
ORIGINAL RESEARCH
published: 02 March 2017

doi: 10.3389/fpls.2017.00282

Frontiers in Plant Science | www.frontiersin.org 1 March 2017 | Volume 8 | Article 282

Edited by:

Nathaniel Newlands,

Agriculture and Agri-Food Canada

(AAFC), Canada

Reviewed by:

David Zamar,

University of British Columbia, Canada

Yann Guédon,

Agricultural Research Centre For

International Development, France

*Correspondence:

Anton P. Wasson

anton.wasson@csiro.au

Grace S. Chiu

grace.chiu@anu.edu.au

Specialty section:

This article was submitted to

Technical Advances in Plant Science,

a section of the journal

Frontiers in Plant Science

Received: 04 December 2016

Accepted: 15 February 2017

Published: 02 March 2017

Citation:

Wasson AP, Chiu GS, Zwart AB and

Binns TR (2017) Differentiating Wheat

Genotypes by Bayesian Hierarchical

Nonlinear Mixed Modeling of Wheat

Root Density. Front. Plant Sci. 8:282.

doi: 10.3389/fpls.2017.00282

Differentiating Wheat Genotypes by
Bayesian Hierarchical Nonlinear
Mixed Modeling of Wheat Root
Density
Anton P. Wasson 1*, Grace S. Chiu 2*, Alexander B. Zwart 3 and Timothy R. Binns 4

1Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture & Food, Canberra, ACT, Australia,
2 Research School of Finance, Actuarial Studies and Statistics, College of Business and Economics, Australian National

University, Canberra, ACT, Australia, 3Commonwealth Scientific and Industrial Research Organisation (CSIRO) Data61,

Canberra, ACT, Australia, 4 Australian Taxation Office, Sydney, NSW, Australia

Ensuring future food security for a growing population while climate change and urban

sprawl put pressure on agricultural land will require sustainable intensification of current

farming practices. For the crop breeder this means producing higher crop yields with

less resources due to greater environmental stresses. While easy gains in crop yield have

been made mostly “above ground,” little progress has been made “below ground”; and

yet it is these root system traits that can improve productivity and resistance to drought

stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root

architecture traits, with data collected on rooting density for hundreds of genotypes in

small increments of depth. The measured densities are both large datasets and highly

variable even within the same genotype, hence, any rigorous, comprehensive statistical

analysis of such complex field data would be technically challenging. Traditionally, most

attributes of the field data are therefore discarded in favor of simple numerical summary

descriptors which retain much of the high variability exhibited by the raw data. This

poses practical challenges: although plant scientists have established that root traits do

drive resource capture in crops, traits that are more randomly (rather than genetically)

determined are difficult to breed for. In this paper we develop a hierarchical nonlinear

mixed modeling approach that utilizes the complete field data for wheat genotypes to

fit, under the Bayesian paradigm, an “idealized” relative intensity function for the root

distribution over depth. Our approach was used to determine heritability: how much

of the variation between field samples was purely random vs. being mechanistically

driven by the plant genetics? Based on the genotypic intensity functions, the overall

heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71).

Despite root count profiles that were statistically very noisy, our approach led to denoised

profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits

could be representative of a genotype, and thus, used as a quantitative tool to associate

phenotypic traits with specific genotypes. This would allow breeders to select for whole

root system distributions appropriate for sustainable intensification, and inform policy for

mitigating crop yield risk and food insecurity.

Keywords: generalized linear mixed models, heritability, hierarchical modeling, root architecture, wheat

phenotyping
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1. INTRODUCTION

Meeting the food production requirements of a growing human
population who are encroaching on arable land and generating
a changing climate will require an intensification of agriculture,
where greater yields are obtained from crops on existing farms
with sustainable inputs of water and fertilizer (Gregory et al.,
2013). This will involve identifying the constraints on yield in
agricultural systems, many of which are to be found below
ground in the root systems of crops. There are calls for a “second
Green Revolution” (Lynch, 2007) focused on breeding crops
with “ideotypic” (Donald, 1968) root systems (i.e., possessing
desirable root system traits) that can overcome these constraints.
This approach, called physiological breeding, is to be contrasted
with breeding for increased yield alone, an approach which is
no longer keeping pace with growing demands (Fischer and
Edmeades, 2010; Richards et al., 2010; Hall and Richards, 2013).

However, identifying ideotypic root systems for crops is
fraught with difficulty. Root traits which can be identified in
the laboratory are often difficult to translate to the field (Watt
et al., 2013) because they are devoid of the developmental
context of the soil. The soil environment is complex, and has
a dominant effect on root system development (Rich and Watt,
2013). Furthermore, crop physiological models—which are used
to formulate strategies for plant breeding and crop yield risk
mitigation, and even to develop government policy—are often
inadequate in addressing the spatial heterogeneity of root systems
and soil properties (Holzworth et al., 2014). It is also difficult
to sample roots in soil in the field, and the data obtained are
complex to interpret. Nevertheless, it is in the field where the
effects of soil, climate, and agronomy are integrated with the
developmental genetics of the plants growing together as a crop,
and hence it is also in the field where measuring root traits,
identifying crop ideotypes, and modeling root development are
most valuable. Selecting for root ideotypes in the field may
speed up the identification of the best germplasm for breeding
programs (Wasson et al., 2012; Rich and Watt, 2013).

Therefore, integrating improved measures of root
distribution/development into crop physiological models
will improve farm management decision making and crop
yield risk mitigation. Yet, indirect measurements of crop root
systems are problematic, and most direct measurements are
destructive, time-consuming and/or labor intensive (e.g., root
washing, minirhizotrons) (Wasson et al., 2012). Hence the
core-break method was developed as a method of rapidly
observing and quantifying the presence of roots as a function
of depth (Drew and Saker, 1980; van Noordwijk et al., 2001); a
soil core sample is taken from the crop and broken at regular
intervals (corresponding to increasing depth) and the exposed
roots are counted. The counts correlate with the root length
in the corresponding volume of soil. This technique has been
used to phenotype root count distributions in 43 genotypes
(Wasson et al., 2014) and efforts have been made to automate
the root count process (Wasson et al., 2016) to reduce the
labor requirements. However, root counts from the core-break
method are subject to a high degree of variation between samples
(van Noordwijk et al., 2001), which makes it challenging to

identify genotype-specific traits from root counts or to associate
genotypes with discernible properties of root count profiles.

