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The common assumption in potato virus epidemiology is that all daughter tubers
produced by plants coming from infected mother tubers (secondary infection) will
become infected via systemic translocation of the virus during growth. We hypothesize
that depending on the prevalent environmental conditions, only a portion of the daughter
tubers of a plant that is secondarily infected by viruses may become infected. To test
this hypothesis experimental data from standardized field experiments were produced
in three contrasting environments at 112, 3280, and 4000 m a.s.l. in Peru during two
growing seasons. In these experiments, the percentage of infected daughter tubers
produced by seed tubers that were infected with either potato potexvirus X (PVX),
potato Andean mottle comovirus (APMoV), potato potyvirus Y (PVY) (jointly infected with
PVX) or potato leafroll luteovirus (PLRV) was determined. Incomplete autoinfection was
found in all cases, as the percentage of virus infected daughter tubers harvested from
secondarily infected plants was invariably less than 100%, with the lowest percentage
of infection being 30%. Changing the growing site to higher altitudes decreased
autoinfection for all viruses. Therefore, the assumption of complete autoinfection of
secondarily infected plants were rejected, while the hypothesis of environmentally
dependent incomplete autoinfection was accepted. The findings help explain the
occurrence of traditional seed management practices in the Andes and may help to
develop locally adapted seed systems in environments of the world that have no steady
access to healthy seed tubers coming from a formally certified seed system. The results
obtained almost three decades ago are discussed in light of most recent knowledge on
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epigenetic regulation of host plant – virus interactions which allow for speculating about
the underlying biological principles of the incomplete autoinfection. A research roadmap
is proposed for achieving explicit experimental proof for the epigenetic regulation of
incomplete autoinfection in the pathosystem under study.

Keywords: autoinfection, plant viruses, seed potato systems, seed degeneration, food security, climate change,
epigenetics, gene-silencing

INTRODUCTION

Potato (Solanum tuberosum L.) seed tubers used for planting
can harbor latent pathogens that subsequently reduce emergence,
plant vigor, crop quality and/or yield. Since infected tuber seed
is an important source from which these pathogens spread, the
proportion of such tubers in a tuber seed lot can accumulate
with each consecutive generation, resulting in degeneration of
seed quality (Thomas-Sharma et al., 2016). Pathogens of many
types are known to infect potato seed, including viroids, viruses,
phytoplasmas, bacteria, fungi, and oomycetes (Stevenson, 2001).
Historically, seed-borne pathogens have been dealt with in several
ways, including selection of better looking mother plants and/or
tubers for seed, or acquiring seed from areas known to produce
a cleaner product (Young, 1990). For example, in the Andes
there is a long-standing practice of producing seed in the cooler
highlands and even of moving seed to the highlands to make
it more vigorous (Thiele, 1999; De Haan and Thiele, 2003).
Propagation systems for pathogen-free seed tubers have been
developed that provide growers in industrialized countries with
a readily available source of healthy planting stock (Frost et al.,
2013). Progress toward developing similar pathogen-free seed
propagation systems in the small-holder potato growing regions
of the low-income countries has been slow and represents a
major production limitation (Thiele, 1999; Thomas-Sharma et al.,
2016). Typically, small-holder farmers in low-income countries
still produce their own seed or acquire it locally from other
farmers, and this seed represents many field generations that have
never passed through a process of pathogen elimination.

The Andean region is the origin of the cultivated potato and
represents an interesting case for studying seed degeneration.
Studies done in traditional Andean potato seed systems over the
past 30 years found considerably less than 100% of tubers infected
with potato viruses. This was true for viruses that are transmitted
by contact (potato potexvirus X (PVX), potato Andean mottle
comovirus (APMoV)) or vectored by aphids [potato potyvirus Y
(PVY) and potato leafroll luteovirus (PLRV)] (Bertschinger et al.,
1990b; Fankhauser, 2000; Haan, 2009; Pérez Barrera et al., 2015).
In these studies, PVX, which singly does not cause severe yield
loss, was frequently found in relatively high incidence, while PVY
and PLRV, which can cause severe yield loss, were generally rare
(Bertschinger et al., 1996; Scheidegger et al., 1996; Pérez Barrera
et al., 2015).

A potato virus disseminates by infecting during the current
growing season a healthy plant subsequently producing infected
daughter tubers which disseminate the virus further if they are
used as mother tuber, i.e., seed tuber for the plantings of the
next season. The terms of primary and secondary infection
are commonly used in potato virus epidemiology for the two

infection types since many years (see e.g., Beemster, 1967;
Hooker, 1982). Primarily virus infected plants produce daughter
tubers a proportion of which is usually virus infected (see e.g.,
Beemster, 1967). If a potato seed tuber (mother tuber) is virus
infected, the plant grown from this tuber becomes systemically,
so-called secondarily infected, i.e., the pathogen moves through
the plant vascular system and eventually reaches, i.e., infects,
the daughter tuber tissue, produced by this same plant. While
several terms have been used for systemic infection of vegetatively
propagated “seed,” such as “autoliberation” for potato viruses
(Bertschinger et al., 1990a) or “reversion” (Pacumbaba, 1985),
“recovery” (Fargette et al., 1994, 1996) or “self-elimination”
(Jennings, 1960; Rossel et al., 1988) for cassava viruses, the
common principle behind represents “autoinfection” as defined
by Robinson (1976). This is an infection in which the donor
(infector) host individual is the same as the recipient (infected)
host individual. The term describes a general principle of plant
pathogen propagation, which is also applicable to systemic virus
infection of the potato daughter tubers produced by an infected
mother tuber. The term autoinfection clearly represents in a
single word without further descriptive expressions the biological
situation of daughter tubers produced by secondarily infected
plants, which become themselves systemically infected. This is
why we subsequently continue to use this term.

