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During the early periods of evolution, as well as in niche environments today, organisms
have had to learn to tolerate the presence of many reactive compounds, such as
reactive oxygen species, nitric oxide, and hydrogen sulfide. It is now known that such
compounds are instrumental in the signaling processes in plant cells. There are enzymes
which can make them, while downstream of their signaling pathways are coming to light.
These include the production of cGMP, the activation of MAP kinases and transcription
factors, and the modification of thiol groups on many proteins. However, organisms
have also had to tolerate other reactive compounds such as ammonia, methane, and
hydrogen gas, and these too are being found to have profound effects on signaling in
cells. Before a holistic view of how such signaling works, the full effects and interactions
of all such reactive compounds needs to be embraced. A full understanding will be
beneficial to both agriculture and future therapeutic strategies.
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INTRODUCTION

Reactive compounds such as those derived from oxygen, nitrogen, and sulfur are instrumental in
cell signaling pathways (Mittler et al., 2011; Mur et al., 2013; García-Mata and Lamattina, 2013;
Hancock and Whiteman, 2014). It appears that they have effects in a wide range of organisms from
simple prokaryotes to humans and higher plants. However, despite the fact that organisms are using
such compounds in a positive way, this use belies their inherent toxic nature. It appears therefore
that during evolution cells have had to tolerate the presence of such compounds and have over time
adopted them for their own gains.

The atmosphere during the history of the Earth has not been unchanging. Four billion years
ago the atmosphere would have been approximately one part per million oxygen (Lane, 2002)
and yet today many organisms easily survive in 21% oxygen (over 200,000 parts per million).
Approximately two and half billion years ago oxygen would have started to increase due to
biological activity (Lyons et al., 2014). It would not have been a sudden rise but as organisms
evolved they had a new toxin to contend with. Oxygen is a di-radical (Cheeseman and Slater,
1993) and undergoes redox reactions to yield a family of reactive compounds [the so called
reactive oxygen species (ROS)], including the superoxide anion, hydrogen peroxide (H2O2) and
the hydroxyl radical. The issue for newly evolving organisms as oxygen levels rose was that many
of the ROS are toxic (Wallace and Melov, 1998; Halliwell and Gutteridge, 2015). Therefore to
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counter this organisms have evolved a wide range of antioxidant
defenses, which prevents the build-up of ROS and limits the
damage that may be done (Blokhina et al., 2003). These include
enzymes such as superoxide dismutase (SOD) and catalase, as
well as small compounds such as ascorbate and glutathione
(GSH). Manipulation of these, such as levels of SOD, has been
shown to increase life span in some species (Parkes et al., 1998)
showing that the control of ROS levels is crucially important.
Furthermore, in a treatise on glutathione levels Schafer and
Buettner (2001) discussed the importance of the maintenance
of intracellular redox status – it must be kept much reduced –
and how oxidation can lead to either apoptosis or necrosis.
However, despite all this, cells still use ROS as signaling molecules
(Mittler et al., 2011). It appears that the presence of oxygen in
the atmosphere has had a profound influence in the evolution of
aerobic organisms, as has been discussed by others (Lane, 2002;
Dowling and Simmons, 2009; Metcalfe and Alonso-Alvarez,
2010). During such evolution cells have not just learnt to tolerate
the presence of oxygen and its downstream products, but have
harnessed such products for a positive action; both in and
between cells.

Similar tolerance of toxic compounds can be seen with
nitrogen- and sulfur-based compounds. The most commonly
studied compound here is nitric oxide (NO). This was found
to be instrumental in the control of vascular tone in mammals,
where it was originally known as endothelial-derived relaxing
factor (EDRF: Palmer et al., 1987) but has since been found to
be a key part of cell signaling in a range of organisms including
plants. Exposure of plants to NO can be from natural sources
such as the soil (Davidson, 1991; Skiba et al., 1993; Ludwig et al.,
2001). Plants also have the capacity to make intracellular NO
(reviewed by Mur et al., 2013). However, NO is inherently toxic,
and for animals diet may help here, showing that plants cells
have compounds which mitigate against the harmful effects of
this compound (Paquay et al., 2000). Peroxynitrite, derived from
the reaction of NO with ROS is also toxic (Bartosz, 1996) but it is
also known to be involved in signaling (Klotz, 2005).

