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Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As)
pollution in paddy soils and its efficient plant uptake, As in rice grains presents health
risks. Genetic manipulation may offer an effective approach to reduce As accumulation
in rice grains. The genetics of As uptake and metabolism have been elucidated and
target genes have been identified for genetic engineering to reduce As accumulation in
grains. Key processes controlling As in grains include As uptake, arsenite (AsIII) efflux,
arsenate (AsV) reduction and AsIII sequestration, and As methylation and volatilization.
Recent advances, including characterization of AsV uptake transporter OsPT8, AsV
reductase OsHAC1;1 and OsHAC1;2, rice glutaredoxins, and rice ABC transporter
OsABCC1, make many possibilities to develop low-arsenic rice.
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ARSENIC IN RICE

Rice (Oryza sativa L.), the staple food for half of the world’s population, is widely cultivated. An
estimated 741 million tons valued at US $191 billion are produced annually (2013 data from the
FAO1). However, rice also has a negative side. Besides taking up heavy metals like cadmium, it is an
efficient accumulator of arsenic (As), a toxic metalloid, making rice consumption a major source of
As exposure to humans (Sohn, 2014).

Arsenic is ubiquitous in the environment and its contamination in soil and water has been
reported in many countries. In aerobic soils, As is mainly present in the oxidized form as arsenate
(AsV). While in anaerobic environments like paddy soil, it mainly exists in the reduced form
as arsenite (AsIII) (Huang et al., 2011). Compared to other cereals, rice is more efficient in
accumulating As in its grains (Williams et al., 2007; Sohn, 2014). This is because rice is often
grown in flooded soils where more mobile AsIII is the dominant form in submerged environment
(Xu et al., 2008). In addition, rice is a silicon (Si) accumulating plant and requires large amounts
of Si for optimal growth, making up to 10% of the shoot biomass (Ma and Yamaji, 2006). The
efficient Si uptake pathway in rice also allows inadvertent passage of AsIII due to their chemical
similarity. They both exist as neutral species in paddy soils, i.e., arsenous acid-As(OH)3 and silicic
acid-Si(OH)4 (Ma et al., 2008).

1http://faostat3.fao.org/
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Arsenic exposure through drinking water adversely impacts
millions of people, leading to increased cancer risk (Argos
et al., 2010; Joseph et al., 2015). In Bangladesh, As-contaminated
groundwater has been widely used to irrigate rice, leading to high
As in Bangladeshi rice (Williams et al., 2006). The situation is also
urgent in many other Asian regions including India, Vietnam,
Cambodia, Thailand, and China with As-contaminated soils and
water where rice is a national staple (Li G. et al., 2011; Rahman
and Hasegawa, 2011). In addition, rice is consumed all over
the world including the US and Europe, making As in rice a
global issue of concern (Zhu et al., 2008; Meharg et al., 2009;
Gilbert-Diamond et al., 2011).

The As in rice grain is present primarily as inorganic AsIII
and AsV, with a considerable proportion (typically 20–50%) of
organic As, mainly as dimethylarsinic acid (DMAV) (Williams
et al., 2005). However, it has been reported that rice is unable
to methylate inorganic As in vivo, thus methylated As species
most likely come from the rhizosphere via microbial methylation
(Lomax et al., 2012; Jia et al., 2013).

Research has uncovered the physiology of how plants deal
with As. While arsenic accumulation in rice can be reduced
by modifying cultural practices (Wang et al., 2015), this review
focuses on the genetic solutions for developing varieties with low
As accumulation ability. Given the magnitude of the problem
and the vast number of people being affected, there is an
urgent need to produce rice with low As. In this context, gene
modification is an effective and practical approach to reduce
As accumulation in rice grains. This approach taps into the
potential of various genes controlling As uptake, transformation
and translocation in plants. Some genes have been proven to
affect As accumulation in transgenic plants while others need
further research (Table 1). Here, we review the genes controlling
As metabolism, describe recent progress in producing low-As
rice, and discuss the potential utilization of CRISPR/Cas9-based
genome-editing technology to reduce As uptake, translocation
and accumulation, thereby lowering the As content in rice grain.