Incomplete systemic infection of daughter tubers from mother
tubers infected by mop-top furovirus (PMTV) or tobacco rattle
tobravirus (TRV) was reported some 40 years ago (Cooper et al.,
1976; Engsbro, 1976). This was recently confirmed with new data
for mop-top furovirus (Carnegie et al., 2010; Davey et al., 2014).
However, these reports are restricted to few potato-growing zones
of the world. There have also been not widely diffused reports that
autoinfection may be incomplete also with other more common
potato viruses (e.g., Baldauf, 2008). But it is yet commonly
held that all daughter tubers of secondarily infected plants will
become infected, as explicitely stated in official technical guidance
documents (Department of Agriculture and Food, 2016), or
implicitly referred to it by not precisely distinguishing between
primarily and secondarily infected plants and with what is meant
with “infected” (Hooker, 1982; Jayasinghe, 1988).

Considering the limited access to clean-seed systems in the
Andes, incidence of systemically infecting seed-borne pathogens
such as viruses would be expected to become high over many
successive generations with primary and secondary infections
and on-site propagation. With 100% autoinfection a modest
level of within-season primary disease spread and random seed
selection, the overall infection incidence in a tuber progeny
should rise successively with every generation to eventually reach
high levels, potentially 100%, unless some factors are acting to
limit the infection process, or reduce infection incidence once
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it has occurred. Thus, the low incidence of some major viruses
found in Andean potato varieties would support the hypothesis
that autoinfection from secondarily infected mother plants to
daughter tubers must be incomplete under these circumstances.
This incomplete autoinfection could be because not all sprouts or
stems from an infected mother tuber will become infected, giving
rise to healthy daughter tubers, or because not all daughter tubers
on the same infected stem will become infected.

Here, we report on an experimental test of the hypothesis that
environment-driven factors may limit autoinfection with four
important potato viruses: PVX, APMoV, PVY, and PLRV and
we confront the results of these experiments with most recent
findings related with virus propagation. These experiments were
done in 1987 and 1988 at different altitudes in Peru and were
designed to quantify the percentage of daughter tubers becoming
infected from mother tubers that were infected by each of the four
mentioned viruses. The results clearly indicated that the tuber
progeny from infected mother tubers is infected at an incidence
much below 100%. The data were initially used to validate a
model for temperature-modulated seed degeneration by potato
viruses (Bertschinger et al., 1995a,b), which provided implicit
evidence for the existence of such phenomenon. However, the
findings were not published on their own, primarily because
they appeared incompatible with the biological theory at that
time. The authors believe that these results should now be
made available to the scientific community for two important
reasons. First, our knowledge of host-pathogen interactions has
greatly advanced indicating how plant defense systems may
limit the accumulation and spread of viruses within infected
plants (Burgyán, 2006). The above-mentioned results must be re-
discussed in view of the nowadays deepened knowledge of host-
pathogen interactions with the opportunity to possibly come up
with further research questions and sharpen our knowledge in
potato virus epidemiology. The second reason is more related
to the current on-farm situation. Potato yields are relatively
poor in low and middle-low income countries (FAO, 2013) and
a major cause of this low productivity is seed degeneration
(Fuglie, 2007; Gildemacher et al., 2009; Cromme et al., 2010;
Thomas-Sharma et al., 2016). The re-valued results of the above-
mentioned studies could contribute to creating an integrated seed
health strategy for potato making seed systems more sustainable.
To address the constraint of seed degeneration, Thomas-Sharma
et al. (2016) recently outlined such a strategy, within which
host plant resistance and on-farm disease management play
integral roles. They showed that such an approach, including
positive selection and the regeneration of degenerated seed, can
be used for designing adequate and sustainable seed systems
to improve potato productivity in parts of the world that lack
access to a continuous supply of healthy seed (Gildemacher et al.,
2012; Schulte-Geldermann et al., 2012; Thomas-Sharma et al.,
2016).

Thus, there is a need to recheck and confirm the Peruvian
data on incomplete autoinfection; a greater understanding of
the phenomenon promises to open up new perspectives that
could benefit the locally adapted seed systems and eventually
increase food security. We therefore first describe, how the
Peruvian field data on autoinfection with potato viruses were

obtained, document the evidence for the observed, environment-
dependent phenomenon of incomplete autoinfection, and
subsequently challenge these results with current knowledge in
plant virology. Finally, we evaluate our findings and discuss
their relevance. We conclude by hypothesizing that tuber
infection with potato viruses is limited or even avoided by a
mechanism preventing daughter tubers of an infected mother
tuber to become infected and that this mechanism is temperature
driven.

