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Recording growth stage information is an important aspect of precision agriculture, crop

breeding and phenotyping. In practice, crop growth stage is still primarily monitored

by-eye, which is not only laborious and time-consuming, but also subjective and

error-prone. The application of computer vision on digital images offers a high-throughput

and non-invasive alternative to manual observations and its use in agriculture and

high-throughput phenotyping is increasing. This paper presents an automated method

to detect wheat heading and flowering stages, which uses the application of computer

vision on digital images. The bag-of-visual-word technique is used to identify the

growth stage during heading and flowering within digital images. Scale invariant feature

transformation feature extraction technique is used for lower level feature extraction;

subsequently, local linear constraint coding and spatial pyramid matching are developed

in the mid-level representation stage. At the end, support vector machine classification is

used to train and test the data samples. The method outperformed existing algorithms,

having yielded 95.24, 97.79, 99.59% at early, medium and late stages of heading,

respectively and 85.45% accuracy for flowering detection. The results also illustrate

that the proposed method is robust enough to handle complex environmental changes

(illumination, occlusion). Although the proposed method is applied only on identifying

growth stage in wheat, there is potential for application to other crops and categorization

concepts, such as disease classification.

Keywords: image categorization, computer vision in agriculture, automated field phenotyping, automated growth

stage observation, Field Scanalyzer, wheat heading stage, wheat flowering time

1. INTRODUCTION

An estimated doubling in required crop production is projected by 2,050 in order to meet
the demand of the rapid growth human population (Tilman et al., 2011). To achieve this, an
approximate 38% increase over current increases in annual crop production rates is required, and
on not much more arable land. Further concerns exist around not only achieving this target in a
changing climate, but also achieving it sustainably, whereby reducing agricultural inputs to reduce
the environmental degradation caused by our agricultural footprint (Tester and Langridge, 2010).
With wheat providing >20% of the worlds calorie and protein intake (Braun et al., 2010), the
requirement to increase yield and production is widely recognized.

Breeding and precision agriculture, including information-based management of agricultural
systems, are fundamental for achieving sustainable increases in wheat productivity and production.
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One component critical to both crop breeding and precision
agriculture is the monitoring of developmental growth stages, as
(i) it helps crop producers understand which phases of wheat
development are most vulnerable to biotic and environmental
stresses, and (ii) supports precision agriculture by helping
making informed-decisions around which treatment should be
applied, to what location and when to apply it. Two critical
growth stages monitored in crops, including wheat, are heading
date and flowering time, as cultivars with appropriate heading
time to their target environment and life cycle duration will help
maximize yield potential (Snape et al., 2001; Zhang et al., 2008).

The monitoring of heading and flowering stages are still
primarily performed by human eye, which is labor-intensive and
time-consuming, as these observations need to be performed
on up to thousands of cultivars/varieties on a daily or bi-daily
basis, given the importance in catching the starting date of these
growth stages. Given that manual growth stage monitoring is
also subjective, different observers may likely perceive the growth
stage of the same plot differently, which introduces human-error
into obtained data.

Computer vision offers an effective alternative for growth
stage monitoring because of its low-cost (relative to man-hours
invested in to manual observations) and the requirement for
minimal human intervention. Computer vision has facilitated
automation in high-throughput phenotyping, as well as areas
of agriculture, such as disease detection (Pourreza et al., 2015),
weed identification (Guerrero et al., 2012) and quality control
(Alahi et al., 2012; Valiente-González et al., 2014). Despite the
efforts of computer vision specialists over the past decades,
developing reliable image-based model to identify and categorize
images based on visual information is still difficult to achieve
and remains an unsolved problem in the computer vision
community. The visual recognition of object categories is a
natural and trivial task for humans. Humans can recognize
objects effortlessly even with changes in an object’s appearance,
such as viewing direction or a shadow being cast across the
object. On the other hand, in computer vision it can be a
challenging task to achieve such level of performance due to the
difficulties inherent in the problem. Images are quite abstract
and subjected to illumination, scale, deformation, background
clutter, etc. Moreover, in computer vision, teaching a machine to
distinguish and categorize objects is all about teaching it which
differences in the image is matters and which don’t, by scanning
through diverse datasets, which is a computationally exhaustive
process.

