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As a core regulatory gene of the anther development, DYSFUNCTIONAL TAPETUM1

(DYT1) was expressed in tapetum preferentially. Previous study had confirmed that a

“CTCC” sequence withinDYT1 promoter was indispensable for correctDYT1 expression.

However, precise analysis on the function of each nucleotide of this sequence still lacks.

Here we employed site mutation assay to identify the function roles of the nucleotides.

As a result, the “T” and final “C” of “CTCC” were found essential for the temporal

and spatial specificity of DYT1 expression, whereas the other two “C” nucleotides

exhibited substitutable somewhat. The substitutes of two flanking nucleotides of “CTCC,”

however, hardly affected the normal promoter function, suggesting that the “CTCC”

sequence as a whole did meet the standard of a canonical cis-element by definition.

In addition, it was found that as short as 497 bp DYT1 promoter was sufficient for

tissue-specific expression, while longer 505 bp DYT1 promoter sequence was sufficient

for species-specific expression.

Keywords: Arabidopsis, DYT1, cis-element, tissue specificity, tapetum

Key message: Through site mutation assay it was found that the “T” and final “C” nucleotides of key cis-element

“CTCC” of Arabidopsis tapetum gene DYT1 promoter were irreplaceable for tissue specific gene expression.

INTRODUCTION

Anther development is crucial for successful pollen production in flowering plants. TheArabidopsis
anther during meiosis is a four-lobed structure comprised of concentric outer epidermis,
endothecium, middle fibrous layer, tapetum and pollen mother cell (PMC; Goldberg et al., 1993;
Yeung et al., 2011). The tapetum initially turns out as a single-cell layer surrounding PMC, and
is the main nutrient tissue of PMC and pollen subsequently in the anther (Koltunow et al.,
1990; Scott et al., 2004; Feng and Dickinson, 2007; Zhang et al., 2014; Li et al., 2015). A serial
of regulatory genes have been identified to be essential for the tapetum function in Arabidopsis
up to date, including DYSFUNCTIONAL TAPETUM1 (DYT1), DEFECTIVE IN TAPETAL
DEVELOPMENTANDFUNCTION1 (TDF1),MYB103/MYB80,ABORTEDMICROSPORE (AMS),
MALE STERILITY1 (MS1), etc. (Zhang et al., 2006, 2007; Yang et al., 2007; Zhu et al., 2008;
Phan et al., 2011; Wang et al., 2012; Fernández-Gómez and Wilson, 2014; Xu et al., 2014, 2015;
Shumin et al., 2015; Yi et al., 2016). Among them, DYT1 as one of the earliest tapetum-preferential
genes, initiates all aspects of tapetum function through regulating transcription of approximately
1,000 anther genes involved in callose synthesis and degradation, peptide and lipid transport,
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exine formation, etc. (Schiefthaler et al., 1999; Higginson et al.,
2003; Sorensen et al., 2003; Ito et al., 2007; Liu et al., 2009; Feng
et al., 2012; Phan et al., 2012; Li et al., 2013; Cui et al., 2016).

The expression profile of DYT1 is highly tissue-specific.
Weak expression of DYT1 can be detected in the secondary
parietal cell and sporogenous cell, the precursors of tapetum
and PMC respectively at as early as anther stage 4 (Zhang et al.,
2006; Shumin et al., 2015). Then DYT1 expression significantly
enhances and culminates with maturation of tapetum at the
anther stages 6, and exhibits as a tapetum-preferential pattern
(Zhang et al., 2006; Shumin et al., 2015). With the end of meiosis
of PMC, DYT1 expression declines rapidly, and disappears at
stage 8 (Zhang et al., 2006; Gu et al., 2014; Shumin et al., 2015).
The underlying mechanism(s) controlling DYT1 temporal and
spatial expression pattern remains as a puzzle since DYT1 was
firstly characterized one decade ago (Zhang et al., 2006). It has
been known that at least two signal pathways are involved in
initiation ofDYT1 expression. The first one seems to be governed
by transcription regulatory factors, including nuclear proteins
NZZ/SPL and LFR, and SBP-domain transcription factor
SPL8 (Yang et al., 1999; Xing et al., 2010; Wang et al., 2012).
The second pathway is mediated by protein phosphorylation
triggered by a series of receptor-like kinases, such as EXS/EMS1,
SERK1 and SERK2, BAM1 and BAM2 (Zhao et al., 2002, 2008;
Albrecht et al., 2005; Colcombet et al., 2005; Hord et al., 2006;
Li et al., 2017). Both signal pathways are essential for normal
DYT1 expression, though few details are known about how they
crosstalk and activate DYT1 expression together (Zhang et al.,
2006; Shumin et al., 2015).

