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B Chromosomes – A Matter of
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B chromosomes are supernumerary chromosomes which are often preferentially
inherited, deviating from usual Mendelian segregation. The balance between the
so-called chromosome drive and the negative effects that the presence of Bs applies
on the fitness of their host determines the frequency of Bs in a particular population.
Drive is the key for understanding most B chromosomes. Drive occurs in many ways
at pre-meiotic, meiotic or post-meiotic divisions, but the molecular mechanism remains
unclear. The cellular mechanism of drive is reviewed based on the findings obtained for
the B chromosomes of rye, maize and other species. How novel analytical tools will
expand our ability to uncover the biology of B chromosome drive is discussed.

Keywords: supernumerary B chromosome, selfish element, non-disjunction, pollen mitosis, asymmetric cell
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INTRODUCTION

When transmission rates of chromosomes are higher than 0.5, not obeying the Mendelian law
of equal segregation, the resulting transmission advantage is collectively referred to as ‘drive.’
Although B chromosomes (Bs) possibly show the most common form of drive known for genetic
elements (Jones, 1991), little knowledge exists about the cellular and molecular mechanism behind
their drive. Bs are not necessary for the growth and normal development of organisms, yet they
are found in all eukaryotic phyla and are thought to stand for a specific type of selfish DNA
(Kimura and Kayano, 1961; Jones and Rees, 1982; Jones, 1991; Burt and Trivers, 2006). Bs may
vary in structure and chromatin properties in a species-specific way. Generally, it is assumed that
Bs are derived from standard chromosomes (also called A chromosomes), either from the same or
from a related species (reviewed in Camacho et al., 2000; Jones and Houben, 2003; Houben et al.,
2014; Valente et al., 2016). Beside B chromosomes, various other genetic elements promote their
own transmission at the expense of other components of the genome. Best studied examples of
drive that correspond to autosomal distorters are the t haplotype in mouse, Spore killer in fungi
and Segregation Distorter (SD) in Drosophila (Lyttle, 1991). Naturally occurring sex chromosome-
linked meiotic drive with impact on the sex-ratio has been reported mainly in Rodentia and Diptera
(reviewed in Helleu et al., 2015).

Drive of B chromosomes occur at pre-meiotic, meiotic or post-meiotic divisions in a species-
specific way. Beside drive, the non-Mendelian inheritance of Bs could also be effected by mitotic
and meiotic instability. The maximum number of Bs tolerated by the host varies between species
(e.g., maize, chives and rye could carry up to 34, 20, 6 Bs, respectively) and depends on a balance
between B chromosomes accumulation based on drive, and B chromosome caused negative effects,
especially on fertility and vigor [effects induced by Bs are listed in Bougourd and Jones (1997)].
However, not all B carrying species possess a drive mechanism. In these species, it is likely
that counteracting advantageous features have to be in action to maintain the B polymorphism
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[examples listed in Jones (1991)]. While previous reviews on
Bs already gave comprehensive overviews on the evolution and
general significance of the B chromosome drive (Jones, 1991;
Burt and Trivers, 2006), this review will focus on the potential
mechanism behind the drive resulting in a higher than expected
number of Bs in the next generation.

THE MECHANISM OF B CHROMOSOME
DRIVE IN RYE AND OTHER SPECIES

The post-meiotic drive of the rye (Secale cereale L.) B
chromosome is one of the best analyzed mechanisms amongst
Bs. Hasegawa (1934) noted first the unusual behavior of B
chromosomes during the first pollen grain mitosis in rye. He
described the B behavior as following, ‘. . .. . .the two split halves
(sister chromatids) of the extra chromosomes are in most
cases included in the generative nucleus in late anaphase.’ His
observations were summarized in marvelous hand drawings
shown in Figure 1. He observed that during anaphase of the
first pollen mitosis the two B chromatids do not split and in
most cases both B chromatids became part of the generative
nucleus. Based on this observation he concluded ‘. . .from the
irregular distribution of the extra (B) chromosome, the plants
having 14, 15, and 16 chromosomes in diploid may be expected
in the offspring of 8-chromosome rye’ (note, at this time the
term B chromosome did not yet exist and a rye plant possessing
2Bs was called ‘8-chromosome rye,’ while the normal rye has
seven pairs of chromosomes). The frequency of non-disjunction
at first pollen mitosis depends on the genotype (Puertas et al.,
1998, 2000). At second pollen mitosis B sister chromatids
divide normally like standard chromosomes. In rye drive has
been found in plants with up to six Bs (Kishikawa, 1965).
In crosses 0B × 2B or 2B × 0B, plants with up to 4Bs are
obtained in the progenies. However, plants with odd numbers
of Bs were only rarely observed (Müntzing, 1945).Based on
this observation; it was assumed that a similar drive occurs
in female gametophytes. Indeed, Håkanson (1948) observed
anaphase cells with lagging Bs also in the embryo-sac during
first post-meiotic division. A similar drive of Bs during first
pollen mitosis was found in the Triticeae species. Aegilops
mutica and A. speltoides. (Mendelson and Zohary, 1972; Ohta,
1996). Notably, B non-disjunction works as well when the
supernumerary chromosome of rye is introduced as an extra
chromosome into S. vavilovii (Puertas et al., 1985), hexaploid
wheat (Lindström, 1965; Müntzing, 1970; Niwa et al., 1997; Endo
et al., 2008) or hypo-pentaploid Triticale (Kishikawa and Suzuki,
1982). Hence, the B chromosome regulates the process of non-
disjunction on its own (Matthews and Jones, 1983; Romera et al.,
1991).