Computer vision has shown promise in detecting growth
stages of crops. For seedling emergence, color segmentation
approaches have been applied in maize (Yihang et al., 2014)
and oilseed rape (Yu et al., 2013), using images acquired from
a digital camera. Some approaches for observing later growth
stages, such as heading date and flowering stage, have also been

Abbreviations: BoVW, bag of visual words; SVM, support vector machine;
SPM, spatial pyramid matching; RBF, radius basis kernel; LLC, local linear
constraint; SIFT, scale invariant feature transform; DoG, difference-of-gaussian;
LoG, laplacian-of-gaussian; PCA, principle component analysis; SURF, speeded up
robust features; KNN, k-nearest-neighbors, UAV, unmanned aerial vehicle.

developed. Zhu et al. (2016), developed a method to detect wheat
heading stage from RGB images using a two-step coarse-to-fine
detection approach. For flowering stages, Guo et al. (2015) used
object-recognition to detect flowering stages from rice panicles.
Although the approaches by Zhu et al. (2016) and Guo et al.
(2015) were effective on a single variety, within small patches of
whole canopies, applications that are more versatile and that also
can be applied on different varieties on larger scale canopies are
required.

This study utilizes a novel visual-based approach to monitor
heading and flowering stage of field grown wheat, through the
automated learning of the visual consistency between classes of
canopy images, in order to identify the critical growing stages of
wheat (e.g., whether ears are emerging in canopies). This method
searches through an image database to identify and retrieve
images containing emerged wheat ears and ears at flowering
stages. This visual-based approach is:

i. Not limited to specific wheat cultivars and is applicable to
a variety of categorical wheat without implementing specific
tuning for each category.

ii. Robust to handle illumination changes and natural lightning
conditions in the field.

iii. Robust in distinguishing the early emerged ears, despite
the color difference between ears and leaves being hardly
distinguishable to the naked eye.

2. MATERIALS AND METHODOLOGY

The introduced technique is performed in four main steps
(Figure 1):

• Image acquisition: A RGB image is captured from 8 MP
camera mounted inside the camera bay.

• Pre-processing of the images to improve the contrast.
• Extracting features that contain suitable information to

discriminate images at the category level.
• Classification: Images classified in different categories as

specified.

Bag of VisualWords (BoVW) proved to be the leading strategy in
computer vision applications such as image retrieval and image
categorization (Csurka et al., 2004); thus, it is being opted for
the presented work. Categorizing digital images, embarks on
extracting features and creating a visual vocabulary for the given
dataset. It comprises of following states:

1. Extracting features.
2. Constructing visual vocabulary by clustering.
3. Using multi-class classifier for training using bags as feature

vector.
4. For the testing image, obtain the nearest vocabulary based on

the most optimum prediction of classifier.

However, in this study, several steps are integrated in the process
to improve the overall performance compared to Csurka et al.
(2004) described in Section 2.3. Our method treats canopy
images acquired automatically in the field as a collection of
unordered appearance descriptors extracted from local patches;
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FIGURE 1 | Schematic representation of the method.

then, quantizes them into discrete visual words. Each image is
defined by a feature vector listing the number of regions which
belongs to each cluster and are later used to train a classifier.
In addition, the location information is taken into account
which is one of the important factors in object recognition
scenarios. In the final step, a linear Support Vector Machine
(SVM) classifier is used to determine pre-defined classes (e.g.,
ear emergence, flowering). The experimental results show that
the introduced method is capable of automatically identifying
key wheat growing stage with high accuracy and efficiency
(Section 3).

2.1. Field Experiment and Image
Acquisition
Six wheat cultivars (Triticum aestivum L. cv. Avalon, Cadenza,
Crusoe, Gatsby, Soissons and Maris Widgeon) were grown in the
field at Rothamsted Research, Harpenden, UK, sown in Autumn
2015 and maturing in 2016. These cultivars were selected as
they had different properties visible to the naked-eye (awns/no
awns, differing wax properties, straight/floppy leaves, different
ear morphology) (Figure 2). All cultivars were sown 20 October
2015, at a planting density of 350 plants/m2. Nitrogen (N)
treatments were applied as ammonium nitrate in the spring, at
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FIGURE 2 | Digital images of the six contrasting wheat cultivars (Triticum aestivum L. cv. Avalon, Cadenza, Crusoe, Gatsby, Soissons, and Maris

Widgeon) used, at growth stage Z5.9.

rates of 0 kg ha−1 (residual soil N; N1), 100 kg ha−1 (N2) and
200 kg ha−1 (N3) (Figure 4).