Similar types of experimental field data may have been
analyzed by statistical linear models (Faraway, 2014) under an
analysis-of-variance (ANOVA) framework (Wasson et al., 2014).
However, a major limitation of linear models is their assumption
of Gaussian (normally distributed) response data, whereas
root counts are discrete, bounded below by zero, and with a
distribution whose substantial right-skewness may not be easily
removed by variable transformation. Indeed, root count data
are more appropriately modeled as Poisson distributed, although
a phenomenon known as overdispersion (McCulloch, 2008),
commonly encountered in count data from field experiments,
must be handled with care. More specifically, the Poisson
distribution is characterized by a single parameter that represents
the distributionmean as well as its variance. However, in practice,
the count variable of concern often has a recognizably larger
variance than its mean (hence, “overdispersion”), although the
overall distribution still resembles Poisson in other respects.

Therefore, linear models applied to field data thus far have
focused on analyzing core-level summary metrics, such as
maximum rooting depth, which, after variable transformation
if necessary, can approximately behave as Gaussian (Wasson
et al., 2014). However, such summary metrics by definition
cannot reflect root structure over depth, discarding valuable
information contained at the level of individual core segments,
and consequently resulting in an undesirable loss of statistical
power.

To better facilitate our scientific objective of associating
genotypes with discernible properties of root count profiles, in
this paper we scrutinize themany facets of the inherent variability
of the root count profile produced based on a field trial (Figure 1)
that involved twenty genotypes (nG = 20), each generating
four replicated soil cores (nC = 4) extracted in situ from each
of four replicated plots or blocks (nB = 4). Growing in a
plot, as they would in a farmer’s field, the plants’ root systems
interact and respond to each other. Their development is driven
by the exploration of cracks and pores (White and Kirkegaard,
2010), which are randomly distributed. Likewise, variation in
soil chemistry and nutrients, which can be patchy and vary with
depth, drives the branching of roots. In contrast, impenetrable
material and compaction can inhibit growth. As each soil core
only captures a comparatively small piece of variation due to the
various sources, results found in adjacent replicated cores can
differ substantially.

Moreover, we note that many of the profiles of the average
root count depicted in Figure 6 of Wasson et al. (2014) are
consistent with random observations whose mean follows a
functional form that roughly resembles the density function of
the gamma probability distribution. Based on this observation,
in this paper we develop a statistical modeling approach that
can rigorously handle the non-standard nature of our root count
data. Specifically, root counts at the observed depths (denoted
by t) within a core are formally related through a nonlinear
parametric expression θ(t) to reflect the one-dimensional spatial
nature of individual soil cores. The parametric expression
(with a small number of unknown parameters) is the common
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FIGURE 1 | Schematics of the field experiment. (A) Surface layout of the field experiment involving twenty genotypes (indexed by i) randomized within four blocks

(indexed by j) of twenty ranges of plots. (B) Cartoon depicting the sampling in each plot. Four soil cores (indexed by k) were sampled from each plot in a steel tube.

Each core was broken into 10 cm increments. The root count (y) at each 10 cm depth increment (indexed by t) is the sum of the counts on the lower face of the upper

fragment and the upper face of the lower fragment. Thus, each root count, yijkt, has four unique index values. The cartoon further depicts the variability that might be

encountered by sampling soil cores in a single plot, e.g., contrast cores k = 1 and k = 4.

denominator that unifies this spatial behavior among all cores.
Obviously, an appropriate parametric structure imposed on the
root counts within a core would lead to much greater statistical
power when compared to, say, an oversimplified ANOVA
approach that regards depth as a mere design feature in a factorial
experiment.

We also note that our field experimental setup was such that
the randomness in our data exhibits a hierarchical structure
(Gelman and Hill, 2006) that comprises layers of mean and
variance functions. In particular, the complex, non-standard
experimental design features inherent in our data require
hierarchical nonlinear mixed modeling (HNLMM), an approach
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which addresses our need to model overdispersed, Poisson
distributed data (McCulloch, 2008) via a hierarchy of nonlinear
mean functions and associated variance components due to the
formulation of θ(t).

Therefore, our approach in this paper is distinguished from
existing studies particularly because of (a) our scrutiny of the
root count profiles themselves, rather than the relationship
between the counts and the root length density, and (b) our
hierarchical modeling approach that integrates all identified
facets of variability among all observed root count profiles
in a comprehensive and collective manner. Additionally, our
modeling framework gives rise to new heritability metrics that
describe spatial and overall root architectural traits, the latter at
the overall genotypic level.

The remainder of our paper is structured as follows.
Under the section Materials and Methods, we provide
some details of the field sampling procedure that gave rise
to our root count profile data, some data visualizations,
a primer on the specification of our HNLMM under a
Bayesian framework (Gelman et al., 2013), and biological
interpretations of model parameters and their use in defining
novel multiresolution heritability measures. Statistical inference
results and corresponding key biological insights appear in the
Results section, followed by the section Model Validation
which briefly discusses the rigor and adequacy of our
approach (Technical details that supplement these sections
appear in Appendices A–F and the online Supplementary
Material). Our paper concludes with an in-depth Discussion
section on the biological and practical implications of
our integrative modeling approach in the general context
of facilitating effective wheat breeding programs via root
phenotyping.

2. MATERIALS AND METHODS

2.1. Data and Modeling Framework
Each soil core sampled was partitioned in the field into five-
centimeter segments from which the number of roots, y, was
determined every 10 cm up to 180 cm using a fluorescence
imaging system (Wasson et al., 2016). Each value of y at
Depth t(= 1, ..., nD where nD = 18) is the sum of the
count imaged from the bottom face of the segment above
t and that from the top face of the segment below t (See
Appendix A for details on data collection). Let yijkt denote the
total number of imaged live roots of Core k at Depth t for
Genotype i in Block j. Thus, each ith genotype is associated
with 288 (= nBnCnD) observations of y in total. Equivalently,
each tth depth is associated with 320 (= nBnCnG) observed
counts.

Data visualizations for Genotype G18 (Figure 2) and other
genotypes (not shown) suggest that our observed root counts,
y, perceivably follow a smooth nonlinear trend over core
depth, but subject to substantive noise from the effects of
soil physical and chemical properties described above, plus
sampling and handling errors. These sources of noise culminate
in the profile plots (Figures 2A,B) and associated boxplots
(Figure 2A) for y. Therefore, a modeling framework comprising

the following main model statements was developed to capture
the complex noise structure around an idealized smooth
trend:

yijkt ∼ Poisson(θij(t)),

θij(t) = ψij • γαiβi (t) • eφijt ,
ψij = eψ0+κjeτi

where θij(t) denotes the underlying plot-specific Poisson
intensity curve over depth, i.e., the modeled mean root count
at Depth t (= 1, 2, ..., 18) from the {i, j}th plot (for
Genotype i (= 1, 2, ..., 20) observed in Block j (= 1,
2, 3, 4)).