REFERENCE FIELD DATA

Viruses
The experimental work was carried out with potato seed tubers
infected with PVX, APMoV, PVY, and PLRV. All PVY infected
seed tubers were co-infected with PVX. Damage from PVY is
especially high if the plant is co-infected with PVX (Gibson,
1991). The probability for co-infections is high in Peru in
view of the extremely high PVX incidence (Monasterios dela
Torre, 1966; Bertschinger et al., 1990a,b; Martin-Hernandez and
Baulcombe, 2008). For PVY and PVX, virus strain prevalence in
the seed tubers utilized for this research was determined at the
International Potato Center in Peru (International Potato Center
(CIP), 1986, 1988, 1989) in view of the fact that contrasting
strains had been identified and for therefore better characterizing
the experimental situation. Approximately 90% of the PVY
infected tubers were positive for a PVYN-like strain, while
the remaining 10% were infected by a PVYO-like strain. PVX
infections belonged to the common O serotype. These strains
were the predominant types in the Andean Highlands at the time
of the study (Fernandez-Northcote, 1990; Fernandez-Northcote
and Lizárraga, 1991).

Research Sites
Virus-infected tubers were planted in 1987 in three locations
representing different agroecological potato growing zones in
Peru: Imperial (department: Lima; province: Cañete; district;
Nuevo Imperial; latitude: 13◦0′ S; longitude: 76◦2′ W; elevation:
112 m a.s.l.), Santa Ana (Junin; Huancayo; El Tambo; 12◦1′ S;
75◦1′W; 3280 m) and Chicche (Junin; Jauja; Apata; 11◦5′ S; 75◦2′
W; 4000 m) (Table 1). One plot per treatment was planted at each
location in 1987, and the experiment was repeated in 1988 with a
minor modification in the treatments described below.

Potato Genotype
The cultivar Yungay (Solanum tuberosum ssp. tuberosum ×
S. tuberosum ssp. andigena) was chosen because it was widely
grown in all zones and susceptible to each of the four viruses used
in our study (International Potato Center (CIP), 1986). Infected
seed tubers came from on-going experiments in the Mantaro
Valley or were multiplied there for the sake of this experiment.
Before planting, seed tubers were tested by the enzyme linked
immunosorbent assay (ELISA) and selected for single infections
with PVX, APMoV and PLRV, and for co-infections of PVX with
PVY.
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TABLE 1 | Selected information on experimental sites and crops in Peru.

Name of site Imperial Imperial Sta. Ana Sta. Ana Chicche Chicche

Season 1987 1988 1987/88 1988/89 1987/88 1988/89

Site identity

Elevation (m) 112 112 3280 3280 4000 4000

Topography Flat desert belt valley on the
Pacific Ocean (up to 800 m)

Bottom of the inter-Andean
Mantaro valley (2900–3300 m)

Slope on mountain range between
Mantaro valley and jungle

Agriculture type Irrigated, commercialized Rain-fed, partly commercialized Rain-fed, subsistence-oriented,
not commercialized

Planting-harvest information

Average daily mean temperature (◦C) 18 19 16 12 8 8

Rainfall (mm) 3 1 642 707 −a −a

Radiation (MJ/m2/day) 9.6b 12.1c 22.2d 19.9e −a −a

Planting informationf

Week of the year 29 35 49 45 45 41

Average max. temp. (◦C) 25 19 26 20 14 20

Average min. temp. (◦C) 14 13 6 5 8 3

Harvesting information

Week of the year 50 4 21 17 21 17

Week after planting 21 21 24 24 28 28

Average max. temp. (◦C) 29 27 26 21 13 13

Average min. temp. (◦C) 15 19 4 3 2 3

a Incomplete data, or no data available. bCIP Annual Report 1988, average of weeks 18–48, 76◦57′ longitude (W), 12◦05′ latitude (S), 240 m. cCIP Annual Report 1989,
average of weeks 18–48, same site as for b. dCIP Annual Report 1988, average of weeks 48–21, same site as for b. eCIP Annual Report 1989, average of weeks 48–21,
same site as for b. fThe modern potato cultivar Yungay (Solanum tuberosum ssp. tuberosum x S. tuberosum ssp. andigena) was planted.

Field Design, Management, and Data
Sampling
Seed tubers (mother tubers), confirmed to be infected according
to the testing described below and consequently later giving
rise to secondarily infected plants, were planted jointly with
healthy seed tubers at the above mentioned research sites in
plots with 10 rows, each of 10 m length with 1 m between-
row spacing and 0.33 m between-plant spacing, giving a total
of 300 plants per plot. Separate plots were planted for each
virus species. The infected and the healthy seed tubers were
uniformly distributed in each plot of 300 plants (Campbell and
Madden, 1990), i.e., healthy and infected seed tubers were evenly
distributed in the experimental field plots, while the position of
each secondarily infected plant was marked and registered to
be able to harvest their tubers for the purpose of this study.
The plots were enlarged by extending each row by 2 m at both
ends and by adding two border rows adjacent to rows 1 and 10,
where on-farm sanitation (weeding and insecticide spraying if
needed) was applied. This was to reduce co-infection of daughter
tubers with other viruses due to primary infection of the mother
plant that could possibly interfere with systemic tuber infection
with the viruses under study. Plants received 90-180-180 kg ha−1

of N-P2O5-K2O at planting and a further 90 kg N ha−1 at
hilling. Symptoms of secondarily infected plants were evaluated
(presence or absence of symptoms) 6–10 weeks after planting,
by checking whether secondarily infected plants were visible or
not and whether the within field position of such plants was
confirmed. Daily minimum and maximum temperatures were
measured 1–2 m above ground and missing data were treated as
described by Coakley (1989). The experiments were performed

over two growing seasons (1987, 1988), by planting plots with
the same experimental design but in a different field at the same
site.