ARSENIC METABOLISM IN RICE

As Uptake in Rice
Arsenate is the main As species in aerobic soils but it accounts
for a small amount of total As in flooded paddy soils (Huang
et al., 2011; Jia et al., 2014). Rhizospheric processes, such as
oxygen release by rice roots, iron plaque formation, and microbial
oxidation, all contribute to AsIII oxidation to AsV in soils (Liu
et al., 2006; Jia et al., 2014). As a phosphate analog, AsV is
taken up by phosphate transporters, including AtPht1;1/4 in
Arabidopsis (Shin et al., 2004), PvPht1;3 in Pteris vittata (DiTusa
et al., 2016) and OsPht1;8 (OsPT8) in rice (Wu et al., 2011; Wang
et al., 2016). Knockout of OsPht1;8 decreases AsV uptake by 33–
57% and significantly increases AsV tolerance in rice (Wang et al.,
2016). Following uptake, AsV can be rapidly reduced to AsIII in
plant cells by the newly identified HAC1 (High Arsenic Content
1) arsenate reductases (Shi et al., 2016) (Figure 1).

Arsenite, a neutral molecule, is the dominant As species in
flooded paddy soils (Zhao et al., 2009). It enters plants via

aquaporin channels, mainly the nodulin 26-like intrinsic proteins
(NIPs, a subfamily of the aquaporin family) (Ma et al., 2008;
Kamiya et al., 2009; Mitani-Ueno et al., 2011; Xu et al., 2015)
(Table 1). In Arabidopsis, aquaporins like NIP1;1 and NIP3;1
play an important role in AsIII uptake and translocation (Kamiya
et al., 2009; Xu et al., 2015). In rice, the Si influx transporter Lsi1
(Low silicon rice 1; OsNIP2;1) is responsible for AsIII uptake
while Si efflux transporter Lsi2 (Low silicon rice 2) mediates AsIII
efflux (Ma et al., 2006, 2007, 2008). Both Lsi1 and Lsi2 localize
at the plasma membrane of exodermal and endodermal cells of
the roots, but with different polar localization, i.e., Lsi1 protein
localizes at the distal side of the cell while Lsi2 at the proximal
side (Ma et al., 2006, 2007) (Figure 1). Thus, the concerted
function of these two produces an effective flow of both Si and
AsIII across the endodermis and toward the xylem for their
translocation (Ma et al., 2008; Zhao et al., 2009) (Figure 1).
Knockout mutant lsi1 shows lower As concentrations in the
straw, but no significant difference in the grain. In contrast,
the lsi2 knockout significantly decreases As concentrations in
the straw and grain, which are 13–19% and 51–63% of the
corresponding wild-type rice respectively (Ma et al., 2008). These
results indicate that Lsi2 plays a more critical role than Lsi1 in As
transport toward the rice grain but knockout of Lsi2 also disrupts
Si uptake, which can inhibit rice growth and decrease the grain
yield by 60% (Ma et al., 2007).

Besides Lsi1 (OsNIP2;1), other NIPs including OsNIP1;1,
OsNIP2;2, OsNIP3;1, and OsNIP3;2 also show permeability to
AsIII (Bienert et al., 2008; Ma et al., 2008). Moreover, some
plasma membrane intrinsic proteins (PIPs, another subfamily
of the aquaporin family), including OsPIP2;4, OsPIP2;6 and
OsPIP2;7, are also involved in AsIII transport (Mosa et al., 2012).
In addition, the rice NRAMP (Natural Resistance-Associated
Macrophage Protein) transporter, OsNRAMP1, may also be
involved in AsIII transport as its expression enhances As
accumulation in the roots and shoots of Arabidopsis (Tiwari et al.,
2014) (Table 1). It is also reported that OsNRAMP1 localizes on
plasma membrane of endodermis and pericycle cells, and may
involve in AsIII xylem loading for root to shoot As translocation
(Tiwari et al., 2014). Though OsNRAMP1 has been studied
in Arabidopsis, its specific function in rice still needs further
investigation.

In contrast to the AsIII transporters, Fe plaque plays a role
in sequestrating As and reducing As uptake by rice (Wu et al.,
2012; Lee et al., 2013). Iron plaque is formed on rice roots through
oxidization of Fe2+ to Fe3+, mainly due to the radial movement
of oxygen from the aerenchyma to the soil (radial oxygen loss-
ROL) and microbial activities (Colmer, 2003; Mei et al., 2009).
As a result of adsorption and/or co-precipitation, Fe plaque can
sequester As on rice roots, playing an important role in reducing
As uptake and accumulation, potentially alleviating As toxicity
(Liu and Zhu, 2005; Ultra et al., 2009). It is reported that root
ROL rates, which vary with rice genotypes, control Fe plaque
formation (Li H. et al., 2011; Wu et al., 2012). Higher rates of ROL
increase Fe plaque formation, providing more As sequestration
sites on rice roots (Wu et al., 2012).