Analysis of B chromosome variants allowed the identification
of the region controlling the process of non-disjunction at the
end of the long chromosome arm. Rye Bs lacking the so-called
non-disjunction control region (NCR) (e.g., iso-short arm Bs)
undergo normal disjunction at first pollen anaphase [(Müntzing,
1945, 1948; Håkanson, 1959; Endo et al., 2008), Figure 2]. The
NCR can act in trans because non-disjunction works for the

standard and the deficient B chromosome, if a standard B or
the NCR-containing region of the long B arm is present in the
same cell (e.g., translocated to an A chromosome) processing
a deficient B (Lima-de-Faria, 1962; Endo et al., 2008). In the
heterochromatic NCR several B-specific satellite DNAs reside
(Sandery et al., 1990; Blunden et al., 1993; Carchilan et al.,
2007; Klemme et al., 2013). The NCR is also labeled with the
euchromatin-specific posttranslational histone mark H3K4me3
(Carchilan et al., 2007). The observation that some NCR-
specific satellites produce long-non-coding RNA predominantly
in anthers (Carchilan et al., 2007) could indicate the possible
involvement of NCR-derived non-coding RNA in maintaining
cohesion in key regions of B-sister chromatids, preventing
proper segregation. Likely the failure in mitotic segregation
reflects a malfunction to correctly resolve the pericentromeric
heterochromatin of the B chromosome during first pollen mitosis
in rye.

Albeit no similarity between NCR- and B (peri)centromere-
located sequences has been described, it is of interest that
some likeness exists at the protein level between a part of the
NCR-located satellite repeat E3900 (which encodes a partial
gag protein of a Ty3/gypsy-type LTR retrotransposon) and the
conserved centromeric repeats osrch3 and CentC of rice and
maize, respectively (Langdon et al., 2000). On the other hand,
sequence similarity between non-coding RNA and the target
region is not required. For example, the regions of the Xist (X-
inactive specific transcript) non-coding RNA that are necessary
for the localization on the inactivated sex X chromosome have
no noticeable similarity at the sequence level (Wutz et al., 2002).
Hence, it is possible that B chromosome encoded non-coding
RNAs block access to necessary factors at specific genomic loci
such as the B pericentromere; alternatively the B-derived non-
coding RNAs could act as “guide molecules” to direct protein
complexes (Banaei-Moghaddam et al., 2012).

Alternatively or in addition the recent identification of a
surprisingly high number of B-encoded transcripts in a number
of species, e.g., in rye (Martis et al., 2012; Banaei-Moghaddam
et al., 2013; Ma et al., 2016), fish (Silva et al., 2014; Valente et al.,
2014; Ramos et al., 2016), Drosophila (Bauerly et al., 2014) and
cervids (Makunin et al., 2016), provides the basis to hypothesize
about the involvement of protein-coding genes, or pseudogenes
in non-disjunction control. For example, a B-specific non-
disjunction control gene might exist in analogy to the mechanism
of sex chromosome drive in Drosophila. In Drosophila simulans
the rapidly evolving X-linked heterochromatin protein 1 gene,
HP1D2, has an important function in the Paris-type sex ratio
meiotic drive system (Helleu et al., 2016).

THE COMPOSITION OF THE
(PERI)CENTROMERE DIFFERS
BETWEEN A AND B CHROMOSOMES

Comparison between rye A and B centromeres revealed
differences in the (peri)centromere repeat composition (Banaei-
Moghaddam et al., 2012). The B centromere shares the same
known repeats as the centromere of As. But in addition,
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FIGURE 1 | Hand drawing of Hasegawa (1934) depicting for the first time the process of B chromosome drive at first pollen mitosis in rye (A)
metaphase, (B) lagging B chromosome due to non-disjunction. (C) Disjoined sister chromatids of the B chromosome going to different poles, (D) chromosome drive
occurs, the future generative nucleus receives both sister chromatids of the B, in contrast the vegetative nucleus contains only the 7 standard A chromosomes.
Permission has been obtained for use of copyrighted material from the Japan Mendel Society.

FIGURE 2 | Structure and drive of rye B chromosomes. The trans-acting non-disjunction control region (NCR) is enriched in B-specific satellite DNAs expressing
non-coding RNA. During first pollen mitosis Bs undergo non-disjunction and both chromatids are included preferentially in the generative nucleus. In contrast, due to
the absence of the NCR deficient Bs segregate during the first pollen mitosis like standard A chromosomes.

the B pericentromere is extended with the B-specific repeat
ScCl11 and mitochondrion-derived DNA. Both sequences do
not interact with CENH3-containing nucleosomes (Banaei-
Moghaddam et al., 2012). One might imagine that the centromere
of the B evolved from a standard centromere and additonal
repeats accumulated in the centromere of the newly formed
B chromosome. A comparable distinct composition was also
observed for the centromere of the maize B chromosome. CentC
repeats and centromere-specific retrotransposons of the maize

B are disrupted by species-specific B-centromeric sequences (Jin
et al., 2005).