The Field Scanalyzer phenotyping platform (LemnaTec
GmbH; Virlet et al., 2017) was used to acquire all images
(Figure 3). The Field Scanalyzer is a fully-automated, high-
throughput, fixed-field phenotyping platform, carrying
multiple sensors for non-invasive monitoring of plant
growth, morphology, physiology and health. The on-board
visible camera (color 12 bit Prosilica GT3300) was used to
acquire RGB images at high-resolution (3,296 × 2,472 pixels).
The camera is positioned perpendicular to the ground, and
automatically adjusts to ensure a 2.5 m distance is maintained
between the camera and canopy. The camera is set up in
auto-exposure mode, to compensate for outdoor light changes.
Wheat canopies were imaged daily during three stages of
ear emergence: Stage 1 (Zadoks scale Z5.0; 3–5 June 2016
Zadoks et al., 1974); Stage 2 (Z5.3–Z5.7; 7–10 June 2016)
and Stage 3 (> Z5.9; 12–14 June 2016), as well as flowering
stage (14–18 June 2016). In addition, illumination conditions
were recorded during the image acquisition (Table 1). Manual
growth stages were recorded daily or on alternating days
during heading and flowering. The growth stage of the plot
was defined manually by the stage of >50% of the plot. Videos
and more information of the Field Scanalyzer platform can be
accessed in our website: http://www.rothamsted.ac.uk/field-
scanalyzer.

2.2. Image Pre-processing and
Enhancement
The color of ears at early development stages are very similar to
leaves and hardly discernable with the naked-eye (Figures 5A,C).
In order to make the ears stand out in canopies and discriminate
them from the background more easily, a pre-processing method
is applied on plot images before extracting features, known

FIGURE 3 | The Field Scanalyzer at Rothamsted research.

as decorrelation stretching (DS). The decorrelation stretching
technique enhances the color differences and increasing the
image contrast in each plot image by removing the inter-
channel correlation found in the pixels (Gillespie et al., 1986).
Therefore, it allows to see details such as ears that are otherwise
too subtle for the naked-eye (Figures 5B,D). If the red, green,
and blue values of pixels are treated coordinates in space,
decorrelation stretch moves these points in space further apart,
so they become much easier to see a difference between
them.

The DS among the RGB channels is achieved through
principle component analysis (PCA) to remove inter-channel
correlation in an image. The application of PCA to the
digital analysis of an image is based on first, calculating the
covariance matrix between the three RGB bands. Then, obtaining
eigenvectors and eigenvalues. Finally, rotating the original image
vector to a new space by multiplying it by the eigenvectors
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FIGURE 4 | Digital images highlighting the impact of 0 kg ha−1 (N1), 100 kg ha−1 (N2) or 200 kg ha−1 (N3) nitrogen fertilizer application on canopy

complexity. Images were acquired 2.5 m above Triticum aestivum L. cv. Soissons canopies.

TABLE 1 | Date, start/end time, and PAR values of each images

acquisition periods during ears emergence and flowering stages.

Date Start End PAR (µmol.m−2.s−1)

03/06/2016 11:19:16 12:08:24 404 ± 58

04/06/2016 11:53:11 12:42:41 512 ± 67

05/06/2016 08:29:34 09:18:38 287 ± 43

07/06/2016 13:33:40 14:25:07 1,037 ± 95

08/06/2016 08:07:05 08:58:46 315 ± 19

08/06/2016 18:05:53 18:38:33 528 ± 180

09/06/2016 08:32:25 09:24:05 530 ± 215

10/06/2016 07:43:46 08:37:33 461 ± 33

12/06/2016 14:32:33 15:26:18 703 ± 304

13/06/2016 09:49:04 10:41:12 555 ± 110

14/06/2016 10:14:16 11:06:10 800 ± 196

14/06/2016 15:01:19 15:33:55 569 ± 121

16/06/2016 08:02:55 08:35:57 363 ± 31

18/06/2016 10:51:31 11:44:17 919 ± 238

PAR mean and standard deviation values are computed from the 54 scans collected

during one acquisition periods.

(Equation 1) (Jolliffe, 2002; Cerrillo-Cuenca and Sepúlveda,
2015).

pn = RT in (1)

where in is the image vector; n is the number of pixels; and R is
the rotation matrix.