A number of methylated As species have been detected in soils,
among them, monomethylarsonic acid (MMAV) and DMAV
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FIGURE 1 | Arsenite (AsIII) and arsenate (AsV) uptake and As vacuolar sequestration in rice roots. AsIII and AsV are taken up by rice roots via aquaporins
(AQP) and phosphate transporters (Pht), respectively. AsV is reduced to AsIII by arsenate reductase HAC1. AsIII influx transporter Lsi1 and AsIII efflux transporter
Lsi2 play a critical role in As uptake and As transport to root xylem for translocation respectively. AsIII can be chelated by phytochelatins (PC) and ABCC1 is an
AsIII-PC complex transporter that localizes to the vacuolar membrane and transport As into root vacuoles for sequestration. Lsi1 and other unknown transporters
mediate AsIII efflux. An unknown transporter is involved in AsIII xylem loading.

are the most common (Zhao et al., 2010b; Huang et al., 2011).
Methylated As species in rice grains are likely from soils as rice is
unable to methylate As in vivo (Lomax et al., 2012; Jia et al., 2013).
In flooded paddy soils, organic As can be reduced to volatile
arsine, including monomethylarsine (MMAIII), dimethylarsine
(DMAIII) and trimethylarsine (TMAIII) (Cullen and Reimer,
1989; Huang et al., 2011; Jia et al., 2013). Methylated As can be
taken up by rice, but less efficiently than AsIII and AsV (Abedin
et al., 2002). A recent study also shows that the Si and AsIII
transporter Lsi1 may mediate the uptake of methylated As in rice
(Li et al., 2009). Considering DMAV is ∼100-fold less toxic than
AsIII in animal cells, DMAV in the grains may reduce As toxicity
in rice (Hirano et al., 2004).

As Detoxification in Rice
Arsenite has high affinity to sulfhydryl (–SH) groups of peptide
thiol such as glutathione (GSH) and phytochelatins (PCs),
thus AsIII is detoxified by complexing with GSH or PCs in
plants (Pal and Rai, 2010). GSH is synthesized in a two-step
pathway catalyzed by the rate-limiting γ-glutamylcysteine (γ-EC)
synthetase to synthesize γ-EC, followed by glutathione synthetase
to combine Gly and γ-EC (Hell and Bergmann, 1990; Dhankher
et al., 2002). PCs are synthesized by the transpeptidation of
gamma-glutamylcysteinyl dipeptides from GSH by the catalytic
activity of phytochelatin synthase (PCS) (Pal and Rai, 2010; Shri
et al., 2014). Overexpression of PCS enhances As tolerance in
transgenic plants and may also affect their As accumulation
(Liu et al., 2010; Pal and Rai, 2010). Shri et al. (2014) showed
that the transgenic rice overexpressing Ceratophyllum demersum
PCS, CdPCS1, increases As levels in the roots and shoots, but
significantly lowers As levels in the grain. More recently, a
rice CRT (Chloroquine Resistance Transporter)-like transporter,
OsCLT1, was shown to play a role in GSH homeostasis, probably
by mediating the export of γ-EC and GSH from plastids to the
cytoplasm. Moreover, under As treatment, Osclt1 mutant exhibits
much lower PC2 contents compared to wild-type, resulting in

lower As accumulation in the roots but higher or similar As
accumulation in the shoots (Yang et al., 2016).