Evolution has also been shaped by the presence of hydrogen
sulfide (H2S). H2S is produced at thermal vents (Martin et al.,
2008), where many organisms still rely on the presence of
sulfur compounds as a source of reducing power. While many
organisms have adapted to life in the presence of H2S (Tobler
et al., 2016), such as fish in H2S-rich springs (Kelley et al.,
2016), clearly life also has left such niche environments. Therefore
during evolution species have developed, some remaining in
the presence of, and tolerating, H2S while others has escaped
it into an oxygen-rich environment. H2S is, like other reactive
compounds considered here, very toxic. It is known, for example,
that H2S is an inhibitor of mitochondrial electron transport
chains (Complex IV) and so inhibits ATP production (Dorman
et al., 2002). It is so toxic that it was used as a chemical weapon
(Szinicz, 2005), yet organisms have harnessed it as a signaling
molecule. It has shaped events in evolution and been adopted
as part of metabolism (Olson and Strub, 2015). Bacteria are
known to produce H2S (Clarke, 1953), in plants H2S is used
in sulfur metabolism (Calderwood and Kopriva, 2014), whilst
at very low concentrations in animals instead of inhibiting the

electron transport chain of mitochondria it has been shown to be
a source of reducing power for the production of ATP (Bouillaud
et al., 2013). Here is a good example of how organisms have
evolved in the presence of a toxic compound but adapted to use
it for positive reasons.

The majority of the literature regarding the signaling by
reactive compounds concentrates on ROS, NO, and most recently
H2S. However, the early atmosphere of the Earth’s history was also
rich in other noxious compounds, such as methane, ammonia,
and hydrogen (Lane, 2002). Such compounds should also be
included in the suite of potential cell signaling molecules, giving
a more holistic understanding of how all these compounds may
be controlling cellular functions in plants.

Roles of Reactive Signaling Compounds
Signaling in cells involves a myriad of different components,
some of which are small transient molecules. When a molecule
has been proposed as a signaling component there are certain
criteria that may be looked for. It should be made where and
when needed, be recognized as being present (so it may transmit a
specific message), be able to move the message to a new position
in the cell (or to another cell), and be removed when no longer
needed (Hancock, 2016). Looking at ROS, NO, and H2S it can be
argued that such criteria are met.

Enzymes are involved in the generation of reactive signals.
As such proteins are often only active when required and
usually have defined subcellular locations, the reactive molecules
produced are only present where and when needed. ROS are
generated from the NADPH oxidase family of enzymes, but
enzymes such as peroxidases may also contribute to ROS
production. There is some controversy about the production of
NO in plants. There is almost certainly no nitric oxide synthase
(NOS) in higher plants (Jeandroz et al., 2016) but plants can
generate NO from other enzymes such as nitrate reductase
(Rockel et al., 2002). H2S can be generated by desulfhydrases
in plants (Alvarez et al., 2010). Removal of ROS will be
through antioxidants whilst NO will react with thiols, metals
or be oxidized. H2S can be removed through the action of
O-acetylserine (thiol) lyase (Youssefian et al., 1993).

ROS, NO, and H2S are all diffusible so they are all able to move
their message through, or between, the cells. However, some care
is needed when discussing if membranes can be traversed. For
example, NO can be a radical and uncharged but the loss or gain
of an electron will yield NO+ and NO−; both are hydrophilic. In a
similar manner, the ROS H2O2 is neutral and can move across the
lipid bilayer but O•−2 would not, unless protonated. Furthermore,
it must be considered that such compounds can react with
the membranes themselves, leading to lipid peroxidation or the
formation of nitro-lipids. The formation of nitro-fatty acids has
been suggested to be important for further signaling (Mata-Pérez
et al., 2016).