Campbell (1996) proposed a general framework consists of the
following steps:

(i) Calculating pn from Equation (1), eigenvalues and
eigenvectors are obtained from the correlation matrix or
alternatively from the covariance matrix.

(ii) Generating a stretch vector: diagonalize the covariance
matrix composed by the inverse of the eigenvectors:

D =







1√
v1
0 0

0 1√
v2
0

0 0 1√
v3






(2)

where D is a diagonal matrix; v denotes each of the
eigenvalues. Alternatively,D can be multiplied by an integer
value that serves to achieve a higher contrast in the image
(Alley, 1996). Finally, the resultant matrix is applied to pn
(Equation 3). At this step, the matrix is re-centered and
stretched its values to a maximum.

wn = Dpn (3)

(iii) The inverse transform is applied to map the colors back
to the original space. The information is decorrelated
into a new vector cn composed of three matrices (RGB)
(Equation 4)

cn = Rwn = RDRT in (4)

(iv) Finally, a standard deviation value is applied to visually
increase the contrast (Alley, 1996).

2.3. Bag of Visual Words Construction
The first step of BoVW framework corresponds to feature
extraction. Fixed length feature extraction techniques based on
color (Swain and Ballard, 1991; Chen et al., 2010), texture (Duda
et al., 2000), shape (Mehrotra and Gary, 1995), or a combination
of two or more techniques, extract pixel values of an image only.
These are excellent in comparing the overall image similarity
(Angelov and Sadeghi-Tehran, 2016); however, they are not scale
or rotation invariant. Moreover, they are very sensitive to noise
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FIGURE 5 | Digital image of wheat (Triticum aestivum L. cv. Soissons) canopy (A) before and (B) after enhancement of image contrast and application of

decorrelation stretching. Scatterplot of every pixels normalized red, green blue (RGB) values from (C) the original image and (D) after applying the decorrelation stretch

and contrast increase.

and illumination changes; thus, are unable to describe the object-
based properties of the image content.

As opposed to global feature extraction methods mentioned
earlier, local extraction algorithms are robust to partial visibility
and clutter. It is an ideal candidate for object recognition,
template matching and image mosaicing. There are several
feature detector methods, which are scale and rotation invariant.
They are also robust enough to handle illumination changes
and resistant to geometry (Bay et al., 2006; Leutenegger et al.,
2011; Alahi et al., 2012). Among the proposed descriptors, Scale
Invariant Feature Transform (SIFT) is selected due to its excellent
performance attested in various applications (Mikolajczyk and
Schmid, 2005). It returns anN×128 dimension image descriptor,
where N is the number of features.

SIFT consists of Lowe (2004):

• Constructing a scale space: in this stage, location and scales
of each keypoint are identified. Laplacian-of-Gaussian (LoG)
is calculated for an image with various σ . Due to change in σ ,
LoG detects blobs of various sizes, then the local maxima can
be found across the scale and space with a list of (x, y, σ ) values,
which show there is a candidate keypoint at location x, y with
scale of σ . However, in order to reduce the computational

complexity, SIFT uses Difference-of-Gaussian (DoG) which
is a convolved image in scale space separated by a constant
factor k:

D(x, y, σ ) = (G(x, y, kσ )− G(x, y, σ )) ∗ I(x, y)
= L(x, y, kσ )− L(x, y, σ ) (5)

where I(x, y) is an input image; L(x, y, kσ ) is the scale space of
an image; G(x, y, kσ ) is variable-scale Gaussian.

D is computed by simple image subtraction and the
Guassian image is sub-sampled by a factor of 2 and produces
DoG for the sampled image. Once the DoG is computed,
images are searched for local extrema over space and scale. For
instance, one pixel is compared with its n × n neighborhood
(n = 3 in our experiment) as well as 9 pixels in the next scale
and 9 pixels in previous scales (Lowe, 2004).

• Keypoint localization and filtering: Once the location of
keypoints candidates are found, they are refined and some are
eliminated to get a more accurate location of extrema. For
instance, if the intensity at the extrema is less than a certain
threshold (threshold <0.03) it is rejected. In addition, edges
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FIGURE 6 | (A) A single keypoint candidate in the image; (B–D) SIFT descriptor calculated at different scales of 4, 8, and 10; At each scale, the descriptor has 4× 4

patches (color coded in yellow), which are rotated to the dominant orientation of the feature point. Each patch is represented in gradient magnitudes of eight

directions, represented by yellow arrows inside each bin.

and low contrast regions are considered as bad keypoints and
will be rejected.