Intensity θij(t) itself is decomposed into fixed and random
effects (shaded nodes in Figure 3). Specifically, θij(t) comprises
a smooth genotype-specific “kernel function,” γαiβi (t), and two
sources of multiplicative Gaussian errors: genotype-specific
deviation τi and core segment-specific deviation φijt . The
intensity function’s proportionality multiplier ψij, on the
logarithmic scale, represents the plot-specific intercept of the
{i, j}th intensity function. The intercept can be regarded as the
modeled mean count (log scale) of the root system just below
the soil surface. Therefore, τi corresponds to the genotypic
random effect on this near-surface mean count. As such, ψij

itself is random. It is modeled as log-linear, where its mean
can be expressed as a study-wide constant ψ0 plus a non-
random block-specific shift κj (both taken to be fixed effects) (see
Appendix B).

2.2. The Root System’s Bulk and
Exploration Parameters
The idealized function γi(t) = γαiβi (t) = tαi−1e−βit has two
genotype-specific parameters, αi and βi, respectively representing
the non-negative shape and rate of the gamma probability density
function. Holding βi constant and increasing αi causes the ith
kernel function to (a) peak at a lower depth and (b) exhibit more
spread around the peak (Figure 4A). Thus, αi corresponds to
both the depth at which the root system is most dense and its
tendency to explore spatially around this depth. Henceforth, we
refer to αi as the “bulk parameter.”

Similarly, holding αi constant and increasing βi causes the ith
kernel function’s tail to taper off more quickly, i.e., to exhibit a
more slender tail (Figure 4B). Thus, βi roughly corresponds to
the decline rate of the root system’s downward exploration. In
other words, the less slender (i.e., fatter) the kernel function’s tail,
the slower the decline of the root system’s downward exploration
(or, the bigger the tendency for the root system to explore
downwards). Henceforth, we refer to βi as the “exploration
parameter.”

For each ith genotype, parameters αi and βi are modeled as
bivariate log-normal random variables (i.e., they are bivariate
Gaussian on the logarithmic scale with unknown correlation ρ).
These parameters and the noise terms τi and φijt are each
modeled to have a mean that is constant across the study (i.e., not
indexed by i, j, k, or t), and similarly for all the (co)variance
parameters in the model (See Appendix B). A visualization of the
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FIGURE 2 | Data visualizations. (A) Boxplots of root counts, by depth for genotype G18, pooled across replicate plots (4) and depth-specific core segments (4 per

plot). The horizontal axis is depth from 10 cm to 180 cm, at 10 cm intervals. The blue line is the empirical mean root count profile over depth, which, along with the

corresponding mean profiles for other genotypes, resembles those in Figure 6 of Wasson et al. (2014). (B) Root count profiles (in thin black) over depth, by block

(replicate plot, shown as panel label), for genotype G18. Superimposed in bold blue within each block is the within-block empirical mean root count profile.

overall hierarchical structure of our modeling approach appears
in Figure 3.

Finally, under the Bayesian inference framework, we specify
reasonably non-informative prior distributions to reflect our
lack of knowledge, in the absence of data, about the model
parameters (see Appendix B). Collectively, the HNLMM and
prior distributions as specified above are referred to as
Model 1. Details on the implementation of Model 1 appear in
Appendix C.

2.3. Novel Heritability Measures
The general notion of heritability is the proportion of phenotypic
variation that can be attributed to genetics. Loosely, we have

Phenotype = Genotype+ Environment,

heritability = Var(G)/Var(P).

This definition of heritability assumes that genotypic and
environmental variables are independent, linear components of
the phenotypic response variable of interest. In practice, the
biological notions of phenotype, genotype, and environment are
abstract, and their quantifications that can be measured in an
experiment may exhibit a complex co-dependence in a nonlinear
fashion. Indeed, Moran (1973) pointed out that a quantification
of heritability that purely stems from a linear decomposition
of the phenotypic response can be nonsensical in practical
settings.

In the case that the measurable quantities and experimental
design can be reasonably described using Poisson regression,
Foulley et al. (1987) adapts the linear (Gaussian) model-based
definition of heritability to the scale of the linear predictor in a
Poisson regression model, rather than the scale of the phenotypic
response. Recently, this definition was extended to a longitudinal
Poisson mixed model (Mair et al., 2015). We further extend

Frontiers in Plant Science | www.frontiersin.org 5 March 2017 | Volume 8 | Article 282

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wasson et al. Differentiating Genotypes by Root Density

these ideas to define heritability measures based on segment-level
count data.

Our adaptations below emphasize the challenge of detecting
trends in root architecture from root count data that are
both highly noisy and highly non-Gaussian, and that
deviate substantially from a simple Poisson model; while
considering data at a reasonably high spatial resolution may
mitigate the challenge due to noise, it necessarily requires
additional model complexity to address the non-standard
statistical behavior of the data, and consequently, a novel
quantification of heritability based on our new modeling
paradigm.

The formulation ofModel 1 as presented in Appendix B gives
rise to a mean number of roots that is nonlinear in its parameters,
even on the logarithmic scale. Hence, this mean is not a linear
predictor in the usual context of generalized linear models.
Nevertheless, at each tth depth, we decompose the variability of

FIGURE 3 | Hierarchical structure of our modeling framework. Boxes

denote data, and ovals denote model parameters (unobservable). Shaded

nodes collectively determine the modeled Poisson intensity, θ .

log θ(t) into σ 2
log θ

(t) and σ 2
genes(t) both of which are spatial in

nature.
Here, we must address various aspects of complexity that are

non-standard in heritability studies: (1) our analog of Var(G),
namely, σ 2

genes(t), is attributable to the variability of the trio
of genotypic parameters τi,αi, and βi; and (2) it is a spatial
function. Thus, it is reasonable to further decompose this Var(G)
analog into τ -, α-, and β-specific components, as each of the
trio pertains to different root architectural features; and the α-
and β-specific components are also functions of t and are co-
dependent except in the naïve case. In Appendix D, we present
the four mathematical definitions of heritability (corresponding
to σ 2

genes, τ ,α, and β) to handle such complexity.
Finally, we pool depth-specific values by taking the

harmonic mean across depths, thus defining a quantity
at the genotypic level that summarizes the particular
architectural feature across all depths (see Appendix D).
The pooling of spatial elements to form an overall heritability
measure gives rise to the multiresolution nature of our
approach.