Virus Testing
At harvest of the experimental plots, four randomly selected
daughter tubers from each secondarily infected plant were
collected. These tubers were stored before testing for virus
infection (procedure see below) in paper bags (four tubers per
bag, i.e., per plant) placed in wooden trays for 1–2 months
after harvest at ambient temperature. Bags were sheltered from
wind and rainfall, and protected from tuber moth (Phthorimaea
operculella) and other storage insects with Sevin R© (carbaryl dust)
as appropriate. From the four tubers harvested per plant and
stored as mentioned above, three tubers were tested with ELISA
to determine virus presence as described below.

Infection of secondarily infected mother tubers was
determined using ELISA on sprout sap after having been
stored at 20◦C in the dark with more than 60% relative humidity
for a minimum of 5 weeks. This insured high virus concentration
for subsequent ELISA tests. Sap from tuber sprouts was extracted
by grinding jointly two sprouts per tuber in extraction buffer
(phosphate buffered saline, 1%; PVP, 0.2%; egg albumen, 0.1%;
Tween-20, 0.05%) for ELISA (1:5 w/v) (Gugerli, 1979, 1986).
ELISA was performed as described below. Only tubers with
proven infection as identified by this procedure were planted to
give rise to secondarily infected plants for later measurement of
virus infection of daughter tubers.

In preparing daughter tubers for ELISA-testing, tuber
dormancy was broken with Rindite (250 ml/m3) or Bromoethane
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(200 ml/m3) treatment (Bryan, 1989) for 48 h at 20–25◦C
in a black box having an internal ventilation system and a
capacity of eight trays holding approximately 50 kg of tubers.
Trays were maintained afterward for 5 weeks in darkness at
20–25◦C and 60–70% relative humidity. Daughter tubers were
tested by analyzing tuber sap extracted by using a plant sap
extractor (Tecan AG, Hombrechtikon, Switzerland) (Gugerli,
1979, 1986) (ELISA specifications see below). The accuracy of
the ELISA assays was ensured by the following procedure, in
order to prevent “false negatives” (i.e., tubers with an ELISA
result indicating no infection while, in fact, the infection was
not detected by ELISA due to limited sensitivity): 100 daughter
tubers per Rindite or Bromoethane treatment lot were selected
composed by tubers with potentially high likelihood of false
negatives. Such a high likelihood was attributed to daughter
tubers from secondarily infected plants that were classified by the
daughter tuber test as ELISA positive on only one or two daughter
tubers per plant but not on all three tested tubers. Confirmation
tests were performed on tuber sprout sap or leaf extract from 4
to 5 weeks old plants grown from the selected 100 tubers in an
aphid-proof screen house (grow-out tests). If more than 5% of
tubers that did not seem to be infected based on the ELISA-test
were in fact infected according to the results of the grow-out test,
the entire lot was discarded and the data were not used in the
subsequent data analyses (occurred in <5% of the tuber batches
tested).

ELISA Procedure
The ELISA test (Clark and Adams, 1977) was performed with
polyclonal immunoglobulin (IgG) antisera by the International
Potato Center (CIP) for PVX, PVY, and APMoV and with
monoclonal antibodies for PLRV (Bioreba AG, Reinach,
Switzerland). Polyclonal alkaline phosphatase (AP) conjugates
were produced using a standard protocol giving a final
concentration of 2580 U AP/0.646 mg IgG/ml. Optimal
concentrations for plate coating with IgG and conjugate solution
were determined for each antibody by ‘checkerboard’ testing
(Converse and Martin, 1990). For coating, polyclonal IgG
concentration was applied at 0.66–1.33 µg/ml, depending on
the antibody lot. Enzyme conjugates were diluted 750- to 1500-
fold. Monoclonal antisera were diluted 1000-fold. Coating IgG,
plant extracts and enzyme conjugates were applied at 230, 180,
and 200 µl/well, respectively, and incubated at 30◦C for 5 h, at
4◦C overnight, and at 30◦C for 4 h, respectively. Nitrophenyl-
phosphate was applied at 1 mg/ml substrate solution, 160 µl/well.
Special additives included egg albumin (2% w/v) for extraction
and conjugate buffer, and 1 mmol MgCl of conjugate buffer
(Gugerli, 1986). Plates were evaluated visually on a backlit
screen comparing yellowing intensities of particular wells to the
reference wells with buffer, healthy and positive standard extracts
(three wells per plate). Absorption values (405 nm) of some plates
were measured (Titertek Uniskan II, Flow Laboratories, McLean,
VA, USA) to ensure that the tuber treatment and incubation
procedures were effective in giving high virus concentrations
for easy visual identification of positive wells, and that antisera
reactivity remained constant.

Statistical Analysis
The number of secondarily infected plants considered per season
and site varied according to the availability of secondarily
infected plants grown from uncut seed tubers. Three sources
of variance are to be distinguished for this study: virus, season
(year) and site. The percentage of infected daughter tubers was
calculated by summing up for each of the four virus classes
studied the frequencies of tubers that were determined to be
virus infected or uninfected in one particular season and site.
Frequencies were then compared using Fisher’s exact test for
2×2 tables. This test enables comparison of low and high
frequencies (Fisher, 1990). For each virus, all possible pair-wise
comparisons between seasons and sites were made. Based on this
analysis, the significance of differences between each frequency
was determined and represented with equal or unequal letters
in the respective figures and tables. The higher frequencies were
compared using χ2- tests.