In yeast, besides AsIII extrusion, there is a second pathway for
As detoxification, i.e., vacuolar sequestration of AsIII by YCF1
(Yeast Cadmium Factor) (Ghosh et al., 1999). As a member of
the ABC (ATP binding cassette) transporter family, YCF1 can
transport GSH conjugate of Cd [Cd(GS)2] and As [As(GS)3] into
vacuoles for sequestration (Li et al., 1997; Ghosh et al., 1999;
Song et al., 2003) (Table 1). In plants, after being chelated by
PC, As can also be sequestrated into vacuoles, which is mediated
by C-type ABC transporters (ABCC) (Briat, 2010; Song et al.,
2010, 2014). In Arabidopsis, AtABCC1 and AtABCC2 mediate
AsIII–PC complex transport to the vacuole and overexpression
of AtABCC1 increases As tolerance only when co-expressed with
PCS, indicating the cooperation of PC synthesis and AsIII–PC
complex transporters in plant As detoxification (Song et al.,
2010). In rice, a similar ABC transporter, OsABCC1, is critical
for the vacuolar AsIII–PC sequestration and As detoxification,
so knockout of OsABCC1 leads to increased As sensitivity (Song
et al., 2014).

As Transport in Rice Nodes
Rice nodes are important hubs for controlling its elemental
distribution (Yamaji and Ma, 2014; Chen Y. et al., 2015). It
has been reported that, with much higher As concentrations
than internodes and leaves, rice nodes are the most crucial
place for As storage, serving as a filter restricting As transfer
to the shoots and rice grains (Song et al., 2014; Yamaji and
Ma, 2014; Chen Y. et al., 2015). At the reproductive stage,
OsABCC1 is expressed in vascular tissues like the uppermost
node I and limits As transport to the grains by sequestering As
in the phloem companion cells (Song et al., 2014). Besides, Lsi2
also shows high-level expression in node I where Lsi2 enhances
Si distribution into rice panicle, but unfortunately also helps
AsIII transport to rice grains (Ma et al., 2008; Yamaji et al.,
2015).
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FIGURE 2 | Schematic diagram showing arsenic (As) uptake pathway and the endogenous (Pht, Lsi1, ACR2, HAC1, Lsi2 NRAMP1 and ABCC1 genes
from rice) and exogenous genes (ArsM and ACR3 genes from other species) that can be manipulated to decrease As transport to and accumulation
in rice grains. Rice phosphate transporters (Pht) and aquaporin Lsi1 contribute to As uptake. Arsenate reductase HAC1 is responsible for arsenate (AsV) reduction
in rice. Lsi2 plays a critical role in As transport toward root xylem for As translocation, thus promotes As transport to and accumulation in rice grains. NRAMP1
assists in As transport to root xylem. In contrast, ABCC1 mediates As sequestration in vacuoles, especially in rice roots and nodes, restricting As transport to grains.
Heterologous expression of ACR3 may enhance arsenite (AsIII) efflux while expressing ArsM may confer As methylation and subsequent volatilization. Transgenic
approach and/or gene editing can be used to manipulate the targeted genes to produce low-As rice.

A study on As unloading into rice grain shows that DMAV

is translocated to the rice grain with over 10 times greater
efficiency than inorganic species and is more mobile than AsIII
in both phloem and xylem transport (Carey et al., 2010). In

addition, Carey et al. (2011) also found that inorganic As is
poorly remobilized from flag leaves to grain through phloem
transport, while DMAV and MMAV are efficiently retranslocated.
Moreover, they also speculated that stem translocation of
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inorganic As may not rely solely on Si transporters (Carey et al.,
2011). More recently, two inositol transporters (INT) responsible
for arsenite uptake in the phloem inArabidopsis thaliana, AtINT2
and AtINT4, have been identified. The disruption of AtINT2 or
AtINT4 reduces As concentrations in phloem and seed in plants
fed with AsIII through the roots or leaves, suggesting that inositol
transporters may mediate AsIII loading into the phloem (Duan
et al., 2015). However, whether there are similar transporters
responsible for As transport in rice is still unknown.

BREEDING RICE FOR LOW As

A simple method to decrease As in rice is to select cultivars
that biologically restrict As accumulation in the grains as
some rice cultivars accumulate 20–30 fold less As than others
(Norton et al., 2012; Syu et al., 2015; Zhang et al., 2016).
These cultivars may have developed ways of blocking As
uptake, translocation or accumulation, providing gene resources
to help breed low-As rice. While quantitative trait loci
associated with As accumulation in rice have been recognized
(Zhang et al., 2008; Norton et al., 2014), the candidate
genes have not been confirmed. The genetic variability in
rice As accumulation suggests that there could be additional
germplasm for a low As uptake and accumulation trait in wild
rice species. Future studies are therefore needed to explore
whether different rice species or varieties differ in uptake,
translocation and/or accumulation of AsIII, Si and/or P in rice
grains.