3. RESULTS

We discuss three major biological insights that arise from the
Bayesian inference, i.e., the joint posterior distribution among the
parameters ofModel 1.

3.1. Root Intensity Profiles Are Statistically
Distinguishable among Genotypes
Posterior inference allows us to examine the intensity profiles
θij(t) and their idealized (denoised) counterparts ψijγi(t) for any

FIGURE 4 | An illustration of the effect of changing the parameters αi and βi on the shape of the genotype-specific kernel function (γαiβi
(t)) which is

proportional to the probability density function of the gamma distribution. The vertical axis is the idealized relative root count (a dimensionless value). (A)

Increasing αi while fixing βi (= 1) causes the idealized function’s peak to be located deeper under the soil surface and to be less concentrated. Thus, αi is a “bulk

parameter” that reflects the depth and density of the “bulk” of the root system. (B) The effect of increasing βi while fixing αi (= 7) causes an increased skewness in the

tail of the idealized function, and consequently decreases the depth of the function’s peak from the soil surface and increases its concentration. Hence, βi is an

“exploration parameter.”
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given replicate block j. Aψijγi(t) profile is effectively the intensity
profile θij(t) but ignoring the random genotype-block interaction
φijt . Note that ψij is log-linear in τi and κj without an interaction
term. Thus, the behavior among the 20 idealized profiles within
any jth block is necessarily consistent across all four blocks but for
an intercept shift κj. Hence, Figure 5 focuses on j = 1 to represent
the study-wide behavior of the idealized profiles.

All posterior means (Bayesian estimates) of the 20
genotypic idealized profiles ψijγi(t) are visually distinguishable
(Figure 5A); and the study-wide statistical power is very
high in determining that the genotypes do not all exhibit the
same idealized profile (Figure 5B): 95% credible bands (Bayesian
confidence bands) around themaximum andminimum idealized
profiles (G12 and G18, respectively) are clearly non-overlapping.
(It is analogous to rejecting the null hypothesis in a classical
ANOVA at a very low significance level.) This lack of overlap at
such a high credible level indicates that, among the 20 genotypes,
at least G12 and G18 are highly statistically discernible with
respect to their idealized intensity profiles.

While ψijγi(t) necessarily behaves similarly across all j, the
genotype-block interaction intrinsic in the plot-specific intensity
profile θij(t) induces variability in the 20 profiles’ collective
behavior across j, as is evident in Figure 6: in each block, this
variability reduces the statistical distinguishability among the 20
genotypes, although in each of Blocks 2, 3, and 4, at least two
intensity profiles are highly discernible. Specifically, despite the
noisy nature of θij(t), Figure 6 shows that in each of Blocks 2–4,
at least two intensity profiles θij(t) (respectively, (i =){G2,G17}
in Block (j =)2, {G6, G13} in Block 3, and {G6, G15} in Block 4)

are highly statistically discernible due to the general lack of
overlap between the pair of block-specific 95% credible bands
around θij(t).

3.2. Root Intensity Profiles Are
Substantially Heritable
Each of our four genotypic heritability measures is a model
parameter that exhibits a posterior distribution, shown in black
in Figure 7; three of these are pooled measures, each comprising
18 depth-specific components (Appendix D), shown in color.

Focusing on the genotypic level (Figure 7 in black;
Figure 8A), the Bayesian estimate and 95% credible interval for
heritability of the intensity function are, respectively, 0.65 and
(0.52, 0.75); for that of the near-surface mean count they are 0.14
and (0.03, 0.26); the “bulk” parameter, 0.62 and (0.35, 0.82); and
the “exploration” parameter, 0.19 and (0.05, 0.37).

Note in Figure 7 that (i) the depth-specific components
of each of h2

h
, h2
α(−β), and h2

β(−α) tend to increase as depth

increases, and (ii) the near-surface intensity of root count has
low heritability (h2τ ). These features of our results indicate
that root count features at deeper depths are more heritable
than those at shallower depths. In other words, our results
provide quantitative rigor for three ideas: the heritability of
root architectural traits varies substantively across depth; traits
that are associated with a deeper spatial location tend to be
more informative about plant genetics; and the depth at which
the root system develops its bulk is negatively associated with
its tendency to explore deeper. The third notion is further

FIGURE 5 | Inference for root distribution. (A) Posterior mean (Bayesian estimate) of idealized intensity profile ψ γ (t) for replicate block j = 1 for all 20 genotypes.

Other blocks appear similarly, differing only in the intercept due to the block-specific fixed effect κ in which logψ is linear. (B) Posterior means for Genotypes G12 and

G18 (from panel A) which are respectively the maximum and minimum curves, each surrounded by a 95% credible band (Bayesian confidence band). Note that

credible bands are constructed from depth-wise 95% credible intervals of ψijγi (t); thus, the lower band limit is constructed by connecting, across the 18 values of t,

the 2.5th percentiles of the ψijγi (t) posterior distribution; similarly, the upper band is constructed by connecting the corresponding 97.5th posterior percentiles.
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FIGURE 6 | Posterior mean of intensity profile θ (t) for all 20 genotypes, coupled with those genotypes with the maximum and minimum curves and

their 95% credible intervals for j = 1 (A,B), j = 2 (C,D), j = 3 (E,F), and j = 4 (G,H).

evidenced by another feature of Model 1, which is discussed in
the next subsection. It is also interesting to note that, although
overall heritability h2

h
is constituted from h2

h
, h2
α(−β), and h2

β(−α),

Figure 8A (which summarizes the genotypic aspects of Figure 7)
suggests that each of the latter three tends to be less than h2

h
itself, thus root architecture on the whole tends to be more
heritable than any of these standalone features of the root
system.

3.3. Linkage Exists between Near-Surface
Root Density Development and Downward
Exploration
The modeled correlation, ρ, between the bulk and exploration
parameters (both on the log scale), is estimated to be 0.64,
with 95% credible interval = (−0.85, 0.90) (see Figure 8B). Due
to skewness, the posterior probability for ρ to be positive is
0.88, substantiating that the root system’s bulk and downward
exploration are generally positively associated architectural
features. Specifically, a shallower and more concentrated bulk
(small α) is associated with a larger tendency for the root
system to explore deeper (small β). This phenomenon may
be regarded as “a small β canceling out a large α,” or,
the tendency of exploring downwards to exhibit the effect
of negating the tendency to develop root density further

away from the surface. We elaborate on this discovery under
Discussion.