In our previous study, it had been confirmed that as short
as 513 bp sequence in front of the transcription start site (TSS)
of DYT1 was essential and sufficient for proper temporal and
spatial specificity ofDYT1 expression. In addition, the deletion of
a “CTCC” sequence at the position of −468 bp (i.e., 468 bp from
the TSS) abolished DYT1 expression completely at the anther
stage 6, suggesting that the “CTCC” sequence was indispensable
for normal DYT1 expression (Shumin et al., 2015). Including
our previous study, there have been only a couple of related
reports about “CTCC” as a putative cis-element crucial for gene
expression regulation in plants (Kano-Murakami et al., 1991;
Ku et al., 2011). However, whether the “CTCC” sequence is a
canonical cis-element in which the nucleotides are irreplaceable,
remains to be addressed. In this study, we employed site mutation
assay to characterize the function roles of the nucleotides,
including the two flanking ones of the “CTCC” sequence to
answer the question whether the “CTCC” sequence met the
standard of a canonical cis-element or not. In addition, more
truncation analysis was performed through using both transgenic
Arabidopsis and tobacco bright yellow 2 (BY2) cell suspensions
to identify which regions of DYT1 promoter were essential for
tissue, and further species specificity of DYT1 expression.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis thaliana ecotype Col-0 was used in all of the
transformation and promoter analysis in this study. The plants
were cultivated under 16 h light/8 h dark photoperiod with 300

FIGURE 1 | Promoter constructs used to drive GFP expression in

transgenic plant anthers and BY2 cells.

Es−1m−2 illumination intensity, at 22 ± 1◦C. The seeds were
stratified at 4◦C for 4 days prior to growth.

The tobacco (Nicotiana tabacum L. cv Bright Yellow 2, BY2)
was cultivated in a modified liquid Murashige and Skoog (MS)
medium (Zhou et al., 2014) at 28◦C with 120 rpm shaking
avoiding light and maintained by weekly dilution (V/V = 1/10)
of cell.

Transformation Constructs
The pre-existing 513 bp DYT1 promoter-driven GFP expression
construct, designated as DYT1513bp::GFP (Shumin et al.,
2015), was used as PCR template in this study. The primers
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TABLE 1 | PCR primers in this study.

Primer name Sequence (5′–3′)