• Orientation assignment: The orientation of each keypoint is
obtained based on image gradient and local image gradient
directions to achieve rotation invariance. Depending on the
scale a neighborhood is taken around the keypoint location
and the gradient magnitude and direction is calculated in that
region.

• Keypoint descriptor: In order to generate a keypoint
descriptor, the local image descriptor is computed for each
keypoint based on image gradient magnitude and orientation
at each image sample point in a region centered at keypoint.
These samples build a 3D histogram of gradient location and
orientation; with a 4 × 4 array location grid and 8 orientation
bins in each sample, which creates 128 element dimensions of
the keypoint descriptor, causing robustness against changes in
scale and rotation (Figure 6).

The next step is to form clusters of similar features and assign
them as visual words. The objective of constructing codebook
is to relate features of testing images to the features previously
extracted from the training image samples (Figure 7). Although
in the field of unsupervised learning, clustering is a standard
procedure, there is no single clustering algorithm that can be
applied uniformly to all the application domains or address all
related issues in a satisfactory manner. Here, a partition-based
clustering approach known as K-means clustering is used to
quantize each descriptor and generate a codebook. The process
is iterative as follows (Lloyd, 1982):

Algorithm 1 K-means clustering procedure

1: Select K points as initial centers
2: repeat

3: Assign each input data to its closest center
4: Re-compute the center of each cluster by averaging all the

members in the clusters
5: until

6: convergence which means no pixel shifts from one cluster to
another; centers do not change

In K-means the number of clusters is pre-defined beforehand
and it should be large enough to identify relevant changes
in each wheat cultivars. For an image having N features,
the model will distribute the features with K clusters,
which is the size of the visual vocabulary. We have been
able to find the optimum numbers and get very good
results with number of vocabulary (codebook) K = 2000
(Table 2).

The codebook is used for quantizing features. A vector
quantizer takes a feature vector and maps it to the index
of the nearest code vector in a codebook. In our work, in
order to project the descriptors onto the codebook elements,
Local Linear Constraint (LLC) (Wang et al., 2010) is used
to generate a final vector which represents an image. LLC
reduces the computational complexity to O(K + K) (where
K is the length of the codebook; K = 2000 in this case) for
each descriptor and can achieve acceptable image classification
accuracy even with a linear SVM classifier (Wang et al.,
2010).

The main drawback of BoVW is that it is unable to
capture spatial relationships between images. In order to
preserve the spatial relations of the code vector Spatial
Pyramid Matching (SPM) is implemented where the entire
image is divided into levels. Each image is divided into
spatial sub-regions and computes histograms of features
from each sub-region. Each level divides the image into
2l × 2l−1; where l is level (Grauman and Darrell, 2005;
Lazebnik et al., 2006). The features are computed locally
for each grid and the spatial information is incorporated
into histograms. A three level SPM is used with first,
level 0 which comprises of a single histogram; level 1,
comprising of 4 histograms, finally level 2, comprising
of 16 histograms (Figure 7). The histogram from all the
sub-region are concatenated together to generate the
final representation of the image for classification. The
result is a feature weighted histogram of 21 × K (number
of words = 2000). Using such method will preserve the
discriminative power of the descriptors; in addition, changes
in the positioning of the objects and variations in the
background will not affect the overall performance of the
method.
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FIGURE 7 | Schematic representation of the proposed method.

2.4. Learning Model
The construction of the model for our image annotation is
based on the supervised machine learning principle. Supervised
learning can be thought as learning by examples represented by
a set of training-testing samples. In order to classifying unknown
testing images, a certain number of training images are used for
each class to train the classifier. A classifier approximates the
mapping between the images and correctly labels the training set,
called the training phase. After the model is trained, it is able to
classify unknown image, into one of the learned class labels.

In our model, the complexity of visual categorization is
reduced to two-class with positive and negative training patches.
The SVM classifier is used as our classifier of choice as it is fast
and can handle the long feature vectors generated by the SPM.
During the training phase, labeled images (ears and background)
are fed to the classifier and used to adapt a statistical decision
procedure. Among many available classifiers, linear SVM with
Hellinger kernel is used to predict the unlabeled test images and
retrieve as much of the data as possible in a high ranked position.
Feature vectors generated from each image are normalized to a
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TABLE 2 | Comparison of different methods applied on the three heading stages.