4. MODEL VALIDATION

Details of model validation procedures appear in Appendix E.
In summary, residual analyses suggest only minor statistical
inadequacies ofModel 1.With respective to themodel’s predictive
performance as measured by the Watanabe-Akaike information
criterion (WAIC) (Gelman et al., 2013), its hierarchical structure
is essential. Specifically, ignoring the hierarchical structure
between the root count intensity function and its various random
components that are specific to genotypes, plots, and depths
leads to a naïve model that agrees poorly with the empirical
behavior of our root count data. Employing the hierarchical
structure, the model’s predictive performance remains effectively
unaffected whether a priori dependence between the bulk and
exploration parameters is considered; however, we regard this
extra dependency as a key biological feature because (a) it
improves the interpretability of the model by providing an
explicit assessment of the interplay between the bulk and
exploration parameters, and (b) this interplay is shown to be
substantive based on our field data (as indicated by a smaller
effective number of parameters for Model 1 despite its extra
complexity due to the a priori dependency).
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FIGURE 7 | Posterior distributions of pooled measures of heritability (black), pertaining to (A) overall root architecture, (B) the near-surface intensity, (C) the

root bulk’s location (and size), and (D) the root system’s decline of penetration; the middle vertical line marks the posterior median (a Bayesian estimate), and the outer

lines delimit the 95% credible interval. In (A,C,D), pooling corresponds to integrating depth-dependent heritability over all 18 depths via the harmonic mean of the 18

depth-specific heritability values; the posterior distribution of the unpooled heritability at a given depth is shown in shades of “burnt grass,” where more burnt

corresponds to greater depth.

5. DISCUSSION

The development of roots in response to the extreme
heterogeneity of the soil results in a lack of discernible root
system characteristics that can be measured in the field and
integrated into crop breeding programs. The inability to
breed on the root development of crops and the inadequacy
of conventional crop physiological models in addressing the
spatial heterogeneity of root systems and soil properties are
barriers to the sustainable intensification of agriculture, where
root traits are known to be critical to resource-use efficiency
and resistance to climatic extremes. Consequently, they are
barriers to effective crop yield risk mitigation and food security.
Crop physiological models with better predictive ability are
much sought after, and novel statistical models can facilitate
this pursuit by effectively teasing apart root system physiology
from severe heterogeneity. In this paper, we have addressed this
knowledge gap by scrutinizing root counts observed using a
core-break count method, and by developing a novel modeling
approach that accounts for all root count data holistically. Our
approach gave rise to new multiresolution heritability metrics,
each describing a specific feature of the root count distribution
spatially and at the overall genotypic level, which we showed
to be substantially heritable. Our integrative approach can
allow selective pre-breeding programs for root distribution and

may facilitate the identification of genetic markers from field
data.

The holistic nature of our approach is an inherent advantage
of hierarchical modeling. For model inference, we employed
the Bayesian paradigm, which is intrinsically hierarchical in
structure. It also has the potential of being greatly flexible:
as long as the model is mathematically sound and sufficient
computational resources and algorithms are used to implement
the model, rigorous statistical inference can be straightforward
even for a model with highly complex nonlinear parameters
and random quantities that follow non-standard probability
distributions. In contrast, classical statistical inference can be too
impractical when models or data structures deviate from well-
studied scenarios. In our case, the experimental setup and the
notion of root architecture together led to a highly non-standard
scenario that, under a classical paradigm, would have been much
less straightforward to model and subsequently draw inference
from. Not only was y (the response variable of interest) strictly
non-Gaussian, the data were also three-dimensionally spatial
in nature, where replicate plots were arranged in a certain 2-
dimensional structure (indexed by {i, j}), and in turn each plot
generating numerous 1-dimensional spatial observations of y
(indexed by t).

Irrespective of the inference paradigm, a caveat of
hierarchical modeling is that model complexity in the
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FIGURE 8 | (A) 95% credible intervals and posterior medians for the four heritability measures (1 = root architecture; 2 = near-surface mean count, log scale;

3 = bulk parameter; 4 = exploration parameter). (B) Posterior distribution of ρ, with vertical lines indicating the 2.5, 50, and 97.5% quantiles.

form of highly nonlinear functional forms and/or intricate
hierarchical dependence structures can render the inference so
computationally challenging that determining the posterior
distribution (for Bayesian inference) or the sampling
distributions of estimators and test statistics (for classical
inference) would require novel numerical algorithms
that are yet to be developed. However, for Bayesian
inference in our case, model implementation and model
diagnosis/validation were reasonably straightforward to
conduct. The satisfactory predictive performance of our
Model 1 (Appendix E) suggests that Model 1 is scientifically
sensible and has yielded biological insights that are superior
to what could have been drawn from previous linear models
applied to core-level metrics (from collapsing segment-level
data).

Although Model 1 does not account for potential within-
core spatial dependency among segment-level root count data
(see Appendix F), the biological implications of this model
nonetheless will help to define root traits for breeding. The
canonical model of root distribution with depth is that of a
negative exponential function (Gerwitz and Page, 1974). Gale
and Grigal (1987) describe a nonlinear function Y = 1 −
βd where Y is the cumulative root fraction from the surface
to the depth (d cm), and the coefficient β is genotypically
determined. This model was later employed by Jackson et al.
(1996) to model root distributions across a range of terrestrial
biomes.

However, this 1-dimensional model takes no account of the
horizontal distance from the base of the plant. It has been
observed that root distribution is 1-dimensional with depth
in grassland, 2-dimensional in crops planted densely in rows,
and 3-dimensional where plants are widely spaced (Bengough
et al., 2000). The simulation studies by Grabarnik et al. (1998)
showed that root length density—typically the length of root
per volume of soil (cm/cm3)—for maize decreased nonlinearly
with horizontal distance from the stem in the top 40 cm,
but below that depth they were homogeneously distributed
with horizontal distribution from the plant. Grabarnik et al.
(1998) also showed that the roots were subject to clustering
at all depths, and that whilst there was no preferential
growth in a horizontal plane, the orientation of root growth
deviated from the uniform distribution with increasing depth.
Similar findings were generated in the simulation study by
Bengough et al. (1992), and both studies drew attention
to the likely effect of soil structure to further perturb
the uniform directional distribution of root development
parameters.