Arsenate Reduction to Arsenite in Plants
Former studies showed that ACR2 arsenate reductase, like
AtACR2 in Arabidopsis and OsACR2.1 and OsACR2.2 in rice,
may involve in AsV reduction (Dhankher et al., 2006; Duan
et al., 2007) (Table 1). However, more recent evidence showed
that canonical ACR2 arsenate reductase probably does not play
a significant role in arsenate reduction (Liu et al., 2012; Chao
et al., 2014) (Table 1). Instead, a novel arsenate reductase,
different from canonical ACR2, is critical for AsV reduction and
AsV tolerance in Arabidopsis, which is termed ARQ1 (Arsenate
Reductase QTL1) (Sanchez-Bermejo et al., 2014) or HAC1 (High
Arsenic Content 1) (Chao et al., 2014) (Table 1).

In Arabidopsis, HAC1 reduces AsV to AsIII in the outer cell
layer of the roots, facilitating AsIII efflux out into the external
environment (Chao et al., 2014). Plants lacking HAC1 lose their
ability of AsV reduction, decreasing AsIII efflux and increasing
As translocation to the shoots (Chao et al., 2014). In rice,
OsHAC1;1 and OsHAC1;2 are responsible for AsV reduction (Shi
et al., 2016) (Table 1). Overexpressing OsHAC1;1 or OsHAC1;2
significantly increases AsIII efflux into the external medium and
decreases As accumulation in rice. When cultivated in paddy
soil supplemented with an environmentally relevant dose of AsV
and irrigated regularly with free drainage, the OsHAC1;1 and
OsHAC1;2 overexpression lines have ∼20% lower grain As (Shi
et al., 2016).

In addition, the glutaredoxin may also play a role in
AsV reduction and regulating the cellular AsIII levels,

though the mechanistic details for its function are yet to be
resolved (Sundaram et al., 2008, 2009). PvGrx5, a glutathione-
dependent oxidoreductase from As-hyperaccumulator Pteris
vittata, decreases As accumulation in the leaves in transgenic
Arabidopsis (Sundaram et al., 2009). More recently, two rice
glutaredoxins, OsGrx_C7 and OsGrx_C2.1 have been proved to
be important determinants of As-stress response and involved in
lowering AsIII accumulation in Arabidopsis (Verma et al., 2016)
(Table 1).

Arsenite Efflux to External Environment
Plants can rapidly reduce AsV to AsIII in the roots, which
could then be effluxed out into external medium (Xu et al.,
2007; Chen Y. et al., 2013; Chen Y.S. et al., 2015; Han et al.,
2016). Enhancing AsIII efflux by plant roots could be a potential
strategy to decrease As accumulation in plants. Until now,
the key membrane transporters responsible for AsIII efflux
in plant roots have not been characterized. The aquaporin
Lsi1 (OsNIP2;1), which mediates AsIII uptake and confers As
accumulation in rice, also mediates AsIII efflux, contributing to
15–20% of the total As efflux (Zhao et al., 2010a). Other plant
aquaporins, like AtNIP3;1, AtNIP5;1, AtNIP6;1 and AtNIP7;1
from Arabidopsis, OsNIP3;2 from O. sativa, LjNIP5;1 and
LjNIP6;1 from Lotus japonicas, and PvTIP4;1 from P. vittata,
also transport AsIII bi-directionally, which is a passive process
with the flux direction depending on the concentration gradient
(Bienert et al., 2008; Isayenkov and Maathuis, 2008; Xu et al.,
2015; He et al., 2016). Thus, manipulating the expression of
aquaporins via genetic engineering to enhance AsIII efflux will
likely be complicated.

In yeast, AsIII is extruded into the external environment
by the AsIII efflux transporter ACR3 (Arsenic Compounds
Resistance protein 3) (Wysocki et al., 1997). Interestingly,
ACR3 is lost in flowering plants including rice, but exists
in As-hyperaccumulator P. vittata with duplication (Indriolo
et al., 2010). However, whether ACR3s are involved in
AsIII efflux to external environment in P. vittata remains
unclear.