Decorrelation

pre-processing

Feature extraction Coding method Spatial pyramid Vocabulary length Accuracy

Z5.0 (%)

Accuracy

Z5.3–Z5.7 (%)

Accuracy

≥ Z5.9 (%)

Yes SIFT LLC Yes 2,000 95.24 97.79 99.59

No SIFT LLC Yes 2,000 57.29 82.20 85.38

Yes SIFT k-NN Yes 2,000 90.54 94.48 96.97

Yes SIFT LLC No 2,000 92.90 96.54 96.90

Yes SURF LLC Yes 2,000 56.84 71.55 78.45

Yes SIFT LLC Yes 1,000 93.91 97.52 98.91

Yes SIFT LLC Yes 1,500 94.61 97.64 99.24

Yes SIFT LLC Yes 2,500 94.90 97.59 99.49

unit Euclidean norm and used for a linear SVM classifier with
the Hellinger kernel to compute the feature map (Vedaldi and
Zisserman, 2012).

K(n, n′) =
d

∑

m=1

√

nmn′m; n = [n1, . . . , nd]; n′ = [n′1, . . . , n
′
d]

(6)
where n and n′ are normalized histograms; d = 42, 000

One-vs.-all strategy is chosen to train the SVM. Two classes
are trained, each labels the sample inside one class as +1 and other
samples (background) as -1. The SVM calculates the similarity of
all trained classes and assigned the test image to the class with the
highest similarity measure.

3. EXPERIMENTAL RESULTS AND
DISCUSSION

The experiment is divided into two sections of identifying ear
emergence and flowering stages from the digital images acquired
in the field. In the first section, ear emergence was tested at
different time points, from early stages where only few spikelets
are visible, to a more advanced stage where ears are fully
emerged (Section 3.1). In the second part of the experiment,
the method was tested to identify flowering growth stage during
anthesis (Section 3.2). The training dataset for the ear emergence
experiment includes images with ears at different emergence
stages (positive class) and leaves, soil, etc. (negative class), which
are manually cropped and stored in the dataset. On the other
hand, the training dataset for the flowering experiment contains
ears at different flowering time points (positive class) and ears
before and after flowering (negative class). The collected dataset
focuses on different challenges regardless of light conditions
in the field and to demonstrate the robustness of the method
to environmental changes. In addition, the versatility of the
proposed technique were also tested by minimizing the number
of cultivars as training patches, and evaluating the method on
more varieties.

The research was conducted with the following specifications.
System comprised of 24 GB RAM, Intel quad core Processor (3.40
GHz) with Windows 10 OS. The models have been developed in
MATLAB (Mathworks Inc.); however, to improve the processing

time, some of the algorithm, such as SIFT were written in C++
programming language. Utilities like VLFeat library (Vedaldi and
Fulkerson, 2010) to extract features as well as LibLinear library
(Fan et al., 2008) to train and test the SVM classifier. Using
the above configured computer system, extracting features and
generating code vectors from each training image approximately
takes 0.45 s. However, the processing time increases to 5.4 s for
each testing patch with resolution of 3,298× 2,474 pixels.

Precision (Pr) and Recall (Re) are the most commonly used
measurements to evaluate the performance of image retrieval
systems. Thus, it is used in our experiment to quantitatively assess
the precision of the proposed approach in detecting the two
main growing stages of ear emergence and flowering. Precision
is defined as the ratio of the number of retrieved relevant images
Nr to the total number of retrieved images N (Equation 7); on
the other hand, Recall is defined as the number of retrieved
relevant images Nr over the total number of positive images Nt

available in the database. In an ideal scenario, both Pr and Re
should have high values (1). Therefore, instead of using Pr and
Re individually, usually accuracy curve is used to characterize the
performance of the retrieval system.