Evidence of Incomplete Daughter Tuber
Infection
Incomplete autoinfection was found in all cases, as the incidence
of virus infected tubers harvested from secondarily infected
plants was invariably less than 100%. The phenomenon was
highly variable, depending on virus and location, but with a
tendency to have more autoinfection at the lowest altitude. The
highest value of autoinfection was obtained with PLRV at 112 m
(88%) in 1987 although this was not significantly different from
the PLRV percentage observed in 1988 (83%) (Figure 1). Also
PVX, APMoV, and PVY (together with PVX) were detected in
over 80% of tuber infections at 112 m. The lowest percentage of
infection (30%) was observed for APMoV at 4000 m in 1988 and
1989 (Figure 1).

The effect of the changing environment at the experimental
sites was evident for all viruses. The extent of decreasing tuber
infection while increasing elevation varied across sites and
seasons depending on the virus. For PVX, there were significant
differences between all growing sites, while the tuber infection
level was in all seasons the same at one particular site. For
APMoV, however, there were also significant differences in
tuber infection between seasons at one particular site (at 112
and 3280 m) in addition to the differences across sites. Sharp
decreases occurred for PVY and PLRV at elevations between
112 and 3280 m, with 27 and 50% average reduction in tuber
infections, respectively. Infection did not decrease any further at
higher elevations (4000 m).The pattern of symptom expression
was correlated to the percentage of tuber infection for PVY, PLRV,
and APMoV and was inversely related to the elevation of the
potato production plots (Table 2). In contrast, PVX symptom
expression increased at higher elevation. The highest percentage
of secondarily infected plants with symptoms was observed for
PLRV at 112 m (99%), while the lowest was observed for PVX
also at 112 m (0%). This seems surprising at first instance, since
a high systemic infection of tubers suggests high virus titres
which – even if only assumingly – might relate to high symptom
expression. One explanation for this unexpected result could be
that genetic processes governing altered virus replication and
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FIGURE 1 | Tuber infection (% infected tubers) of plants secondarily infected with PVX, APMoV, PVY and PLRV in three agro-ecological zones of
Peru. The cultivar Yungay (Solanum tuberosum ssp. tuberosum x S. tuberosum ssp. andigena) was used. Numbers in columns represent the number of analyzed
plants. Values within columns having the same letter and corresponding to the same virus are not significantly different in a comparison with Fisher’s exact test
(P ≤ 0.05). Seed tubers infected with PVY were co-infected with PVX. No data are available for PVY for the seasons 1987 and 1987/88, respectively (N/A). Adapted
from Bertschinger (1995).

translocation as components of ‘resistance’ sensu Cooper and
Jones (1983) may not be the same as those governing symptom
expression, being a component of plant ‘tolerance/sensitivity.’
These genetic processes may respond differently to contrasting
environmental conditions in case of PVX. It can be concluded
that symptom expression is in general not governed by the
same mechanisms as a limitation of autoinfection of daughter
tubers of secondarily infected mother plants with potato viruses.
Furthermore, symptom evaluation is generally not an appropriate
method for detecting virus-infected plants under Peruvian
conditions in the case of PVX.

DATA RELIABILITY

Grow-out tests (see ‘virus testing’ under materials and methods)
did not provide evidence for infected tubers that were not
detected by the ELISA-testing. There was 99% compliance
between the proportion of daughter tubers that were infected
with PLRV at 112 m in 1987 (88%) with the proportion of

plants with PLRV symptoms in the respective grow-out test. The
results of the grow-out tests and the other precautions taken to
ensure accurate results (care in tuber storage and confirmation
testing and grow-out plots; see ‘reference field data; virus testing’)
assured reliability of ELISA-results, avoiding false negatives and
assuring that daughter tuber considered to be healthy were
indeed healthy and that the calculated autoinfection rates are
trustworthy.

Challenging Experimental Results with
Current Knowledge in Plant Virology
Several aspects of current knowledge were reviewed to assess
their relevance to reduced autoinfection of daughter tubers from
secondarily infected mother plants. These are:

– Host plant genetics;
– Mature plant resistance;
– Environmental factors;
– Anti-viral gene silencing and epigenetic effects.
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TABLE 2 | Symptom expression of plants that were secondarily infected with PVX, APMoV, PVY, and PLRV in three agro-ecological zones of Peru
(percent of plants with symptoms, cultivar Yungay a,b).

Plot Main symptom Site Elevation (m) Season Number of evaluated plantsc Plants with symptoms (%)d

PVX Mosaic Imperial 112 1987 208 0 b

1988 206 4 b

Sta. Ana 3280 1987, 1988 242 17 a

Chicche 4000 1987, 1988 64 66 c

APMoV Severe Imperial 112 1987 196 92 a

Mosaic 1988 195 63 c

Mottle Sta. Ana 3280 1987, 1988 251 79 b

Chicche 4000 1987, 1988 120 38 d

PVYe Severe Imperial 112 1987 151 91 a

Mosaic 1988 124 93 a

Rugosity Sta. Ana 3280 1987/88 33 64 b

Chicche 4000 1987/88 167 31 c

PLRV Leafrollf Imperial 112 1987 154 99 a

1988 56 80 b

Sta. Ana 3280 1987/88 28 75 c

Chicche 4000 1987/88 132 2 d

aSolanum tuberosum ssp. tuberosum x S. tuberosum ssp. andigena. bHealth status of seed tubers was verified by ELISA. cSymptom evaluation 6–10 weeks after
planting. dNumbers which belong to the same virus and which are followed by the same letter are not significantly different in a χ2-test (P ≤ 0.05). eSeed tubers were
co-infected with PVX. fLeafroll is a complex of symptoms typical for PLRV (leaf-rolling, especially of lower leaves, yellowing, reduction of the angle between leaf axis and
stem, crinkle).