As-hyperaccumulator P. vittata is extremely efficient in
extracting As from soils and translocating it into the fronds,
which can exceed 2.3% of its dry biomass (Ma et al., 2001).
To help decrease As accumulation in rice, it is of interest
to understand why hyperaccumulators are so efficient in
accumulating As. In this aspect, P. vittata is characterized with
limited AsIII complexation in the roots, limited AsIII efflux
to the external medium but efficient xylem loading of AsIII
to the fronds (Su et al., 2008). Recent report also shows that
high As exposure induces substantial AsIII efflux in P. vittata,
which may help the plant to alleviate As toxicity (Chen et al.,
2016).

The fact that an ACR3 from P. vittata, PvACR3, localizes to
the vacuolar membrane indicates that it likely extrudes AsIII into
the vacuoles for sequestration (Indriolo et al., 2010). However,
in transgenic Arabidopsis, PvACR3 localizes to the plasma
membrane and significantly increases AsIII efflux, thereby
decreasing As accumulation by ∼90% in the roots compared
to that of wild-type (Chen Y. et al., 2013). Meanwhile, the
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transgenic plants accumulate more As in the shoots after long-
term cultivation in soils, probably because PvACR3 confers
AsIII efflux toward or into xylem for translocation in root
stele cells and extrudes AsIII into apoplast for sequestration in
leaf cells (Chen Y. et al., 2013). Unlike aquaporins dependent
on the concentration gradient, AsIII efflux transporter ACR3
functions via the proton motive force for energy (Wysocki
et al., 1997), and hence may be an ideal candidate gene to
enhance AsIII efflux and decrease As accumulation in rice
(Table 1).

After introducing yeast ACR3 (ScACR3) into rice, the
transgenic plant exhibits higher As efflux by the roots, lowering
As accumulation in rice grains by ∼20% (Duan et al., 2012).
Another P. vittata ACR3, PvACR3;1, has not been well
characterized so its function remains unknown. It is speculated
that when ACR3 localizes in plant root endodermis or xylem
parenchyma cells, it may also mediate AsIII efflux into the xylem
for translocation (Ali et al., 2012; Chen Y. et al., 2013), similar to
the effects of Lsi2 in rice (Ma et al., 2008). To exert the AsIII efflux
functions of ACR3 and reduce additional AsIII translocation,
a root exodermis specific ACR3 expression should be tested in
transgenic rice.

Arsenic Sequestration in Vacuoles
In plants, AsIII-PC can be sequestrated into vacuoles as
a step of As detoxification in cells, which also affects As
allocation in plant tissues. In rice, OsABCC1 mediates vacuolar
AsIII–PC sequestration, thus reducing As accumulation in
rice grains (Song et al., 2014). In the roots, OsABCC1 is
expressed in the exodermis and pericycle (Figure 1). However,
Osabcc1 mutant does not show decreased As accumulation
in the roots compared with wild-type rice at relatively low
As concentrations, probably because knockout of OsABCC1
results in increased toxicity, inducing the biosynthesis of
thiol compounds that bind to As in cytoplasm (Song et al.,
2014). In the shoots, knockout of OsABCC1 decreases As
accumulation in node I, but increases As allocation to the
flag leaf and grain, leading to 13- to 18-fold higher As in
brown rice than those of wild-type (Song et al., 2014). Thus,
overexpression of OsABCC1 may be useful to breed low-As
rice.

Overexpressing transporters for As sequestration in the
shoots may lead to As accumulation in plants (Song et al.,
2003; Zhu and Rosen, 2009; Guo et al., 2012). However,
overexpression of relevant genes in the roots may decrease As
accumulation in the shoots (Zhu and Rosen, 2009). Vacuolar
sequestration in the roots can function as a barrier to limit
metal translocation to the shoots (Ueno et al., 2010). The
presence of ABC transporters, including YCF1, AtABCC1/2
and OsABCC1, suggests that this strategy can be applied in
rice to decrease As accumulation. Because complexation of
AsIII by thiols is a critical step for As transport into the
vacuoles, simultaneously expressing the ABC transporters and
PC synthase, the rate-limiting step in PC biosynthesis, may
maximize As sequestration. In addition, root-specific promoters
may be useful in controlling gene expression for genetically
engineering low-As rice.

