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The marine red seaweed Pyropia yezoensis has a haploid-diploid life cycle wherein
two heteromorphic generations, a haploid gametophyte and a diploid sporophyte,
are reciprocally generated from conchospores and carpospores, respectively. When
we treated gametophytic blades of P. yezoensis with H2O2, discharge of asexual
monospores was accelerated, resulting in increased numbers of gametophytic clones.
Production of sporophytes without fertilization of male and female gametes was also
observed. These findings indicate that oxidative stress can induce vegetative cells to
develop into monospores that produce gametophytes asexually and can sometimes
prompt carpospores to develop into sporophytes. The discovery of oxidative stress-
triggered asexual reproduction and -apogamy will stimulate progress in studies of
life-cycle regulation in P. yezoensis.
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INTRODUCTION

Plants are multicellular organisms that exhibit alternation of ontogenies, such as haploid
gametophyte and diploid sporophyte generations, during their life cycles (Coelho et al., 2011a;
Bowman et al., 2016; Horst and Reski, 2016), such that a single nuclear genome operates two
different developmental programs (Friedman, 2013). Developmental programs for haploid and
diploid generations are initiated by meiosis to produce haploid spores and fertilization of male and
female gametes to produce diploid spores, respectively. However, homeotic mutations that induce
apomixis, i.e., a switch between generation without fertilization or meiosis, have been reported
in terrestrial plants (Bell, 1992; Schmidt et al., 2015). Apomixis encompasses two developmental
processes, namely apospory (the occurrence of a gametophyte from a sporophyte without meiosis)
and apogamy (the occurrence of a sporophyte from a gametophyte without fertilization). Thus,
apomixis is a highly useful tool with which to elucidate the regulatory mechanisms of reprograming
required for generation switching.

The life-cycle of the red seaweed Pyropia yezoensis, previously referred as Porphyra yezoensis
and recently renamed according to the novel classification of Bangiales (Sutherland et al., 2011),
has been extensively studied and comprises the reciprocal appearance of free-living haploid
gametophytes and diploid sporophytes as leafy blades and filamentous conchocelis as shown
in Figure 1 (Sahoo et al., 2002; Shimizu et al., 2008; Blouin et al., 2011; Mikami et al., 2012;
Herron et al., 2013). Like other organisms, P. yezoensis requires fertilization and meiosis for the
transitions from gametophyte to sporophyte and from sporophyte to gametophyte, respectively
(Figure 1). Despite the accumulation of knowledge about its life cycle, mechanisms regulating the
generation-to-generation transitions in P. yezoensis have not been well studied to date. The present
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FIGURE 1 | Life cycle of the marine red seaweed Pyropia yezoensis. Monospores and carpospores are released from an asexual gametophyte and
fertilization-dependent carposporangium, respectively. However, apogamy produces carpospores directly from gametophyte without fertilization.

work sought to provide information about the effect of reactive
oxygen species on P. yezoensis reproduction, which is not known.
We here found that oxidative stress can promote the generation
switch through apogamy in P. yezoensis.

MATERIALS AND METHODS

Gametophytic blades of P. yezoensis strain U-51 were cultured
in PES medium, which was made using filtered natural seawater
with PES [Provasoli’s enriched seawater; Provasoli (1968)]
solution, under 60 µmol/m2/s irradiance with a photocycle

of 10 h light and 14 h dark at 15◦C. The PES medium
was continuously bubbled with filter-sterilized air and renewed
weekly. Gametophytes of ca. 10 mm length (whole blades) were
used for experiments. H2O2 was dissolved in distilled water
(DW) to create a 0.1 M stock solution. We employed total
six blades per experiment by dividing into three sets (two
individuals per set) to perform standing-culture using three
upper wells of a 6-well culture dish (Iwaki Sci Tech Div.,
Asahi Techno Glass, Japan) containing 5 mL PES medium for
2 weeks at 15◦C with addition of the H2O2 solution at working
concentrations indicated in the text or DW corresponding
to the maximum volume of the H2O2 stock solution. The
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concentration of the solutions did not exceed 1% after addition
to the medium. Culture medium was renewed weekly by
replacing gametophytes to a new well containing new medium.
After H2O2 treatment, the numbers of monospore germlings,
carpospore germlings and non-germinating spores in each
well were counted under an inverted light microscope (CKX-
41, Olympus, Tokyo, Japan) equipped with a camera (DP26,
Olympus).