The accumulation of B-specific repeats in the pericentromere
takes probably part in the organization of pericentric
heterochromatin, which as we know plays a role in chromosome
segregation (Yamagishi et al., 2008). Heterochromatin is essential
for proper sister chromatid cohesion, e.g., in Schizosaccharomyces
pombe, repeats next to the kinetochore are required for proper
sister chromatid cohesion (Bernard et al., 2001).
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CELLULAR EVENTS DURING B
CHROMOSOME DRIVE IN RYE AND
OTHER SPECIES

In a number of plant species the microtubule spindle is
asymmetric during the first pollen grain mitosis. The asymmetry
of this division plays a critical role in the subsequent formation of
the unequal daughter cells, the generative and the vegetative one
(Twell, 2010). Due to the asymmetric division and the formation
of two nuclei having different degrees of chromatin condensation,
in rye the A chromosome centromeres are clustered in the
condensed generative nucleus, whereas in the less condensed
vegetative nucleus the centromeres are scattered over a larger
area (Banaei-Moghaddam et al., 2012). Notably, in the generative
nucleus the centromeres A and standard B chromosomes do
not intermingle. In contrast, Bs lacking the NCR-region, cluster
together with the A chromosomes. Thus, the distinct interphase
position of standard Bs in the generative nucleus is likely due to
their lagging behind the separated A chromatids during anaphase
of the first pollen mitosis (Banaei-Moghaddam et al., 2012).

Taken the asymmetric geometry of the spindle at first pollen
mitosis in consideration it is likely as by Jones (1991) suggested,
that the inclusion of Bs in the generative nucleus is caused by
the fact that the equatorial plate is nearer to the generative
pole and lagging Bs are passively included in the generative
nucleus. Alternatively, due to a higher pulling force on the B
centromere toward the generative pole Bs may preferentially
accumulate in the generative nucleus (Banaei-Moghaddam et al.,
2012). Asymmetrical spindles are likely also key component of
the meiotic drive of the B chromosomes in the grasshopper
Myrmeleotettix maculatus (Hewitt, 1976) and the premeiotic
drive of Bs in the Asteraceae Crepis capillaris (Rutishauser
and Rothlisberger, 1966). Thus, asymmetry of the microtubule
spindle seems to be a component of the B accumulation
mechanisms.

In maize, the drive of Bs requires a factor located on the long
arm of the B that may act in trans. The maize B drive mechanism
involves non-disjunction at the second pollen grain mitosis,
placing two copies of the B into one of the two sperm. The sperm
carrying Bs preferential fertilize the egg (Roman, 1947; Carlson,
1978; Lamb et al., 2006). Characterizing an epigenetically silenced
maize B centromere demonstrated that non-disjunction does
not depend on a functional centromere (Han et al., 2007). In
maize, non-disjunction of Bs also takes place in endosperm and
tapetum cells (Alfenito and Birchler, 1990; Chiavarino et al.,
2000). In tapetum cells, Bs mediate instability of A chromosomes
(Gonzalez-Sanchez et al., 2004). Sporophytic non-disjunction of
the B occurs mainly if this supernumerary chromosome is present
at high copy number, implying that non-disjunction is repressed
if the number of Bs is low (Masonbrink and Birchler, 2010).

One factor encoded by a maize standard A chromosome seems
to influence the B accumulation process (Gonzalez-Sanchez
et al., 2003). Sperm nuclei carrying deletion derivatives of
the translocation chromosome B-9 (involving parts of the
standard A chromosome 9 and the B), which lack the centric
heterochromatin and possibly some euchromatin of the B,
no longer have the capacity for preferential fertilization of
the egg (Carlson, 2007). Thus, although the B chromosomes
of rye and maize originated independently (Martis et al.,
2012), similar drive mechanisms in both cereals evolved in
parallel.

FUTURE PERSPECTIVES

Considering that Bs would not exist without a drive it is about
time to decipher this process at the molecular level. With the
development of novel analytical tools a better understanding of
this intriguing mechanism becomes possible. Sufficient genome
sequence information is available for some of the B chromosome
carrying species or could be generated to search for candidate
genes of non-coding transcripts involved in the process of drive.
Comparative transcript analysis of genotypes with a different
degree of B non-disjunction could be used to identify non-
disjunction-linked transcripts. Genome editing methods will
become instrumental to analyze the function of sequences
involved in non-disjunction. Emerging techniques of chromatin
imaging (e.g., CRISPR-FISH) allow the labeling of defined
genomic regions in living cells, useful to decipher the spatio-
temporal distribution of Bs; and even to witness the process of
chromosome drive in living cells. The combination of innovative
technologies will expand our ability to uncover the mystery of B
chromosome drive.
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