Arsenic Methylation and Volatilization
Though As methylation is widespread in bacteria, fungi, algae,
animals and humans, probably as a detoxification process, As
methylation in vivo in plants is unknown (Bentley and Chasteen,
2002; Gebel, 2002; Qin et al., 2006). By examining microbial
genomes, Qin et al. (2006) identified a gene encoding an
AsIII S-adenosylmethionine methyltransferase (ArsM) from the
bacterium Rhodopseudomonas palustris (Table 1). They showed
that RpArsM catalyzes the formation of a number of methylated
intermediates (DMAV and TMAO) from AsIII, with TMAsIII
gas as the final product. In addition, Qin et al. (2009) identified
two ArsM from the eukaryotic alga Cyanidioschyzon merolae
(Table 1).

Mammalian AS3MT is homologous to bacterial ArsM (Qin
et al., 2006; Ye et al., 2012; Chen J. et al., 2013). However,
to date, corresponding enzymes for As methylation with
significant homology to ArsM/AS3MT in higher plants have
not been detected (Ye et al., 2012). Although a gene from rice
(Os02g51030) contains similar motif with ArsM/AS3MT (Norton
et al., 2008), it does not contain the core region of ArsM/AS3MT,
critical for methyl group transfer to As (Ye et al., 2012).

Expression of ArsM gene in rice may catalyze As methylation
and volatilization, thus providing a strategy to reduce
accumulation of toxic As species and/or total As in rice
grains. Meng et al. (2011) transformed the RpArsM gene into rice
and found the transgenic rice produces methylated As species
and gives off 10-fold greater volatile arsenicals compared to the
control. The results also show that As accumulation decreases
in T1 generation transgenic rice grains including AsIII and AsV
concentrations. However, in this study the volatile arsenicals
account for only 0.06% of the total As in plants. Therefore, to
introduce As methylation into rice, optimization of heterologous
gene expression and regulation is necessary. More recently, Tang
et al. (2016) genetically engineered A. thaliana with ArsM from
the eukaryotic alga Chlamydomonas reinhardtii. They found the
transgenic plants methylate most of the inorganic As to DMAV

in the shoots, exhibiting higher phytotoxicity than inorganic As
in Arabidopsis.

APPLICATION OF GENE-EDITING

Although critical genes responsible for As uptake, transport
and detoxification can reduce As accumulation in rice grains,
limited natural genetic resources may ultimately restrict their
application. In this context, gene-editing technologies are of
great interest to both gene function characterization and
crop improvement. The RNA-guided CRISPR/Cas9 system,
which depends on bacterial Cluster Regularly Interspaced
Short Palindromic Repeats (CRISPR)-associated nuclease (Cas),
is emerging as the tool of choice for precise gene editing
(Cong et al., 2013; Ran et al., 2013). Different from other
gene editing technologies like Zinc-Finger Nucleases (ZFNs)
and Transcription Activator–Like Effector Nucleases (TALENs),
RNA-guided CRISPR/Cas9 system is easy to design, has
high specificity, and is well-suited for high-throughput and
multiplexed gene editing for a variety of organisms including rice
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(Ran et al., 2013; Shan et al., 2013; Xie and Yang, 2013; Schiml
et al., 2014; Zhang et al., 2014; Ma et al., 2015).

To produce low-As rice, critical genes that are responsible for
As uptake and transport (e.g., OsPht1:8, Lsi1 and Lsi2) might be
early targets for gene editing (Figure 2). While engineering rice
with CRISPR/Cas9 for mutations in OsPht1:8 and Lsi1/2 could be
a strategy for reducing As uptake by rice, such manipulation may
also influence P and Si uptake. Thus, one could search for allelic
variations in OsPht1:8 and Lsi1/2 that could selectively transport
P and Si over AsV and AsIII, thereby reducing As uptake.
In addition, endogenous OsNRAMP1 and OsABCC1 genes in
rice could also be selected as targets for CRISPR/Cas9-based
disruption or modification to develop low-As rice.

CONCLUDING REMARKS AND FUTURE
INTERESTS

Reducing the levels of the ubiquitous carcinogenic As in rice
is a major public health goal. Arsenic levels and species vary
widely in paddy soils for different regions and within different
rice cultivars. During the past decade, molecular biology research
on how plants deal with As has opened up unprecedented
opportunities to make the rice grains safer by lowering its As
content. Research using transgenic systems can inform plant
breeders to select certain genetic markers over others to obtain
low-As rice varieties. In addition, newly developed gene-editing

technology can also help in altering endogenous genes (Figure 2).
It is important to elucidate how rice and other plant species
metabolize As so that new genes can become available for further
improvement to produce low-As rice.
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