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Plants are sessile organisms that are continuously exposed to a wide range of
environmental stresses. To cope with various stresses using limited resources, plants
have evolved diverse mechanisms of “tradeoff” that enable the allocation of resources
to address the most life-threatening stress. During our studies on induced disease
resistance in rice, we have found some important phenomena relevant to tradeoffs
between biotic and abiotic stress responses, and between stress response and plant
growth. We characterized these tradeoff phenomena from viewpoints of signaling
crosstalks associated with transcriptional regulation. Here, I describe following topics:
(1) PTP1-dependent increased disease susceptibility of rice under low temperature and
high salinity conditions, (2) OsNPR1-dependent tradeoff between pathogen defense
and photosynthesis, (3) tradeoff between pathogen defense and abiotic stress tolerance
in WRKY45-overexpressing rice plants, and (4) WRKY62-dependent tradeoff between
pathogen defense and hypoxia tolerance. Lastly, I discuss my view regarding the
significance of such tradeoffs in agricultural production that should be considered in
crop breeding; that is, the tradeoffs, although they benefit plants in nature, can be rather
disadvantageous in agricultural production.
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INTRODUCTION

Plants are sessile organisms that are continuously exposed to a wide range of environmental
stresses (Tian et al., 2003; Matyssek et al., 2005). To cope with various stresses using limited
resources, plants have evolved diverse mechanisms that enable the allocation of resources to
address the most life-threatening stress. Therefore, tradeoffs exist between stress responses and
plant growth or between responses to different stresses. These tradeoffs are often regulated
by crosstalk between signaling pathways (Fujita et al., 2006; Pieterse et al., 2012; Sharma
et al., 2013; Xiao et al., 2013; Takatsuji and Jiang, 2014). Signaling molecules such as
plant hormones (Lozano-Duran et al., 2013; Huot et al., 2014; Verma et al., 2016), reactive
oxygen and nitrogen species (Considine et al., 2015), and Ca2+ (Mazars et al., 2010) have
been implicated in these crosstalks. However, the precise molecular mechanisms involved
are yet to be investigated. My laboratory has been studying the salicylic acid (SA) defense
signaling pathway in rice with emphasis on signaling crosstalks that mediate the tradeoffs
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between pathogen defense and abiotic stress responses and/or
plant growth. In this review, I provide an overview of these
studies, which mainly highlight a negative aspect of tradeoffs that
can reduce crop production. I also propose that crop productivity
could be improved by regulating tradeoffs through the inhibition
of crosstalk between signaling pathways.

INCREASED DISEASE SUSCEPTIBILITY
OF RICE UNDER LOW TEMPERATURE
AND HIGH SALINITY CONDITIONS

Rice blast is one of the most serious crop diseases worldwide.
Chemical defense inducers affecting the SA signaling pathway
have been widely used to protect rice plants from diseases
such as rice blast. However, rice plants are more susceptible to
blast disease when exposed to specific abiotic stresses, including
low temperature, drought, and high salinity (Kahn and Libby,
1958; Bonman et al., 1988; Gill and Bonman, 1988), even
in the presence of chemical defense inducers (Ueno et al.,
2015). These observations seem to reflect prioritization of
abiotic stress responses over blast disease resistance in rice
because the abiotic stresses are often more life-threatening
than blast disease. This is one of the typical tradeoffs between
plant responses to abiotic and biotic stresses. By analyzing
the molecular mechanism underlying this phenomenon, we
demonstrated that abscisic acid (ABA) signaling, which was
activated by cold and high salinity leading to abiotic stress
responses, inactivated WRKY45, the central transcription factor
in the SA defense signaling pathway in rice (Figure 1A) (Jiang
et al., 2010; Yazawa et al., 2012; Ueno et al., 2015). In response to
the chemical defense inducer benzothiadiazole (BTH), WRKY45
was activated by a MAP kinase cascade (OsMPKK10-2–
OsMPK6)-catalyzed phosphorylation at its carboxyl terminus
(Matsushita et al., 2013; Ueno et al., 2013, 2015). This led
to an increase in WRKY45 expression through WRKY45
autoregulation of its own transcription (Nakayama et al.,
2013). OsMPK6 was activated by a dual phosphorylation
of its TEY motif in response to dexamethasone-induced
production of a constitutively active form of OsMPKK10-
2 (OsMPKK10-2D), which mimics the activation of the SA
pathway (Ueno et al., 2015). However, in the presence of ABA,
OsMPK6 was dephosphorylated at its tyrosine residue even
after the induction of OsMPKK10-2D, which decreased WRKY45
transcript abundance and reduced blast resistance (Ueno et al.,
2015).