The similarity between the model by Gale and Grigal (1987)
and the special case of our gamma kernel function where α = 1
should be noted (Figure 4A). Rather than root length density,
our model accounts for root counts that are random with respect
to sampling position by row in a crop. The model is designed
to explain the distribution of root counts with depth at the crop
level (and not the plant level). However, the sampling position is
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likely to have a strong influence on the surface root counts, which
explains the low heritability of τ in our model.

Interpreting the biological meaning of the “bulk” and
“exploration” parameters (α and β , respectively) is also
interesting. In the gamma kernel function, β also affects
the depth and intensity of the peak otherwise defined by α
(Figure 4). Indeed, our data analysis implicated that α and
β were positively correlated (Figure 8B). For our HNLMMs,
predictive performance remained largely unaffected whether
a priori dependence between α and β is considered; however,
including this extra dependency improved the interpretability of
the model by providing an explicit assessment of the interplay
between the root system’s tendencies to branch beneath the
surface and to explore vertically, deep below the surface.

An explanation for this effect may be found in the structure of
the soil; root growth in deeper layers is perceivably constrained
to networks of cracks and pores (Gao et al., 2016). White
and Kirkegaard (2010) show that in a dense, structured
subsoil 85–100% of roots below 60 cm were clumped in
pores and cracks in the soil (compared to 30–40% above
60 cm), and 44% of the roots were clumped in pores
with more than three other roots. Exploration of the soil
for cracks and pores may define the exploitation of the
soil by a root system. It has been suggested that plants
have evolved randomness and instability in their root system
development (Forde, 2009), which may facilitate exploration.
The exploration of the shallow layers for cracks and pores
may be what determines the eventual depth; our model implies
that more branching near the surface gives better access to the
subsoil.

The primary purpose of our modeling approach was to
distinguish genotypes from root count data that are statistically
noisy. The inference for heritability based on the intensity
functions suggests that our approach can be used to identify
genetic markers of root system distribution in field data;
identified markers then could be integrated into breeding
programs. The high heritability of the “bulk” parameter also
suggests that a breeding program could successfully alter the
depth at which a root system proliferates.

Notwithstanding, residual plots (Appendix E and
Supplementary Material: Supplementary Figures) suggest
some minor statistical inadequacies of Model 1. Therefore,
it may be advantageous to (1) explicitly model gene-
environment interactions (which are implicitly modeled
by our current HNLMM due to the marginal dependence
among genotypic terms indexed by i and environmental terms
indexed by j and/or t); (2) formally model the within-core

spatial dependence (possibly at a higher spatial resolution
of core depths than the current 10 cm intervals); and (3)
also incorporate an additional two-dimensional spatial
correlation structure among field plots. In Appendix F, we
suggest a possible decomposition at Level 1 of the model
hierarchy to address (1), and discuss practical implications
of modeling the 3-dimensional spatial dependence to address
(2) and (3).

Finally, it may also be of benefit to develop a new quantitative
framework to predict root length density from the posteriormean

root count profiles while accounting for trials in different soil
and climate conditions, under which the response of the intensity
functions and their underlying parameters to subsoil constraints
could be rigorously exploited.
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APPENDIX A

Data Collection
The field trial was conducted at Ginninderra Experiment Station
in Canberra, Australia (35◦12′29.0′′S 149◦04′59.0′′E), from late
May to late December 2013 (the typical wheat growing season
for the region) in alluvial cracking clay plots that were 1.3 m
long. Twenty spring wheat genotypes (anonymized in this
paper) were drawn from a collection of standard cultivars and
from a multigenic mapping population on the basis of prior
experimentation on root distributions in the field; each was sown
with a tractor-drawn plot seeder in ten rows spaced 18 cm apart
in a randomized block design with four replicated blocks of plots
(Figure 1A). A seed was sown roughly 3 cm apart in each row; the
final sowing density was ∼150 plants/m2. A fertilizer (N:P:K:S
= 14:12.7:0:11) was applied at 120 kg/ha at sowing, with urea
added for additional N during the growing season. Prophylactic
fungicide and herbicide treatments were applied to the trial to
suppress weeds and prevent disease. In early January 2014 after
the trial had matured and been harvested, four soil cores of ∼1.8
m in length were collected from each plot using 2 m long, 42 mm
diameter stainless steel coring tubes driven into the soil vertically
with a tractor-mounted hydraulic push press (Wasson et al.,
2014). Our field sampling technique ensured that within each plot
the cores were reasonably independent of each other (Figure 1B).
Each core was broken into segments rather than sliced, so that
the roots traversing the plane of the break would emerge intact
from one of the two broken faces; the same root could not be
visibly intact on both faces simultaneously. (Slicing the roots
would have left only the cross sectional area on the face: 50–
150 microns in diameter and difficult to detect.) Hence, the root
counts on the adjoining faces can be regarded as independent
values which, when combined to form y, represent the number
of roots traversing the break plane at that depth. The fluorescence
imaging system generates root counts (Wasson et al., 2016) which
necessarily differ from an observer’s manual counts, although
both are subject to measurement error. The raw imaging data
were processed (available from Supplementary Material: Dataset)
and visualizations produced with the statistical programming
language R (R Core Team, 2015) using the packages “dplyr”
(Wickham and Francois, 2015) and “ggplot2” (Wickham, 2009).

APPENDIX B

Formulation of Model 1 and Variants
Recall that yijkt denotes an observed root count, where {i, j, k, t}
indexes {genotype, block, core, depth}, for i ∈ {1, 2, ..., 20}, j ∈
{1, 2, 3, 4}, k ∈ {1, 2, 3, 4}, and t ∈ {1, 2, ..., 18}. Taking
γi(t) = tαi−1e−βit which is the kernel of the gamma probability
density function and letting “N” and “BVN,” respectively denote
“normal” and “bivariate normal,” our model statements can be
rewritten as follows:

Level 1 :

{ [

yijkt
∣

∣θijt
]

∼ Poisson(mean = θijt),

log θijt = ψ0 + κj + (αi − 1) log t − βit + (τi + φijt);

Level 2 :











[logαi, logβi]
′ | µ,6 ∼ BVN(µ,6),

[

φijt

∣

∣

∣
σ 2
φ

]

∼ N(mean = 0, var = σ 2
φ ),

[

τi
∣

∣σ 2
τ

]

∼ N(0, σ 2
τ )

where

µ =
[

µα
µβ

]

, 6 =
[

σ 2
α ρσασβ

ρσασβ σ 2
β

]

;

and κjs are fixed effects that require a linear constraint to ensure
model identifiability: we take κ4 = 0. (See Figure 3 for a
schematic of the two levels of our HNLMM.)