Pr =
Nr

N
; Re =

Nr

Nt
(7)

3.1. Ear Emergence
The learning process starts with 1,000 training image samples
divided into 500 ears (positive class), which are manually
cropped from full size canopy image and 500 background
images (negative class). Figure 8 shows image samples randomly
selected from training patches which are not necessarily the
same dimensions. Moreover, to observe the field challenges
during data acquisition, ears are selected from different positions
and illumination conditions (with or without occlusions
and overlapping; sunny or cloudy days). Three different
wheat cultivars are used as a training dataset including
Avalon, Cadenza, and Soissons. Cadenza can present short
awnlettes/scurs at the ear tip, although most of the times no awns
are present in contrast to Soissons which is an awned variety.
Although three wheat cultivars were used as a training dataset,
six cultivars including Maris Widgeon, Avalon, and Gatsby are
tested to highlight the versatility of the proposed technique.
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FIGURE 8 | Example of ear emergence training patches. Note that the training patches are not necessarily of equal size and resized for illustration purposes. (A)

Examples of positive training patches of three different wheat cultivars (Triticum aestivum L. cv. Soissons, Avalon, and Cadenza). (B) Examples of negative training

image patches.

Ear identification was evaluated at three different time points
of the emergence period, (i) at Z5.0, when the ears start to be
visible (first spikelet of inflorescence visible), (ii) between Z5.3–
Z5.7, when 1/4 to 3/4 of the ears are emerged and (iii) at Z> 5.9,
when ears are fully emerged (Figure 8). Each time point was
tested independently from datasets containing 80 images (40 with
ears present and 40 without) of full size wheat canopies with the
original resolution of 3,298× 2,474 pixels.

The results for each ear development stage are shown in
Table 2. The accuracy of the method is evaluated using different
techniques at different processing stages. (i) presence/absence of
decorrelation processing, (ii) SIFT vs. SURF, (iii) LLC vs. KNN,
(iv) presence/absence of spatial pyramid and (v) the vocabulary
length. As shown in the Tables, the best performance was
obtained using decorrelation pre-processing, SIFT, LLC coding,
and a 2,000 entry codebook. The best performance at heading
stage Z5.0 is 95.24%, and for heading stages Z5.3–Z5.7 and >

Z5.9 are 97.79 and 99.59%, respectively (Figure 9). Out of the
eight tested scenarios, we achieved accuracy of> 90% at Z5.0 and
> 96% at Z5.9 in six scenarios. The impact of codebook size on
the performance of the method was also investigated. It is clearly
shown that the increasing number of codebook improves the
accuracy; however, the accuracy plateaus at 2,000 visual words.
Moreover, the low-level feature extraction and the decorrelation
pre-processing technique has the biggest influence in the quality
of results; especially in the early heading (Z5.0). The main
conclusion is that mid-level feature coding and classification
are highly impacted by the low level pre-processing and feature
extraction techniques.

Figure 10 illustrates the performance evolution of the heading
stage Z5.0 over the number of images in the training dataset.
for both positive and negative data. Training patches of 50, 100,
300 were selected randomly apart from the full set when all 500
samples were used. The accuracy improves by increasing the
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FIGURE 9 | Three ear development stages visually scored and used to

evaluate the performance of the proposed method.

FIGURE 10 | Accuracy of the proposed method over number of training

image samples.

number of training samples. The accuracy increased from 75.77
to 90.65% when the training dataset increased from 50 to 100.
On the other hand, there was no substantial change in accuracy
between 100 and 200 samples. However, the performance jumped
by more than 5% from 90.80 to 95.24% when the dataset
increased to 500.

3.2. Flowering Time
Similarly to ear emergence identification, two training classes
were created, which comprised of three wheat cultivars (Soissons,
Maris Widgeon, and Cadenza). The first class (positive class)
contained 140 manually cropped images at flowering stage while
the second class (negative class) contained the same number
of images as the positive class, but with ears before and after
flowering.

Figure 11 shows randomly selected samples from the training
patches. All training images were collected without considering
the environmental changes and positioning or occlusion. As

flowering development may be completed in only a few days, the
beginning or intermediate stages can be easily missed. Therefore,
all flowering images along the flowering duration were included.
For the testing dataset, 108 full size canopy images were used
with the original resolution, which includes 54 canopies with
ears during flowering stage and 54 canopies with ears before or
after flowering stage. The method selected to test the flowering
stage was the one which produced the best result in the ear
emergence experiment (decorrelation stretching, SIFT, LLC, and
SPM algorithms with the vocabulary length of 2,000). The
method was tested on each cultivar separately, as well as all three
together. For all three cultivars, 38 images out of 54 images were
retrieved correctly, which shows 82.54% accuracy. On the other
hand, the accuracy when testing Soissons, Cadenza, andWidgeon
individually was 76.72, 92.91, and 80.33%, respectively (Table 3).