HOST PLANT GENETICS

Genetic factors of the host plant were shown to be involved
in autoinfection with plant viruses for other pathosystems with
autoinfection being an important component of host plant
resistance (Fauquet et al., 1988; Fargette et al., 1996). Potato
germplasm has not been characterized so far with regard to its
genetic variability for autoinfection of secondarily infected plants,
neither have the underlying genomics and their interaction
with the environment been studied. However, genetic variability
for systemic tuber infection in primarily infected plants has
been reported, as shown for PLRV (Syller, 1991, 1994, 2003;
Difonzo et al., 1994) or PVY (Gibson, 1991). Also, the results
of various virus incidence surveys reported for a wide variety of
potato genotypes in the Andes (Monasterios dela Torre, 1966;
Fankhauser, 2000) point at genetic variability, even if survey data
are not a compelling proof for genetic variability with regard
to systemic tuber infection factors. Nonetheless, the surveys
strongly support the hypothesis that reduced autoinfection may
occur in many Andean potato genotypes and that autoinfection
may constitute a general mechanism of virus-host pathosystems
under Andean conditions. In view of the results of the studies
cited, it can be concluded that host plant genetics are a major
driver of a limited autoinfection in potato virus pathosystems.

MATURE PLANT RESISTANCE

This kind of resistance explains partial tuber infection in
primarily infected plants. Beemster (1972) demonstrated for
PVY that the older the plant when it becomes (primarily)
infected, the more resistant it is in terms of the percentage of

tubers that become infected (‘age’ or ‘mature plant’ resistance).
Other studies present similar results for PLRV (Barker, 1987;
Difonzo et al., 1994; Whitworth et al., 2000) and PVY (Gibson,
1991). This was explained by the fact that the later the plant
becomes infected, the less time there is available and the less
conducive the conditions are for virus replication, accumulation
and systemic translocation inside the plant. Daughter tubers of
primarily infected plants might consequently escape infection,
be it because of less physiological time for virus multiplication
and translocation for reaching tuber tissues or be it because
of meristem exclusion mechanisms for virus invasion yet to be
proven.

However, both mechanisms of limiting tuber infection can be
excluded for secondarily infected plants: First, the period during
which viruses can multiply, translocate and invade daughter
tubers is not limited in secondarily infected plants, but rather
lasts the entire seasons from planting to harvest. Thus, time is
not a limiting factor for virus particles to invade tuber tissue.
Second, if there were a meristem exclusion mechanism against
virus invasion, more developmental time should result in less
exclusion while the contrary was observed: at high altitudes,
daughter tuber infection was lower than at low altitudes, while
there was in fact 3–7 weeks more growth time available at high
altitudes for the virus to multiply and translocate systemically
(Table 1; Figure 1).

ENVIRONMENTAL FACTORS

The diurnal temperature variations between the different
experimental sites of this study were extremely different
(Figure 2), providing a range of contrasting environments for
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FIGURE 2 | Minimum and maximum temperatures at experimental sites representing three potato growing zones in Peru. Only monthly data were
available for the Imperial site in 1987. Republished from Bertschinger (1995).

studying plant–virus interactions. Temperature has a major and
direct impact on virus behavior and the interactions of potato
viruses with their host plant or insect vector. Primary infection
with PVX or with PVYN or PVYO is altered by temperature
(De Bokx and Piron, 1977; Tamada and Harrison, 1981). The
same is true for systemic translocation of PVX, PVYN and PVYO

(Wislocka, 1982; Adams et al., 1986), replication of PVX, PVY
and PLRV (Adams et al., 1986; Gase et al., 1990), resistance
of potato genotypes to potato virus M (Carlaviridae), PVX,
PVY and PLRV infection (Gase et al., 1990), and replication of

different strains of PVY (De Bokx and Piron, 1977). Additionally,
temperature has been shown to alter cell-to-cell movement of
viruses, i.e., the expression of viral encoded transport functions
(e.g., for Potyviridae) (Zimmern and Hunter, 1983; Dougherty
and Carrington, 1988). All these studies provide evidence for
the fact that temperature affects plant–virus interaction for
primary infections. The effect of temperature on secondary
infections is less well-documented. PLRV accumulation in leaves
of secondarily infected plants has been shown not to vary
with temperature (Tamada and Harrison, 1981; Syller, 1994).
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However, even if experimental evidence is not yet available in all
aspects mentioned above, many of the mechanisms documented
by studies addressing primary infections are likely to impact
also on systemic virus infection in secondarily infected plants.
Interestingly, a temperature-driven model for autoinfection with
potato viruses, relating accumulated developmental heat for virus
proliferation of daughter tubers of secondarily infected potato
plants (Bertschinger et al., 1995a) has been able to reproduce
accurately the autoinfection documented in this paper, calibrated
by the particular diurnal temperature variations observed in
this study (Figure 2). Consequently, it can be hypothesized that
temperature is a major factor in affecting viral replication and
translocation and this may explain why temperature also affected
autoinfection in our study.