pDYT1F-513 CCCAAAGCTTCTAACGTTGGACCTGTGGACT

pDYT1F-505 CCCAAAGCTTGGACCTGTGGACTCAGTTTAC

pDYT1F-497 CCCAAAGCTTTTTACAGAGCCGTGGTCGAGCCTC

pDYT1F-489 CCCAAAGCTTGGACTCAGTTTACAGAGCCGTGG

pDYT1F-481 CCCAAAGCTTGCCGTGGTCGAGCCTCCGC

p513F1cis CCCAAAGCTTTGGACCTGTGGACTCAGTTTACAGAGCCGTGGTCGAGCGCGAGGTG

p513FTCTCCT CTAACGTTGGACCTGTGGACTCAGTTTACAGAGCCGTGGTCGAGTCTCCTCGAGGTGTGGAG

p513FTTCC CTAACGTTGGACCTGTGGACTCAGTTTACAGAGCCGTGGTCGAGCTTCCGCGAGGTGTGGAG

p513FCGCC CTAACGTTGGACCTGTGGACTCAGTTTACAGAGCCGTGGTCGAGCCGCCGCGAGGTGTGGAG

p513FCTTC CTAACGTTGGACCTGTGGACTCAGTTTACAGAGCCGTGGTCGAGCCGCCGCGAGGTGTGGAG

p513FCTCT CTAACGTTGGACCTGTGGACTCAGTTTACAGAGCCGTGGTCGAGCCTCTGCGAGGTGTGGAG

pDYT1R-co CGGAGCTCTTATTTCTTCTTCTTTGATAATT

pGFP-RT-F ATGGTGAGCAAGGGCGAGGAG

pGFP-RT-R TTACTTGTACAGCTCGTCC

p513d1F CCCAAAGCTTACAGAGCCGTGGTCGAGCGCGAG

p513c1F CCCAAAGCTTACAGAGCCGTGGTCGAGCCTCC

p513i1F TTACAGAGCCGTGGTCGAGTCTCCT

p513i2F CAGTTTACAGAGCCGTGGTCGAGCT

p513i3F AGTTTACAGAGCCGTGGTCGAGCCG

p513i4F GTTTACAGAGCCGTGGTCGAGCCTT

p513i5F TTTACAGAGCCGTGGTCGAGCCTCT

P513R-co TTATTTCTTCTTCTTTGATAATT

to generate site mutations of the constructsDYT1TTCC::GFP,
DYT1CGCC::GFP, DYT1CTTC::GFP and DYT1CTCT ::GFP; CTCC
flanking site mutation constructDYT1TCTCCT ::GFP were
designed and synthesized respectively. Novel 5′ end primers
of truncation constructs DYT1489bp::GFP, DYT1497bp::GFP and
DYT1505bp::GFP were designed and synthesized, respectively
(Figure 1). The PCR products were obtained and cloned into
pCAMBIA1300 to make reporting constructs according to the
report of Zhou (Shumin et al., 2015).

Plant Transformation
Transgenic plants were generated via floral-dip transformation.
The positive transgenic seedlings were screened on MS medium
containing 25 mg/L hygromycin (Clough and Bent, 1998). At
least 10 independent transgenic T1 generation lines for each
construct were observed in this study.

BY2 Cell Suspension Transformation
The transformation of BY2 suspension was carried out according
to the report of Zhou (Zhou et al., 2014). BY2 cell suspension was
co-cultivated with the Agrobacterium GV3101 strain harboring
transgenic construct in liquid medium without antibiotics
avoiding light at 28◦C for 48 h, so that the final concentration
of cell suspension was approximately OD600 = 0.6. The resulted
BY2 cell suspension was enriched by centrifuge and plated onMS
solid medium containing 50µg/ml hygromycin and 100µg /ml
vancomycin, and incubated at 28◦C avoiding light. Two weeks
later, grown-up antibiotics-resistant callus were subjected to
amplified liquid cultivation, and the resulted BY2 cell suspension
was used for genotyping and fluorescence observation. At
least 10 independent original antibiotics-resistant callus were
observed for each construct. The pre-existing transgenic callus
of cauliflower mosaic leaf virus 35S promoter-driven GFP

expression 35S::GFP was used as a positive control (Zhou et al.,
2014).

Semi-Quantification PCR
Total RNAwas extracted from the transgenic BY2 cell suspension
and performed reverse transcription according to Zhou et al.
(2014). Then GFP cDNA fragment was PCR amplified with
GFP specific (GFP RT-F&R) primers with the sequence listed in
Table 1.

Observation of GFP Fluorescence
Anthers were stripped and collected from transgenic plants
flower bud just around male meiosis (anther stage 4–9) on a
microscopy slides. Added one drop of sterile water on the anthers
and covered a slide carefully without squeezing. Then the sample
was observed and photographed under Zeiss LSM-710 confocal
microscope (Zeiss, Germany) and Leica DM2500 fluorescence
microscope. As for semi-quantification of the fluorescence
intensity, randomly 10 sites on fluorescence images were selected
and the intensity was measured and normalized by the SMART
software. Statistics of at least 15 anthers per line, 10 independent
T1 generation transgenic lines were counted for each construct
transformation. As for BY2 cell suspension, at least 100 cells per
callus ancestor were observed, and 10 callus were counted for
each construct transformation.

RESULTS

Two Nucleotides of “CTCC” cis-Element
Were Essential for the Accurate Expression
Pattern of DYT1 Gene
Previous studies showed that the 513 bp length DYT1 promoter
could faithfully regenerate the temporal and spatial profile
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of native DYT1 expression (Shumin et al., 2015). The GFP
signal of transgenic DYT1513bp::GFP firstly appeared in the
secondary parietal cell and microsporocyte of stage 4 Arabidopsis
anther. Then the GFP expression increased significantly and
reached its peak preferentially in the tapetum of stage 5 and
6 anthers. Subsequently, the GFP signal rapidly weakened at
stage 7 and disappeared at stage 8 (Figures 2A,G). The “CTCC”

FIGURE 2 | Continued

cis-element locating at −468 bp from the TSS is particularly
important for the correct expression of the DYT1 gene. The
deletion of “CTCC” completely knocked out GFP expression
(Shumin et al., 2015). To investigate the function of each
nucleotide in the “CTCC” cis-element, a series of modifying
constructs based on DYT1513bp::GFP with site mutations in or
around the “CTCC” sequence were made, and transformed into
Arabidopsis, respectively (Figure 1). The transgenic plants were
identified by PCR using nucleotide specific primers (Table 1)
and restriction endonuclease digestion assay (Supplementary
Figure 1). The site mutations of the two flanking nucleotides