For Bayesian inference, prior distributions are required for
all fixed-effects parameters κjs, ψ0,µα ,µβ , and (co)variance
parameters ρ, σ 2

α , σ
2
β , σ

2
τ , and σ

2
φ . To reflect our lack of a priori

insight (in the absence of data) into the likely values of these
parameters, each was given a standard diffuse prior: the Fisher-
transformation arctanh(ρ) and fixed effects were all assumed to
be independent zero-mean Gaussians with a variance of 104, and
the variance parameters were assumed to follow independent
and identical inverse-gamma distributions with values 1 and 0.1,
respectively, for the shape and rate parameters. The resulting
Markov chains of posterior draws exhibited very poor mixing
for Model 1 (as well as Model 2, obtained by prespecifying
ρ = 0) when a smaller rate parameter value, namely, 0.01 or
10−4, was used. As smaller rate parameter values correspond to
more diffuse inverse-gamma priors, the poor mixing suggests
mildly weak identifiability (even for the smaller Model 2). This
also suggests that to improve inferential power for and the
identifiability of Model 1, one could conduct a future field study
that consists of a larger number of plots and/or depths, and/or
employ stronger priors based on the inference we have presented
in this current article.

For model validation (Appendix E), we also considered
smaller models: Model 2 by prespecifying ρ = 0 inModel 1; and
Model 3 by taking all Model 2 parameters (including those that
are genotype-specific) to be fixed effects.

Remarks. Note that alternative parametrizations of
depth are possible. Under Supplementary Material: Model
Parametrization, we discuss the so-called canonical scale
for depth, on which the statistical inference is invariant to
certain reparametrizations including the conventional t scale
(i.e. 1, ..., nD) in this paper. This invariance is similar to that
of Chiu and Lockhart (2010), where the rigor of the statistical
inference is developed on the canonical scale rather than the
conventional scale.

APPENDIX C

Implementation of Model 1 and Variants
Bayesian inference requires the derivation of the joint posterior
distribution of all model parameters. In our case, this distribution
is intractable and Markov chain Monte Carlo (MCMC) was
used to approximate it. For this, we used the RStan MCMC
software (R Core Team, 2015; Stan Development Team, 2016)
to fit Model 1 and its variants for model refinement purposes
(see Supplementary Material: Computer Code). Of the 320 cores
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sampled, nine were ignored as they failed to yield root count
data. While missing data can be imputed under extra model
assumptions, the Stan framework did not yet readily allow
simulation of discrete parameters, and thus imputation of the
missing root counts was not performed.

APPENDIX D

Multiresolution Heritability under Model 1
To handle the non-linearity—even on the logarithmic scale—
of the mean number of roots θ in Model 1, we decompose the
variability of log θ(t) into

σ 2
log θ(t) = σ 2

genes(t)+ σ
2
φ

where

σ 2
genes(t) = σ 2

τ + (log t)2(eσ
2
α − 1)e2µα+σ

2
α + t2(e

σ 2β − 1)e
2µβ+σ 2β

− (t log t)(eρσασβ − 1)e
µα+µβ+(σ 2α+σ 2β )/2

is attributable to the variability of the trio of genotypic
parameters τi,αi, and βi, while the study-wide parameter σ 2

φ

is attributable to the pure noise term φijt . Note that the
parameters σ 2

τ , σ
2
α , σ

2
β ,µα ,µβ , and ρ stipulate the collective

statistical behavior, a priori, of τ ,α, and β .
As such, we define four different measures of heritability,

namely, h2
h
, h2
α(−β), h

2
β(−α), and h2τ , each at the genotypic level, by

letting

h2h(t) =
σ 2
genes(t)

σ 2
genes(t)+ σ 2

φ

= depth-specific heritability of intensity function at t,

h2h = heritability of overall architecture

= harmonic mean of h2h(t) = T

/

T
∑

t=1

(

1+
σ 2
φ

σ 2
genes(t)

)

;

h2α(−β) = heritability of root bulk’s location (and size) on log

scale, ignoring its relation with penetration rate

= harmonic mean of
{

(log t)2(eσ
2
α − 1)e2µα+σ

2
α

(log t)2(eσ
2
α − 1)e2µα+σ

2
α + σ 2

φ

for t > 1

}

;

h2β(−α) = heritability of root’s decline rate of penetration on log

scale, ignoring its relation with bulk location

= harmonic mean of







t2(e
σ 2β − 1)e

2µβ+σ 2β

t2(e
σ 2β − 1)e

2µβ+σ 2β + σ 2
φ







;

h2τ =
σ 2
τ

σ 2
τ + σ 2

φ

= heritability of intensity function’s intercept

on log scale.

Note that each of h2
h
, h2
α(−β), and h

2
β(−α) comprises depth-specific

heritability components, but h2τ does not (and thus, its definition
does not require the use of the harmonic mean).

APPENDIX E

Validating Model 1
(a) Predictive Performance
Although more complex models typically follow the data more
closely, they may have poorer predictive performance due to
potential overfitting. We consider the predictive performance
of Model 1 by comparing its value of the WAIC to those for
the simpler Models 2 and 3, both nested within Model 1. The
WAIC is a measure of a model’s predictive accuracy, and it is
asymptotically equivalent to the leave-one-out cross-validation
method, the latter of which addresses the notion of the mean
squared error but requires substantive computational effort for
a dataset as large as ours (Vehtari and Gelman, 2014). In
contrast, theWAIC can be easily computed as part of the MCMC
implementation of the Bayesian inference (see Supplementary
Material: Computer Code).

As mentioned in Appendix B, the modeled correlation
between the bulk and the exploration parameters on the log scale
was prespecified as ρ = 0 inModel 2;Model 3 considers all model
parameters (including those that are genotype-specific) as fixed
effects by naïvely prespecifying

σ 2
φ = τ20 = κ4 = µα = µβ = ρ = 0,

prior Var(ψ0) = σ 2
τ = σ 2

κ = 25,

σ 2
α = σ 2

β = 3.

Note, that the values 3 and 25 for the prior variance of
ψ0, τi, κj,αi, or βj constitute informative prior distributions for
these fixed effects. Before considering 3 or 25, we had specified
103 or 104 for diffuseness. However, in either case,Model 3 failed
to converge due to a weakly identifiable α8. Consequently, we
decided to employ the more restrictive (but defensibly so) prior
variances of 3 and 25 according to the following argument.