Low light intensity (irradiance) was shown to significantly
increase the severity of mosaic disease caused by potato virus
X and potato virus Y (Draper et al., 2002). This was explained
by a tentative impact of irradiance on plant–virus interaction in
epidermal cells by altering “local acquired resistance” (but not
“systemic acquired resistance”) as evidenced with tobacco mosaic
tobamovirus (TMV) (Chessin, 1982). However, if applying this
knowledge to the symptom expression or autoinfection data from
Peru at locations with different levels of irradiance (see Table 2),
no conclusive pattern arises. Virus-induced leaf lesions, such as
a necrosis, are associated with a high respiratory rate of plant
cells. Substances involved in respiratory processes accumulate
particularly in cells around the necrotic lesions (Yamaguchi, 1960;
Parish et al., 1965). Only 60% of dioxygen available at 0 m
a.s.l. is available at 4000 m a.s.l., but in our study symptom
expression of PVX was observed to be higher at higher altitudes
(Table 2). Therefore, the scientific data, available so far, on effects
of irradiance or dioxygen concentration, are not consistent with
the relationship found in this study between the experimental site
(i.e., its altitude related with a specific irradiance and dioxygen
level) and virus symptom expression or autoinfection.

ANTI-VIRAL GENE SILENCING AND
EPIGENETIC EFFECTS

At the time, when the materials presented in this paper were
produced, biological theory excluded an active reaction of the
plant against the invasion of a virus. However, nowadays, there
is scientific evidence for RNA-silencing, a plant mechanism
that limits the accumulation and spread of viruses after an
infection, and for RNA silencing suppression by plant pathogens:
defense, counter-defense, and counter-counter-defense (Pumplin
and Voinnet, 2013; Sansregret et al., 2013). It has also been
reported, that potato viruses are no exception to this (Voinnet
et al., 1999). It is now known whether epigenetics may play
a role in potato virus gene silencing (Dalmay et al., 2000).
It has been found that temperature affects the regulation of
RNA gene silencing and its pathogen regulated suppression. An
increased temperature may, e.g., reduce suppression of antiviral
gene silencing. But the effect of high temperature on antiviral
RNA-silencing and pathogen-mediated suppressor of silencing
pathways is not yet fully understood (Qu and Morris, 2005).

Epigenetic effects are increasingly understood and potato virus
X is one of the model organisms being studied. But many aspects
require further elucidation before full comprehension is achieved
(Rajeevkumar et al., 2015).

Experimental proof is still lacking that the incomplete
autoinfection with potato viruses found in this study is due
to temperature-driven epigenetic effects. However, the above-
mentioned recent findings in understanding gene-silencing
phenomena encourage studying whether these may contribute to
observed partial autoinfection with potato viruses reported in our
study. In this respect, we consider it promising that a model for
temperature-modulated autoinfection (Bertschinger et al., 1995a)
was accurately calibrated by the experimental autoinfection data
obtained and the prevalent temperature fluctuations presented in
this study (see Figures 1 and 2).

EPIDEMIOLOGICAL AND
AGRONOMICAL RELEVANCE

In traditional seed systems in the Andes, there is no steady
supply of healthy seed delivered by a formal seed production
system, as there is in industrialized countries. However, partly
because of incomplete autoinfection, as shown below, there is
in epidemiological terms under certain growth conditions no
ultimate necessity of such a supply for preventing low yields
because of potato virus epidemics. Assuming random selection
of seed tubers from a harvested tuber lot, as well as ambient
circumstances where autoinfection is lower than 100% and a
low within-season infection rate occurs (i.e., few or no primary
infections), e.g., due to low density or minimal prevalence of
vectors, the incidence of virus-infected plants will approach
zero in consecutive planting generations. This phenomenon may
be offset by non-random selection of seed (particularly by a
tendency to pick smaller seed which may disproportionately
represent virus-infected plants) and/or by high primary infection
rates. The interplay of degenerative and regenerative factors
could explain why virus incidence in farmers’ seed used in the
Andes is often found to be quite low despite the lack of a
seed system providing virus-free seed (Bertschinger et al., 1990b;
Haan, 2009; Pérez Barrera et al., 2015).

The effect of the three growing sites with contrasting altitudes
on autoinfection efficiency in our study also implicitly explains
the benefits gained by moving seed from sites at lower to higher
elevations, a practice commonly applied by farmers in traditional
Andean potato systems (Thiele, 1999). It appears that farmers
cleverly made use of the reduced efficiency of autoinfection
at higher altitudes to maintain crop productivity and prevent
degeneration.

CROP MANAGEMENT, POSITIVE
SELECTION, AND REGENERATION OF
DEGENERATED SEED

Crop management practices in farmers’ fields differ across
agro-ecological zones of Peru represented in this study. For
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instance, farmers in these different zones may use different
planting densities, plant nutrition and other parameters that
influence crop performance, affecting tuber size, tuber numbers
per plant and other variables. These management differences
may also alter plant metabolism, which in turn may impact
virus-plant interactions. To control for these potential crop
management effects on autoinfection rates, crop management
practices were standardized (e.g., uniform mineral fertilization)
in all experimental fields of this study.