3.3. Discussion
To the best of our knowledge, few efforts have been made
to automate the detection of crop growth stage (Thorp and
Dierig, 2011; Yu et al., 2013; Guo et al., 2015; Zhu et al., 2016).
Furthermore, the published methods have only been applied to
small sections of the crops and generally tested only on a single
cultivar. Unlike alternative methods, such as Yu et al. (2013),
which used color properties to determine growth stages of maize,
our approach uses rich feature collection techniques, such as
SIFT, which carry suitable information to discriminate images at
the category level on the canopy scale. The technique used byGuo
et al. (2015) was only tested on two rice varieties individually at
flowering stage and obtained just over 80% accuracy. However,
our method integrated statistical variables, such as vector coding
and spatial pyramid matching, which improved the accuracy and
general versatility of the growth stage identification. On the other
hand, their training system contained only flowering rice as the
positive class and leaves as the negative class; failing to define rice
before and after the flowering stage. This may have likely made
their dataset more challenging because more variables would be
added to the training dataset and distinguishing between non-
flowering and flowering panicles would have added difficulty,
potentially detecting false positives, ultimately reducing the
accuracy of their method.

In our case, the accuracy of flowering detection is less than
heading. This could be due to the size and color of anthers.
The color of anthers can range from yellow to white depending
on the cultivar, and the pale color of the anther has increased
the sensitivity to over/under exposure as a result of changes in
ambient illumination. Moreover, anthers are far smaller objects
compared to wheat ears and are prone to noise, adding difficulty
to detection them accurately. Nevertheless, the proposed method
yielded greater accuracy than the existing method (Guo et al.,
2015).

Pre-processing is also an important factor in our method.
Newly emerging ears are difficult to distinguish as they are
nearly the same color as the canopy, making methods based on
color features inadequate for this purpose. However, the use of
color enhancement methods, such as decorrelation stretching,
yields higher accuracy. In our case, the absence of decorrelation
stretching, results a decrease in accuracy from 95.24% to 57.29%
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FIGURE 11 | Example of flowering training patches. Examples of positive training patches of three different cultivars; ( Triticum aestivum L. cv. Soissons, Maris

Widgeon, and Cadenza), which contain flowering ears. Examples of background training patches which do not contain flowering ears.

and from 99.59 to 85.38% at earliest and latest stage of heading,
respectively. Moreover, applying decorrelation stretching as a
color enhancement tool early in the process minimize various
ambient light conditions. The other important factor is the

low level feature extraction in the BoVW process. SIFT was
replaced by SURF as an alternative technique; however, although
SURF performs faster as a result of using integral images
and Hessian Matrix (Bay et al., 2006); SIFT still outperformed
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TABLE 3 | Comparison of flowering accuracy between three wheat

cultivars.

Wheat cultivar No. training images No. testing images Accuracy (%)

Cadenza 410 16 92.91

Soissons 410 23 76.72

Maris widgeon 410 15 80.33

All three 410 54 82.54

SURF (Table 2) in our experiment. It has also been examined
that SIFT showed more stability on blurry images and more
robust to rotation and scale invariants (Mikolajczyk and Schmid,
2005).

It should also be highlighted that the quality of the training
dataset plays an important role in the overall performance.
We aimed to define more scenarios for the system (e.g.,
ears at different positions, scales, and illumination conditions
in the field, etc.). As shown in Figure 11, the accuracy of
the ear emergence detection would increase by adding more
training data. We would expect to improve the accuracy of the
flowering experiment, by collecting data more frequently during
the flowering period and increasing the size of the training
dataset.

4. CONCLUSION

We proposed an automated observing system using computer
vision to determine two key growth stages in wheat: ear

emergence and flowering time. The proposed method is capable
of distinguishing the critical growth stages from the RGB
images taken in the field. The approach demonstrated a high
performance for identifying such development changes and was
not affected by the environmental conditions or illumination
invariants in the field.

In future work, we aim to test our proposed method on
additional wheat genetic material and other species, and in
addition, to investigate the effect of alternative computer vision
techniques from features extraction to classification on the
performance and overall accuracy. Finally, we aim to apply
the proposed method on images acquired by Unmanned Aerial
Vehicles (UAVs) to monitor large fields efficiently and believe it
will dramatically accelerate the recording of such development
stages.
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