Based onWeaver (1926), we deduce that for a wheat plant, the
total number of roots at any given depth has a magnitude that
is o(100), and thus a generous approximation for the standard
deviation (SD) of θijt is 100, or for SD(log θijt) is log 100. For
Model 3, note that

E(log θijt) = ψ0 + τi + κj + (αi − 1) log t − βit

where the sets {τi}, {αi}, {βi}, and {κj} each follows a linear
constraint. Thus, for the priors of the fixed effects, heuristically
we let

(
√
25 >) log 100 = SD(ψ0) = SD(τi) = SD(κj)

(
√
3 >) log log 100 = SD(logαi) = SD(logβi)

for all i 6= 20 and j 6= 4.
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For each of Models 1–3, we computed the WAIC based
on Vehtari and Gelman (2014) (see Supplementary Material:
Computer Code); they appear in Table A1. There, one can
see that predictive performance improved drastically (WAIC
decreased from> 46000 to< 35000) from the naïve fixed-effects
Model 3 to the mixed-effects Models 1 and 2, both of which are
muchmore complex. Between the two complex models, although
Model 1 is slightly larger thanModel 2 (by a single parameter that
represents a priori dependence between the bulk and exploration
parameters), effectively they perform equally well in predictive
power, as suggested by a merely nominal difference (=3) in
WAIC values.

In addition to a mere nominal difference in WAIC values
between Models 1 and 2, we also observed that the approximate
values for the effective number of parameters, pWAIC (used in
the computation of WAIC), increased from 4011 for Model 1
to 4014 for Model 2. Importantly, although model complexity
was increased from Model 2 to Model 1 by correlating the
genotypic bulk and exploration parameters through a study-wide
parameter, the additional parameter reduced the models overall
amount of unknownness. Thus, these values of pWAIC, along
with those of the WAIC and the substantively large posterior
probability that ρ > 0, suggest the merit of retaining ρ as an
unknown parameter in the HNLMM.

(b) Residual Plots

Next, we inspect violin plots produced by the R package “vioplot”
(Adler, 2005) for residuals that correspond to the Level 1 noise
terms τi and φijt in Model 1. Non-noise-like patterns in these
residual plots would suggest the statistical inadequacy of Model
1 for our data.

Figure S1 is based on the posterior distribution of φijt
(posterior median shown as black dot), plotted against the
posterior mean of log θijt rather than the log-transformed ȳij+t =
∑

k yijkt/4. This is because ȳij+t = 0 for 181 out of all 1440
combinations of {i, j, t} (see Section Discussion for possible
implications). Figure S1 shows that φijt has a (a) slight tendency
to increase with log θijt , and (b) a distinctive non-random
relationship with log θijt especially when the latter is small (which
is typically at lower depths). We break down this relationship by
the residual violin plots in Figures S2–S6.

Overall, we observe the following minor anomalies:

• τi vs. ȳi++t (Figure S3): at many depths t, the random effect τi
has a slight tendency to be negative for small observed values
of ȳi++t , and positive for large observed values of ȳi++t ;

TABLE A1 | Values of the Watanabe-Akaike information criterion (WAIC) as a measure of predictive performance by our Bayesian HNLMMs.

Model Description WAIC

1 Most sophisticated among our models, as presented in this paper 34198

2 Same as Model 1, but with a prespecified ρ = 0 34195

3 Naïve preliminary model: same as Model 2, except with φijt term missing and all of ψ0, τi ,αi ,βi , and κj taken as fixed effects 46627

A smaller WAIC value suggests better model performance.

• φijt vs. i (Figure S4): at t = 160, 170, or 180 cm, the residual φijt
for a small number of plots ({i, j} combinations) has a tendency
to be highly positive;

• φijt vs. t (Figure S5): for the 3rd replicate block (j = 3), many
genotypes (e.g., i = 2, 12, 14, etc.) at the deepest six depths are
associated with φijt that increases with depth systematically;
the same applies to j = 4 and i = 8, 9, 11, etc.; additionally,
the plot {i, j} = {5, 3} shows that φijt has a tendency to be all
positive;

• φijt vs. j (Figure S6): the same conclusion as for Figure S4 for
t = 160, 170, or 180 cm; additionally, φijt for a small number
of plots has a slight tendency to be positive at t = 30 or 100
cm.

Altogether, the residual violin plots suggest that the statistical
inadequacy of Model 1 lies in the modeled behavior of θijt
across the deeper depths for specific combinations of {i, j}. Under
Section Discussion, we provide an overview of possible directions
that may be taken to improve the adequacy of our HNLMM.

APPENDIX F

Some Limitations and Possible Extensions
Note, that while 5 cm segments were produced in the field,
the first, third, fifth, etc. depths were ignored in the statistical
modeling; only imaged counts at depths in 10 cm increments
from the surface were considered. This implies that within
the same core, the resulting counts y were less spatially
autocorrelated due to a lower spatial resolution of the data from
omitting alternate segments from consideration. With segment-
level counts y thus produced, we considered for statistical
modeling 18 (= nD) depth values from each core, from depth
10 cm to depth 180 cm.

We now discuss possible extensions to Model 1. Although
the hierarchical structure of our HNLMM already addresses
some over- or under-dispersion in the raw root counts, an
abundance (181/1440> 12%) of observed zero-mean root counts
(averaged over four replicate cores) suggests a potential need to
include a formal zero-inflation component in a future improved
model (e.g., via a mixture model). Furthermore, at present
our HNLMM does not include formal (a) gene-environment
interactions or (b) spatial statistical modeling (Gelfand et al.,
2010) of within-core spatial dependency among segment-level
root count data at a 10 cm spatial resolution. For (a), it is
possible to further decompose φijt = φ∗ij + φ∗∗it + φ∗∗∗ijt , whereby

φ∗ij and φ
∗∗
it are explicit gene-environment interaction terms at
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Level 1 of the model hierarchy, and φ∗∗∗ijt is the pure noise term.

For (b), spatial statistical modeling would impose substantial
complexity to the statistical inference and computational burden.
However, the residual plots perhaps suggest that formal spatial
modeling could be a valuable additional component for our

HNLMM, especially with data at the 5 cm resolution. A possible
spatial structure could be an autoregressive dependence over
depth, and/or a nearest-neighbor dependence (among field
plots) that constitutes a Markov random field (Gelfand et al.,
2010).
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