RESULTS AND DISCUSSION

When each set of two P. yezoensis gametophytes was treated
with 0, 0.5, or 1.0 mM H2O2, production and release of
asexual monospores was accelerated (Figure 2A), although
effects of H2O2 varied among experiments (Table 1). Thus,
oxidative stress is one factor promoting monospore discharge
for asexual propagation. In plants, it is well known that
oxidative stress enhances photosynthesis (Foyer and Shigeoka,
2011) and stimulates Ca2+ influx (Mori and Schroeder,

FIGURE 2 | Number of germlings from monospores and carpospores
released from H2O2-treated gametophytic thallus. (A) Monospore
germlings. (B) Carpospore germlings. Error bars indicated ±SD of four
independent experiments (see Table 1).

TABLE 1 | Number of germlings from monospores and carpospores
released from H2O2-treated gametophytic thallus in four independent
experiments.

Conditions Monospore
germlings

Carpospore
germlings

Non-germinating
spore

Experiment 1

Control 91 0 5

0.5 mM H2O2 480 0 5

1.0 mM H2O2 1964 30 25

Experiment 2

Control 1 0 0

0.5 mM H2O2 442 0 5

1.0 mM H2O2 687 2 25

Experiment 3

Control 2 0 0

0.5 mM H2O2 37 0 0

1.0 mM H2O2 154 3 77

Experiment 4

Control 92 0 6

0.5 mM H2O2 1555 7 17

1.0 mM H2O2 2240 33 20

Two gametophytes were used for each assay (six individuals per experiment).

2004; Rentel and Knight, 2004). We previously reported
that a Ca2+ influx that requires photosynthetic activity is
responsible for monospore discharge in P. yezoensis (Takahashi
et al., 2010). Thus, it is possible that H2O2 treatment of
gametophytic thallus activates photosynthesis-dependent Ca2+

influx to promote release of monospores. This possibility would
suggest that P. yezoensis may harbor H2O2-dependent Ca2+

transporters.
We also observed an induction of apogamy resulting in

the production of sporophytes from released spores without
development and fertilization of male and female gametes
(Figure 3A), although at low-frequency (Figure 2B; Table 1).
Since the apogamous sporophytes generated conchosporangia
from which conchospores were produced and developed into
normal gametophytes (Figures 3B–E), carpospores generated
under oxidative stress conditions were indistinguishable from
those produced in conchosporangia via the normal life cycle
(Figure 1), suggesting diploidy of apogamous sporophytes,
although it should be confirmed. Thus, oxidative stress has the
potential to reprogram the developmental fate of a gametophytic
vegetative cell to produce carpospores from which sporophytes
develop. This finding represents the first evidence of abiotic
stress-induced apogamy in seaweeds.

Previously, it was reported that sporophyte development
from gametophytic cells could be artificially induced in the red
seaweed Pyropia pseudolinearis when free cells were prepared by
treatment of thallus with allantoin followed by homogenization
(Saito et al., 2008). Allantoin is a purine metabolite (Bai
et al., 2006) that activates jasmonic acid (JA) signaling in an
abscisic acid (ABA)-dependent manner in Arabidopsis thaliana
(Watanabe et al., 2014; Takagi et al., 2016). Although P. yezoensis
lacks endogenous JA, it contains ABA (Mikami et al., 2016). It is
possible that allantoin stimulates ABA biosynthesis in P. yezoensis
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FIGURE 3 | Oxidative stress-triggered apogamy in Pyropia yezoensis. (A) Sporophyte and gametophytes released from spores from H2O2-treated
gametophytic thallus. Most spores were monospores that developed into gametophytes. Enlarged view shows a sporophyte. (B) Filamentous sporophyte and
conchosporangia (enlarged view) developed from a carpospore produced by apogamy. (C) Conchospores produced from conchosporangia. (D) Gametophytes
developed from conchospores. (E) Discharge of monospores from gametophytes developed from apogamy-derived conchospores and normally growing
monospore germlings. Scale bars = 100 µm (A,B,E), 20 µm (C and enlarged views in A and B), and 1 mm (D).