FIGURE 2 | GFP expression in “CTCC” site mutation transgenic plant

anthers. (A–F) Green fluorescence images of anthers at stage 4–8 in

DYT1513bp::GFP, DYT1TCTCCT ::GFP, DYT1TTCC::GFP, DYT1CGCC::GFP,

DYT1CTTC::GFP, and DYT1CTCT ::GFP in transgenic plants. (G,H)

Semi-quantification of the average fluorescence intensity in stage 4–8 anthers

and in different parts of stage 6 anthers of DYT1513bp::GFP,

DYT1TCTCCT ::GFP, DYT1TTCC::GFP, DYT1CGCC::GFP, DYT1CTTC::GFP, and

DYT1CTCT ::GFP transgenic plantsthrough SMART software assay (n ≥ 30,

±SD; p < 0.1, Student’s t-test), values were obtained from 3 independent

lines of transgenic plants. Bar = 10 µm.
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of the “CTCC” cis-element (5′ end from “C” to “T,” and 3′

end from “C” to “T,” respectively), and the first and third
nucleotide substitutes from “C” to “T” in the “CTCC” imposed
no effect on the expression pattern of GFP (Figures 2B,C,E,G).
On the contrast, however, “G” replacing “T” in the “CTCC”
resulted in weak expression of GFP in the connective and
epidermis tissues in addition to the tapetum and PMC (before
stage 6, then microspore at stage 7 and 8; Figures 2D,H).
Furthermore, “T” replacing the final “C” resulted in strong GFP
expression in all tissues of stage 4–8 anthers (Figures 2F,H).
Thus, the “T” and final “C” of the “CTCC” cis-element
were suggested to play predominant roles in controlling
the tissue specificity and appropriate intensity of the gene
expression.

As Short as 497 bp DYT1 Promoter Was
Sufficient for Tissue-Specific Expression
The previous study had elucidated that beside the core motif
“CTCC,” the −481 to −513 bp region of DYT1 promoter was
also indispensable for appropriate expression. To uncover finer
structure within this region, in addition to original 481 and 513
bp truncated DYT1 promoter-driven GFP reporter constructs,
489, 497, and 505 bp truncated DYT1 promoter-driven GFP
reporter constructs were made and transformed intoArabidopsis,

FIGURE 3 | Continued

respectively. As a result, both 505 and 497 bp DYT1 promoter
gave rise of the identical expression pattern as the 513 bp
DYT1 promoter (Figures 3A,B,E), suggesting as short as 497
bp DYT1 promoter was sufficient to recapitulate appropriate
DYT1 expression in Arabidopsis anther. On the other side,
in DYT489bp::GFP transgenic plants, GFP exhibited an ectopic
and weaker expression losing the tapetum-preferential pattern,
similar to that of the 481 bpDYT1 promoter. The detectable green
fluorescence was distributed not only in the tapetum and PMC
(before stage 6, then microspore at stage 7 and 8), but also in the
connective and epidermis tissues (Figures 3C,D,F), suggesting
that the sequence from −489 to −497 bp in DYT1 promoter
was essential for tapetum-preferential expressing pattern, and

FIGURE 3 | GFP expressing in DYT1513bp::GFP, DYT1489bp::GFP,

DYT1497bp::GFP and DYT1481bp::GFP transgenic Arabidopsis anthers.

(A) The green-fluorescence concentrates in the tapetal cells of transgenic

plant anthers; (B–D) Obvious green-fluorescence displays both in the anther

locules, tapetum and epidermis. The upper row are images of fluorescence,

and the under row are merged images of light and fluorescence. (E,F)

Semi-quantification of the average fluorescence intensity in stage4-8 anthers

and in different parts of stage 6 anthers of DYT1513bp::GFP, DYT1497bp::GFP,

DYT1489bp::GFP, and DYT1481bp::GFP transgenic plants through SMART

software assay (n ≥ 30, ±SD; p < 0.1, Student’s t-test), values were obtained

from 3 to 5 independent lines of transgenic plants. Bar = 10 µm.
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as short as 497 bp DYT1 promoter sequence was sufficient for
tissue-specific expression.

505 bp DYT1 Promoter Was Sufficient for
Species-Specific Expression
As mentioned before, the flanking −489 to −497 bp region
seemed to play as a restriction element to limit DYT1
expression with certain spaces so that DYT1 expression exhibited
as a specific spatial profile. Then one more question was
brought up whether there was other region in 513 bp DYT1
promoter imparting the species specificity. In order to test

such possibility, the series of truncated DYT1 promoter-
driven GFP reporting constructs were transformed into tobacco
BY2 cell suspension. In DYT1497bp::GFP, DYT1489bp::GFP and
DYT1481bp::GFP transgenic BY2 cell suspension, weaker GFP
expression comparing with that of 35S::GFP transgenic cells was
found (Figures 4A,D–F,M). However, in DYT1513bp::GFP and
DYT1505bp::GFP transformed cell lines, no GFP signal could
be detected (Figures 4B,C,M). Thus, 505 bp DYT1 promoter
sequence was sufficient for restricting the gene expression in A.
thaliana rather than in other species such as tobacco BY2 cell
suspension.