As noted above, farmers in the Andes have traditionally used
altitude to manage and even reverse seed degeneration, but there
are additional management options. For example, seed tuber
management and crop management (mainly related to managing
the maturity resistance), and early harvesting can reduce the level
of autoinfection (Struik and Wiersema, 1999). Additionally, a
technique to maintain or even improve seed quality has been
widely advocated and disseminated by the International Potato
Center for application in regions where farmer-saved seed is still
dominant, such as Eastern Africa. This technique, referred to as
positive selection, involves identifying plants that look healthy
at an early stage of the season (e.g., at flowering), which will
eventually be harvested for seed at the end of the growing season
(Gildemacher et al., 2011, 2012; Schulte-Geldermann et al., 2012;
Thomas-Sharma et al., 2016). The positive selection method is
simple, cheap and robust, and can easily be adopted by small-
holder seed growers or ware growers who plant their own seed.
However, it may only work when high plant vigor correlates
with low virus infection (i.e., low systemic virus-proliferation of
the plant tissue), which might not always be the case, as shown
in the study presented in this paper. Schulte-Geldermann et al.
(2012) found that a very significant yield increase across agro-
ecologies and varieties tested was associated with a reduction in
virus incidence for PLPV, PVY, and PVX. However, the reduction
in virus incidence could not completely account for the yield
increase, suggesting that other factors were also important, such
as the interactions among viruses in seed with multiple infections.
Gildemacher et al. (2011) also found that yield increase due to
positive selection was not always traceable to reduction in virus
incidence or other factors.

Applying positive selection might regenerate a degenerated
seed stock (i.e., it might reverse degeneration) if consistently
and effectively applied across several generations. This is possible
if clean seed or almost clean seed is still present in the seed
lot that is planted in reasonably high proportions and if plants
from those healthy seeds are effectively selected by the positive
selection method. However, if this practice is combined with
an environment-induced reduced efficiency of autoinfection as
described in this paper, the sanitation effect of such practices
should be significant and most of all agronomically most relevant.
Although little literature data is available on long-term effects of
positive selection, some research projects are currently ongoing
in Uganda and elsewhere in Africa to assess to what extent
regeneration is feasible and to what extent techniques such as
positive selection can stop or delay autoinfection under severe
or mild aphid pressure, starting with high-quality or low-quality
seed lots (e.g., Priegnitz et al., 2014). In view of the data
presented in this paper, the environment dependent contribution

of incomplete autoinfection to seed regeneration must be taken
into account for improving seed and seed systems. In light of
the presented results, costly seed certification systems as found
in the industrialized countries, which are based on epidemics
with a rapidly increasing share of infected tubers due to the
assumption of 100% autoinfection of secondarily infected plants,
may be replaced by locally adapted seed multiplication systems
for controlling virus incidence in seed.

CONCLUSION AND A RESEARCH
ROADMAP

The commonly held theory in potato virus epidemiology that all
daughter tubers of a seed-tuber infected mother plant (secondary
infection) are systemically infected, is rejected by this study.
The hypothesis that potato tuber infection by viruses (in the
present study PVX, APMoV, PVY, and PLRV) may be limited or
even avoided by a mechanism preventing daughter tubers of an
infected mother tuber to become infected, is clearly supported by
the presented field data.

This seemingly simple theory has great practical conse-
quences, since costly, formal seed potato systems in industrialized
countries in temperate climates are based on this assumption,
supported by evidence under these climates. However, these
formal systems have also been applied (albeit unsuccessfully)
in low-income countries with different climatic conditions and
traditional, informal seed systems.

Based on an extensive literature review, it can be concluded
that reduced autoinfection is seemingly environment-dependent
and most likely temperature-driven. Recent findings regarding
the epigenetic regulation of plant virus – host interactions suggest
that temperature-driven anti-viral gene silencing may explain
the described phenomenon observed in Peruvian potato fields.
However, this remains yet to be experimentally proven for the
specific potato virus pathosystems addressed in this paper.

While the traditional epidemiological theory of potato viruses
must be reconsidered in the light of these findings, the latter open
up new perspectives for improving food security by contributing
to environmentally adapted effective and sustainable seed potato
systems and also for breeding purposes. These results should be
of particular benefit in potato growing zones where a continuous
supply of healthy seed produced by a formal certification has, to
date, been unsuccessful. Also, the combination of the findings
with those developed in other studies for improving seed systems,
e.g., implementing on-farm practices such as positive selection,
will contribute to the design of a farmer-friendly package of
management practices that further improve the productivity of
the crop.

The discovered environmental dependency of incomplete
autoinfection is also of great importance in view of the challenges
experienced by climate change. A change in plant virus epidemics
may be forecasted for global potato growing zones, which could
inform policy designed to mitigate potentially negative effects of
climate change.

Explicit experimental proof of the hypothesized temperature-
driven RNA-silencing in the addressed potato virus pathosystems
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would facilitate exploitation of the principle of incomplete
autoinfection. The genetic base and inheritance of incomplete
autoinfection with potato viruses should be characterized, as
well as its epigenetic dimension. Quantifying temperature-
driven regulation of the observed phenomenon would facilitate
efforts to improve seed quality and food security under varying
environmental conditions.
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