers the vapor pressure of water, which leads to a
reduction in the transpiration rate. Decreasing water potential
increases the solubility of CO2, which leads to increasing leaf
CO2 assimilation rate. From an ecological viewpoint, increasing
WUE with decreasing water availability could benefit plants
to grow in drier environmental conditions. The changes in
water vapor pressure may also cause biases in the estimates of
stomatal conductance and of leaf internal CO2 concentrations
from leaf gas exchange measurements especially when RH is
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FIGURE 6 | Reverse transpiration rate (mg m−2 s−1) as a function of

stomatal conductance and leaf water potential at a temperature of

20◦C and a relative humidity of 100% (Equation 3).

high and/or water potential is low. Manufactures of porometers
and leaf gas exchange measurement systems should look for an

option to incorporate leaf water potentials in measurement set-
ups. These theoretical predictions demand further experimental
study.
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