Furthermore, all site mutations within “CTCC” based on
DYT1513bp::GFP gave rise of ectopic GFP expression in BY2 cell

FIGURE 4 | Functional segments assay of DYT1 promoterin transgenic BY2 cells. GFP fluorescence was detected under Confocal microscope. (A–F) The

fluorescence and bright images of GFP driven by 35S promoter and different truncated DYT1 promoters. (G–L) The function assay of “CTCC” segment in DYT1

promoter driving GFP expression in BY2 cells. (M) RT-PCR analysis of GFP/ACTIN expression in different transgenic BY2 cells. Lane 1–12 represented 35S::GFP,

DYT1513bp::GFP,DYT1505bp::GFP, DYT1497bp::GFP, DYT1489bp::GFP, DYT1481bp::GFP, DYT1TCTCCT ::GFP, DYT1TTCC::GFP, DYT1CGCC::GFP, DYT1CTTC::GFP,

DYT1CTCT ::GFP, and DYT11cis::GFP transgenic cells. Bar = 20 µm.
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suspension, suggesting that the “CTCC” cis-element participated
in determining species specificity. However, the substitutes of
the “T” and final “C” generated stronger ectopic expression than
the other two nucleotides (Figures 4I,K), suggesting the “T”
and final “C” also contributed in determining species specificity
more than the other two “C” nucleotides (Figures 4H,J),
though not so exclusively as in determining tissue specificity in
Arabidopsis. Consistent to the results obtained from Arabidopsis
study (Figure 2), the mutations of “CTCC” flanking nucleotides
had no effect on the driven gene expression (Figure 4G),
further supporting “CTCC” itself was a four-nucleotides motif.
Unlike site mutations, the “CTCC” deletion DYT1513bp1cis:: GFP
generated little GFP fluorescence either in Arabidopsis anther
(Shumin et al., 2015), or in BY2 cell suspension (Figures 4L,M),
adding complexity to the function of intact “CTCC.” One
explanation is that in addition to controlling spatial expression
pattern of the driven gene, “CTCC” as a whole is also important
for gene expression activation.

DISCUSSION

The findings of this study that the substitutes of the “T” and final
“C” nucleotides in the “CTCC” sequence dramatically changed
the driven gene (GFP here) expression profile, whereas the
nucleotide replaces just out of “CTCC” imposed little effect on
either tissue or species specificity, confirmed that the “CTCC”
sequence did satisfy the definition of a canonical cis-element, and
play as the core role in determining DYT1 expression profile.
Furthermore, with more “CTCC” flanking sequences truncated
from DYT1 promoter, the extent of gene expression specificity
became weaker, reflected in the facts that the species specificity
was lost firstly, then the expression region extended from the
central locule to the connective tissue and epidermis in the
Arabidopsis anther, resulting in a constitutive pattern at last.
Thus it was suggested that DYT1 promoter was a functional
unit comprised of multiple parts whose absence would lead to
expression specificity attenuation, from both species and tissue-
specific to only tissue-specific, and finally to constitutive. In other
words, the core motif “CTCC” and its flanking sequences need
work together to restrict the driven gene expressed precisely in
specific tissues, and furthermore in specific species.

With the key cis-element identified, undoubtedly the main
task of next stage work is to identify the trans-factor(s) which
recognizes and binds to the “CTCC” cis-element, and finally
activates DYT1 expression. As mentioned before, among the
known DYT1 upstream regulatory factors which are involved
in transcription regulation, SPL8 participates in the small
RNA signaling in cell differentiation regulation in anther. As
a SBP domain factor, the DNA-binding motif of SPL8 is
zinc-binding motif rather than “CTCC” (Xing et al., 2010).
Furthermore, both SPL/NZZ and LFR lack functional DNA-
binding domain (Yang et al., 1999; Wang et al., 2012). Thus,
it is proposed that the regulatory factor recognizing and
binding to the “CTCC” cis-element of DYT1 promoter still
needs to be characterized in future work. This unknown
factor might be unable to activate DYT1 expression alone.
Conversely it would associate with SPL/NZZ and/or LFR
to form an active transcription complex to trigger DYT1
expression.
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