The rice genome encodes two protein tyrosine phosphatases
(PTP1 and PTP2) that dephosphorylate OsMPK6 at its
tyrosine residue in vitro (Figure 1A). Knockdown of the
two PTP genes by RNA interference in transgenic rice plants
increased the abundance of TEY-phosphorylated OsMPK6
following SA treatment because of suppressed tyrosine
dephosphorylation (Ueno et al., 2015). In PTP-knockdown
rice lines, the ABA-mediated inhibition of WRKY45 expression
was considerably reduced. A blast resistance test indicated
that ABA greatly suppressed BTH-induced blast resistance

in untransformed (control) rice plants, whereas it did not
affect the resistance of PTP-knockdown rice plants (Ueno
et al., 2015). Low temperature (i.e., 15◦C/8◦C, day/night
cycle) and high salinity (250 mM NaCl) conditions also
suppressed BTH-induced blast resistance, but did not affect
the induction of blast resistance in PTP-knockdown rice
plants (Ueno et al., 2015). Thus, PTP knockdown eliminates
the crosstalk between ABA and SA signaling pathways, which
prevents abiotic stresses from suppressing the chemical-induced
blast resistance.

One of the concerns regarding the effects of PTP knockdown
is whether it affects normal ABA-mediated plant responses
to abiotic stresses. In other words, are PTP-knockdown rice
plants less tolerant to cold and/or high salinity stresses? It
currently appears they are not. The induction of SalT expression,
which is a marker gene for ABA responses, is not influenced
by PTP knockdown (Ueno et al., 2015). Additionally, we
did not observe any differences between PTP-knockdown and
control rice plants under our low temperature and high salinity
conditions. Therefore, the effects of PTP knockdown appear
to be specific to the crosstalk between the ABA and SA
pathways, and do not affect normal ABA-mediated abiotic stress
tolerance.

TRADEOFF BETWEEN PATHOGEN
DEFENSE AND PHOTOSYNTHESIS

OsNPR1/NH1 is an important transcriptional co-activator
acting in the rice SA pathway along with WRKY45 (Sugano
et al., 2010). A transcriptome analysis using OsNPR1/NH1-
knockdown rice lines with or without BTH treatment revealed
an interesting function of OsNPR1/NH1 in the tradeoff
between pathogen defense and photosynthesis (Figure 1B).
While most of the WRKY45-dependent BTH-responsive
genes were upregulated by BTH (Nakayama et al., 2013),
more than half of the OsNPR1/NH1-dependent BTH-
responsive genes were downregulated by BTH (Sugano
et al., 2010). The OsNPR1/NH1-dependent BTH-responsive
genes included most of the photosynthetic genes involved in
light and dark reactions (Sugano et al., 2010). The majority
of genes involved in chloroplastic protein synthesis, such
as the 30S and 50S ribosomal genes, also experienced
OsNPR1/NH1-dependent downregulation by BTH (Sugano
et al., 2010). Additionally, sigma factors involved in
chloroplastic transcription were regulated in a similar
manner. In contrast, genes associated with cytoplasmic
protein synthesis, such as the 40S and 60S ribosomal
genes, underwent OsNPR1/NH1-dependent upregulation
by BTH (Sugano et al., 2010). Photosynthetic parameter
measurements (i.e., Fv/Fm) in rice leaves revealed that
photosynthetic activity declined more rapidly in control
plants than in OsNPR1/NH1-knockdown plants during BTH
treatments (Sugano et al., 2010). These results indicate that
BTH-mediated decreases in photosynthetic activity depend
on OsNPR1/NH1 (Figure 1B). This regulation probably
represents a tradeoff prioritizing pathogen defense over
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FIGURE 1 | Tradeoffs involving the salicylic acid pathway in rice. (A) Tradeoff between pathogen defense and abiotic stress tolerance mediated by protein
tyrosine phosphatase. WRKY45 is phosphorylated and activated by OsMPK6 in response to chemical defense inducers. OsMPK6 is inactivated following tyrosine
dephosphorylation by protein tyrosine phosphatase, which is mediated by ABA, in response to cold stress. This leads to hypo-phosphorylation and inactivation of
WRKY45. (B) Tradeoff between pathogen defense and photosynthesis mediated by OsNPR1. OsNPR1 downregulates chloroplastic activity resulting in a decreased
photosynthetic rate, while it upregulates the expression of defense genes. (C) Tradeoff between pathogen defense and submergence tolerance mediated by
WRKY62. Following the activation of the salicylic acid pathway, WRKY45 and WRKY62 form heterodimers that activate DPF transcription. Upon submergence, only
WRKY62 is produced, resulting in the formation of homodimers that repress DPF expression. Molecule X represents a presumptive transcription factor that binds to
a hypoxia-responsive element in the promoter of hypoxia-responsive genes, possibly as a heterodimer with WRKY62.
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chloroplastic activity unnecessary for pathogen defense. Results
from a previous study (Wang et al., 2006) indicated that
Arabidopsis NPR1 plays a similar role in the tradeoff between
pathogen defense and chloroplastic activity, suggesting this
regulation is common in monocots and dicots (Sugano et al.,
2010).