cells, which might accelerate monospore production. In light
of our results, wounding-dependent production of H2O2 might
influence apogamy, because homogenization of allantoin-treated
thallus was required for preparation of free cells (Saito et al.,
2008). Indeed, sporophyte development by apogamy has been
observed when protoplasts were prepared from gametophytes
by artificial digestion of the cell wall (Waaland et al., 1990; Ar
Gall et al., 1993). Our observation of H2O2-induced apogamy
is consistent with these findings. Alternatively, the function
of allantoin as a nitrogen source in algae (Anita et al., 1980;
Prasad, 1983) suggests the involvement of nutritional conditions
in apogamy in P. yezoensis. Therefore, it is necessary to examine
whether ABA- and nitrogen-rich conditions induce apogamy in
P. yezoensis and P. pseudolinearis to identify factors related to the
initiation of apogamy in red seaweeds.

Elucidation of the relationship between the commitment to a
developmental fate and the regulation of life-cycle progression
is central to understanding the transitions between life-cycle
generations. The H2O2-triggered apogamy identified in the
present study suggests the presence of master regulators
positively and negatively controlling ontogenies of life cycle
generations in P. yezoensis as in terrestrial plants and the
brown alga (Peters et al., 2008; Mosquna et al., 2009; Okano
et al., 2009; Coelho et al., 2011b; Sakakibara et al., 2013; Horst
et al., 2016). Since H2O2 treatment of released monospores
did not produce any sporophytes (Takahashi and Mikami,

unpublished), the fate of asexual spores appears to be fixed
when they are released. Thus, we propose that precursors of
thallus-derived unicellular spores have a competency to develop
into both gametophyte and sporophyte, and that oxidative
stress sometimes stimulates the selection of the conchospore
developmental program before spore release. It is possible that
distinct factors determining the early developmental process of
monospores or carpospores before spore release might exist
in P. yezoensis. In fact, we have already demonstrated that
development of gametophytes starts with an asymmetrical cell
division of the monospore to produce functionally distinct
vegetative and rhizoid cells (Li et al., 2008) and also observed
that filamentous conchocelis is produced by budding of the
initial filament from a carpospore and subsequent elongation
via symmetrical cell division and branching (unpublished).
Therefore, reprogramming of developmental patterns might
be closely related to switching of genetic programs regulating
asymmetrical and symmetrical cell division. In addition, as in
moss and brown seaweed (Peters et al., 2008; Mosquna et al.,
2009; Okano et al., 2009; Coelho et al., 2011a,b; Sakakibara
et al., 2013; Horst and Reski, 2016; Horst et al., 2016), it is
possible that P. yezoensis has master regulators governing the
expression of genes required for determination of gametophyte
and sporophyte identities through asymmetrical and symmetrical
cell division, respectively. However, these factors remain to be
identified.
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Identification of master regulators and their target genes,
both of which would be involved in determination of the
developmental fate of unicellular spores from thallus, in
P. yezoensis would help in understanding the relationships
between expression of genetic programs regulating ontogenies
of each generation and activation of the master regulators.
In this respect, the artificial induction of apogamy reported
in the present study has the potential to provide a break-
through model system. In fact, apogamy in red seaweeds
has been reported in Bangia fuscopurpurea and Pyropia
haitanensis as spontaneously occurring (Notoya and Iijima,
2003; Yan et al., 2007), suggesting that apogamy is a natural
strategy for generation switching in certain red seaweeds. By
contrast, P. yezoensis apparently lacks this strategy, which is an
advantage for investigating the molecular mechanisms regulating
transitions of life-cycle generations in non-apomictic plants,
like A. thaliana and Physcomitrella patens (Mosquna et al.,
2009; Okano et al., 2009; Sakakibara et al., 2013; Horst et al.,
2016).

The oxidative stress-dependent apogamy we have discovered
in P. yezoensis provides novel insight into the developmental
plasticity of the transitions between gametophytes and
sporophytes in the seaweed life cycle and could be a good model
for the study of life-cycle regulation.
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