It can be seen, therefore, that ROS, NO, and H2S can partake
in signaling, that is, so long as their concentrations do not
rise to toxic levels. One of the common themes of their use
in plants is in response to stress (Misra et al., 2011; Petrov
and Van Breusegem, 2012; Hancock and Whiteman, 2014). The
list of stresses investigated in plants in which such signaling is
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implicated is wide ranging and includes: water stress; salt stress;
pathogen challenge; heat/cold stress; metal ion (for example
cadmium, copper, aluminum) stress. Under stress conditions the
production of ROS etc is increased and this often impacts on the
expression of antioxidant systems. However, ROS, NO, and H2S
are also involved in normal plant development and function, such
as: germination (Dooley et al., 2013); root development (Osuna
et al., 2015); stomatal closure (Lisjak et al., 2010; Murata et al.,
2015); flower senescence (Zhang et al., 2011).

In order for ROS, NO, and H2S to be involved in signaling,
once they are produced their presence has to be perceived for
the message transduction to continue. With NO, the classical
pathway determined in animals is the activation of the enzyme
guanylyl cyclase and the resultant increase in cytosolic cGMP
concentrations. Similar pathways have been studied in plants
(Gross and Durner, 2016). However, one of the main mechanisms
by which these reactive compounds participate in signaling
is through the modification of the thiol groups of proteins.
Thiol groups can be oxidized, as was seen with glyceraldehyde
3-phosphate dehydrogenase (GAPDH: Hancock et al., 2005),
nitrosated (Lindermayr et al., 2005) or S-sulfhydrated (Sen et al.,
2012; Romero et al., 2013). In each case the thiol group will
be covalently modified in a reversible manner (although some
modifications such as the formation of the sulphonic acid group
seems to be irreversible), in such a way that the protein may
have an altered function, as would be needed for signaling.
This is akin to phosphorylation/dephosphorylation. Therefore,
through such actions the signal can be transduced to the next
component of the pathway leading to the appropriate cellular
response.

Interactions of Reactive Signaling
Compounds
It is wrong to think about ROS, NO, and H2S working in isolation
from each other. As mentioned above, reactions can take place
between them. Superoxide anions and NO can react to form
peroxynitrite, a possible signaling molecule (Klotz, 2005). NO
and H2S can react to create nitrothiols, again with signaling
potential (Whiteman et al., 2006), whilst ROS and H2S can
also create downstream products (Li and Lancaster, 2013). It
is known that NO and H2S can affect antioxidant levels in
cells, and so influence ROS signaling. For example H2S will
increase glutathione generation (De Kok et al., 1985), while
others report alterations in ascorbate and antioxidant-related
enzymes following H2S treatment (Shan et al., 2011). On the
other hand, the activity of glucose-6-phosphate dehydrogenase
(G6PDH) was increased following H2S treatment, which may
increase ROS accumulation (Li et al., 2013). Therefore there
will be interplay between such signaling molecules (Hancock
and Whiteman, 2014, 2015). Either they can influence each
other’s generation, or they can scavenge each other, lowering the
intracellular concentrations to reduce, or nullify, their effects.

As discussed above, thiols can be modified by this suite of
reactive signaling molecules but of course they may be in direct
competition with each other. Some proteins, such as GAPDH
are known to be modified by both ROS and NO (Hancock
et al., 2005), and this will not be the only competitive target.

Furthermore, other convergence points may exist. It is known,
for example, that the activity of MAP kinases are influenced
by both ROS and NO (Kovtun et al., 2000; Wang et al., 2010)
and it would be no surprise to find H2S having a similar
effect.

CONCLUSION AND FUTURE
DIRECTIONS

It is clear therefore that during evolution certain molecules
to which organisms have been exposed have not simply been
tolerated but that they have been adopted as part of the suite of
chemicals used for signaling. The most studied of these are ROS
such as hydrogen peroxide (Mittler et al., 2011), NO (Mur et al.,
2013), and H2S (Hancock and Whiteman, 2014). It may be that
as such molecules had to be removed low levels always remained,
while removal processes automatically gave cells a way to reverse
cell signaling processes involving these compounds. What is
clear is that carefully controlling the intracellular, and in some
cases extracellular, concentrations of these reactive molecules
are crucial for cell survival. Too much and crucial enzymes are
inhibited, such as cytochrome oxidase (Dorman et al., 2002),
or cellular damage ensues such as lipid peroxidation and DNA
damage (Jena, 2012). Fluctuate the concentrations within defined
limits and signaling can safely take place. Compartmentalisation
is important here and may be part of the key to understanding
how these signaling systems work without causing intolerable
damage.