TRADEOFF BETWEEN PATHOGEN
DEFENSE AND ABIOTIC STRESS
TOLERANCE IN
WRKY45-OVEREXPRESSING RICE
PLANTS

Tradeoffs between pathogen defense and tolerance to
abiotic stresses were observed in WRKY45-overexpressing
(WRKY45-ox) rice plants. WRKY45 overexpression conferred
rice with strong resistances to blast and leaf-blight diseases
(Shimono et al., 2007, 2012). However, the growth ofWRKY45-ox
rice plants was significantly impaired compared with that of
control plants, and varied with environmental conditions (Tao
et al., 2011; Goto et al., 2015). Analysis of this phenomenon
revealed that low temperature and high salinity conditions
severely impaired the growth and viability of WRKY45-ox
rice plants, which represents a tradeoff prioritizing pathogen
defense over abiotic-stress tolerance. Following exposure to
low temperatures (e.g., 8◦C) for 7 days and recovery at room
temperature for 7 days, 80% of WRKY45-ox rice plants died,
while all control plants survived (Goto et al., 2015). Additionally,
75% of WRKY45-ox rice plants died after being irrigated with
250 mM NaCl and then water for 7 days, while 0–13% of
control plants survived (Goto et al., 2015). Thus, WRKY45-ox
rice plants were more sensitive to low temperature and high
salinity conditions. This phenomenon seems to represent a
tradeoff in WRKY45-ox rice plants, whereby the plants gained
pathogen resistance through WRKY45 overexpression, but
became more susceptible to the effects of low temperature and
high salinity.

WRKY62-DEPENDENT TRADEOFF
BETWEEN PATHOGEN DEFENSE AND
HYPOXIA TOLERANCE

Rice plants are believed to become more susceptible to diseases
such as rice blast and bacterial leaf blight after submergence. This
is presumably due to a tradeoff mechanism prioritizing hypoxia
tolerance over disease resistance. Although the mechanism
responsible for this phenomenon has not been characterized,
we have identified an important WRKY62 function that is
likely involved. WRKY62 is a transcriptional repressor that is
regulated downstream of WRKY45. Overexpression of WRKY62
in rice plants leads to increased susceptibility to leaf blight,
which suggests WRKY62 is a negative regulator of disease
resistance (Peng et al., 2008). However, our analysis of WRKY62-
knockdown rice plants revealed that WRKY62 is a positive

regulator of diterpenoid phytoalexin biosynthetic genes and
other defense genes (Fukushima et al., 2016). We subsequently
determined that WRKY62 can activate and repress the expression
of defense genes (Fukushima et al., 2016).

WRKY62 forms a homodimer or a heterodimer
with WRKY45 depending on environmental conditions
(Fukushima et al., 2016). The WRKY62 homodimer functions
as a transcriptional repressor of the DPF gene, which encodes
a transcription factor that regulates diterpenoid phytoalexin
biosynthetic genes (Figure 1C). Conversely, the WRKY45-
WRKY62 heterodimer serves as a transcriptional activator
of the DPF gene (Figure 1C). The WRKY45 and WRKY62
expression levels are similar following the activation of
the SA pathway, which facilitates the formation of the
heterodimer (Fukushima et al., 2016). However, under the
hypoxic conditions created by submergence, only WRKY62
is expressed, leading to the formation of the homodimer.
This selective induction of transcription factor genes most
likely explains why DPF is expressed when the SA signaling
pathway is activated, but is suppressed in submerged plants.
Furthermore, WRKY62 regulates hypoxia-responsive genes,
including alcohol dehydrogenase 2, acyl desaturase, and EFR,
in a manner opposite from that of DPF. WRKY62 functions
as a positive regulator of hypoxia-responsive genes under
hypoxic conditions (Fukushima et al., 2016). Thus, WRKY62
acts as a toggle switch between the expression of defense or
hypoxia-responsive genes.

SIGNIFICANCE OF TRADEOFFS IN
NATURE AND AGRICULTURAL
PRODUCTION

We have identified a variety of tradeoffs in rice. The tradeoffs
increased susceptibility to diseases, impaired photosynthesis,
or decreased tolerance to abiotic stress to prioritize responses
to the most damaging stresses in specific conditions. These
tradeoffs can be considered beneficial for plants because
they increase survival rates, which may explain why they
have developed during evolution. However, some tradeoffs
may not necessarily be beneficial in agricultural production
because prioritizing plant survival often results in decreased
crop yields. Resource availability can differ considerably
between natural and agricultural settings. Under natural
conditions, available resources are often severely limited, which
constrains plants to survive by prioritizing the responses
to the most life-threatening stresses at the cost of other
biological processes. However, in agricultural settings, more
resources are usually available because they can be supplied as
fertilizers. In such situations, elimination of particular tradeoff
mechanisms may allow plants to cope with multiple stresses
simultaneously without affecting growth or development.
An example is that the elimination of tradeoffs following
PTP knockdown prevented any increases in rice blast
susceptibility under low-temperature conditions without
any adverse effects on growth (Ueno et al., 2015). Unlinking
hormone-regulated immunity and plant growth is also discussed
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in Eichmann and Schafer (2015). As mentioned above, wide
variety of tradeoffs and signaling crosstalks exists in plants.
Regulating such tradeoffs could be one of directions to
be considered upon designing crop improvement strategies.
Characterizing the mechanisms mediating various tradeoffs will
be necessary to enable their regulation.
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