Besides ROS, NO, and H2S the early atmosphere of the
Earth contained other small relatively reactive compounds.
Amongst these are ammonia, methane and hydrogen (Lane,
2002). Therefore it is possible that as cells had to tolerate these
too, that they also have been harnessed as signaling molecules.

It is known that nitrogen reduction, for example to ammonia,
was involved in the development of the atmosphere (Brandes
et al., 1998). Ammonia has been shown to have effects in
biological systems, amongst which is its toxicity (Britto and
Kronzucker, 2002). Plants are exposed, generate and translocate
ammonium (Schjoerring et al., 2002). Therefore it could be
ideal as a signaling molecule. In human cells ammonium has
been shown to trigger autophagy (Eng et al., 2010), where the
ammonium was derived from the deamination of glutamine by
glutaminolysis. Astrocyte dysfunction mediated by ammonium
involved interactions with antioxidants, oxidative stress and
MAP kinases (Jayakumar et al., 2006). The same group reported
that ammonium induced Ca2+ increases in cells and suggested
that this could lead to the synthesis of NO and ROS, and would
involve proteins such as NAPDH oxidase, NOS, phospholipase
A2 and NF-κB (Norenberg et al., 2009). Therefore ammonium
was acting on pathways in a similar way to other reactive
compounds.

Methane has been shown to alter bowel contractile movement
(Pimentel et al., 2006). The methane in this case was produced
by bacteria in the gut flora. Another compound which may
need to be considered is sulfur dioxide, which has been shown
to reduce the proliferation of smooth muscle cells through a
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mechanism which involves MAP kinases and cAMP signaling
(including activation of cAMP-dependent protein kinase: Liu
et al., 2014). Both these compounds therefore impinge on
signaling in animals.

A molecule that has had a lot of recent interest in signaling
is hydrogen gas. In animals for example, in a study on
ischemia/reperfusion injury of liver, hydrogen gas was found to
activate the NF-κB pathway (Zhang et al., 2015). This seems to
be a convergence point of several of these signal transduction
pathways, being implicated in ROS signaling (Morgan and Liu,
2011), NO signaling (Arias-Salvatierra et al., 2011) and H2S
effects (Sen et al., 2012). In plants hydrogen gas has been found
to be involved in a range of stress responses, just as seen with
ROS, NO, and H2S. Zhu et al. (2016) in the introduction of
their paper lists salt stress, toxicity of metals such as cadmium,
aluminum and mercury, and oxidative stress. They go on to say
that hydrogen gas inhibited NO production in animals (Itoh et al.,
2011), and then showed that in plants hydrogen gas-induced
generation of adventitious roots required NO in the downstream
signaling cascades (Zhu et al., 2016). Therefore, as with the other
reactive compounds discussed above, hydrogen gas impinges on
these signaling systems and should be considered along with the
other reactive molecules for a full understanding of signaling in
plants.

Lastly, it is noteworthy that the understanding of how
some of these reactive signals are working may have practical
implications. It has been suggested that H2S and hydrogen gas
may slow fruit ripening and senescence (Hu et al., 2012, 2014),
while in animal research H2S has been mooted as an important

future therapeutic agent (Zhang et al., 2013). Low levels of such
compounds have even been shown to increase life-span in some
organisms (Miller and Roth, 2007), despite their inherent toxicity.

In conclusion, there has been much interest in how ROS, NO,
and H2S are used as signals in cells, including in plants. They
have been tolerated and harnessed during evolution but there
are other reactive compounds which need to be embraced into
this suite of signaling compounds, along with the interactions
which take place between them, before it can be fully understood
how this signaling works. Dysfunction of such signaling can
have catastrophic results, while prudent use of some of these
compounds may be of an advantage to future agriculture and
therapeutics.
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