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Plastids are DNA-containing organelles and can have unique differentiation states
depending on age, tissue, and environment. Plastid biogenesis is optimized
by bidirectional communication between plastids and the nucleus. Import of
nuclear-encoded proteins into plastids serves as anterograde signals and vice versa,
plastids themselves send retrograde signals to the nucleus, thereby controlling de novo
synthesis of nuclear-encoded plastid proteins. Recently, it has become increasingly
evident that the ubiquitin–proteasome system regulates both the import of anterograde
plastid proteins and retrograde signaling from plastids to the nucleus. Targets of
ubiquitin–proteasome regulation include unimported chloroplast precursor proteins in
the cytosol, protein translocation machinery at the chloroplast surface, and transcription
factors in the nucleus. This review will focus on the mechanism through which the
ubiquitin–proteasome system optimizes plastid biogenesis and plant development
through the regulation of nuclear–plastid interactions.
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Plastids are DNA-containing organelles that have evolved from a cyanobacterial endosymbiont.
Because most of the genes encoded by the bacterial ancestor have been transferred to the host
nuclear genome, the expression of genes encoding plastid precursor proteins in the nucleus and the
import of those proteins are indispensable for plastid biogenesis. The import of plastid precursor
proteins is mediated by the translocon at the outer (or inner) envelope membrane of chloroplasts
(TOC-TIC). Hence, plastid fate is largely controlled by the quality and quantity of plastid precursor
proteins expressed in each cell and by their import into plastids (Inaba and Schnell, 2008; Jarvis and
Lopez-Juez, 2013; Paila et al., 2015).

On the other hand, plastids also send feedback signals to regulate the expression of genes
encoding plastid proteins in the nucleus. These signals are known as retrograde signals from
plastids to the nucleus and are referred to as plastid signals. Plastid signals can be divided into two
types: biogenic and operational (Pogson et al., 2008). Among them, biogenic signals are necessary
to coordinate gene expression in two genomes, allowing cells to assemble the photosynthetic
apparatus and to promote chloroplast development (Pogson et al., 2008; Inaba et al., 2011; Jarvis
and Lopez-Juez, 2013). To date, several transcription factors have been shown to mediate biogenic
signals from plastids to the nucleus (Koussevitzky et al., 2007; Ruckle et al., 2007; Kakizaki et al.,
2009; Waters et al., 2009; Sun et al., 2011; Martin et al., 2016).

A number of studies have demonstrated the roles of de novo synthesis and the targeting
of plastid precursor proteins in the regulation of nuclear–plastid interactions. However, it
has become increasingly evident that the nuclear–plastid interaction is also regulated by the
degradation of multiple components through the ubiquitin–proteasome system (Lee et al.,
2013; Ling and Jarvis, 2015). Here, we focus on recent advances in our understanding
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of how the ubiquitin–proteasome system regulates the nuclear–
plastid interaction and plastid biogenesis. Other comprehensive
reviews cover broad aspects of plastid protein import and plastid
signaling (Li and Chiu, 2010; Inaba et al., 2011; Jarvis and Lopez-
Juez, 2013; Pfannschmidt and Munné-Bosch, 2013; Paila et al.,
2015; Chan et al., 2016), and space limitations prevent us from
providing adequate coverage of all aspects of nuclear–plastid
interaction.

DEGRADATION OF UNIMPORTED
CHLOROPLAST PRECURSOR
PROTEINS BY THE
UBIQUITIN–PROTEASOME PATHWAY

It is well known that the expression of nuclear-encoded
photosynthesis-associated genes are induced upon illumination
and that mass transport of proteins encoded by these genes
into plastids are indispensable for chloroplast development.
Those plastid-targeted proteins are encoded as precursors in
the nucleus, but only mature proteins are detectable under
normal conditions in vivo. To avoid the accumulation of
unimported proteins in the cytosol, plants have evolved at least
two distinct mechanisms. One is feedback regulation of nuclear
gene expression by plastid-derived signals, and the other is
degradation of unimported precursor proteins by the ubiquitin–
proteasome system (Lee et al., 2013; Figure 1).

Cytosolic heat shock cognate 70-4 (Hsc70-4) and carboxy
terminus of Hsc70-interacting protein (CHIP) appear to
be involved in the degradation of unimported precursor
proteins in Arabidopsis thaliana (Lee et al., 2009). Hsc70-4
recognizes specific sequence motifs within the transit peptide of
ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit
protein and light-harvesting chlorophyll a/b-binding protein.
Subsequently, CHIP interacts with Hsc70-4 and serves as an
E3-ubiquitin ligase, thereby allowing unimported precursors to
be degraded through the ubiquitin–proteasome system. This
suggests that a transit peptide may function as both a chloroplast
targeting signal and a degradation signal when unimported
precursors accumulate in the cytosol. This idea is further
substantiated by the findings of a recent proteomic study (Sako
et al., 2014), in which certain plastid precursors were shown to
interact with the proteasome both in vivo and in vitro.

The mechanism that discriminates between plastid-targeted
precursors and proteasome-targeted precursors remains to be
characterized in detail. Intriguingly, the plastid protein import
2 (ppi2) mutant of A. thaliana, which lacks the atToc159
protein import receptor of plastids, accumulated N-acetylated
plastid precursor proteins outside of plastids (Bischof et al.,
2011). Although atToc159 plays key roles in the import
of photosynthesis-associated proteins into plastids, it also
participates in the import of constitutively expressed plastid
proteins. As will be discussed later, the ppi2 mutant has
been known to exhibit down-regulation of genes encoding
photosynthesis-associated proteins in the nucleus in response
to plastid-derived signals, but not the expression of constitutive

plastid proteins. In contrast, some constitutively expressed
proteins were shown to be N-acetylated in the ppi2 mutant.
It has been shown that N-acetylation serves as a degradation
signal for the ubiquitin–proteasome system in yeast (Hwang
et al., 2010). Hence, one can speculate that excess precursors
that cannot be controlled at the transcriptional level are
subjected to N-acetylation and ubiquitin–proteasome-dependent
degradation. As such, degradation of excess plastid precursors via
the ubiquitin–proteasome system plays a key role in determining
the amount of protein import and plastid biogenesis.

PLASTID PROTEIN IMPORT
MACHINERY IS A DIRECT TARGET OF
UBIQUITIN–PROTEASOME PATHWAY

The ubiquitin–proteasome system directly regulates the protein
translocation machinery at the plastid surface (Ling and Jarvis,
2015; Figure 1). This unexpected link was demonstrated in
an attempt to isolate a suppressor mutant of plastid protein
import 1 (ppi1). The ppi1 mutant of A. thaliana exhibits a
pale green phenotype due to the lack of atToc33 in the TOC
complex, but can survive on soil. One suppressor mutant of
ppi1, designated as suppressor of ppi1 locus1 (sp1), possesses
a lesion within the RING-type ubiquitin E3 ligase gene (Ling
et al., 2012). TOC components are more abundant (1.5- to
2-fold) in the sp1 mutant than in the wild-type. The wild-type
SP1 protein interacts with components of TOC machinery.
Furthermore, atToc159, atToc75, and atToc33 have been shown
to be polyubiquitinated by SP1 activity. These findings indicate
that the ubiquitin–proteasome system directly regulates the level
of TOC components, thereby affecting the amount of protein
import into plastids.

This mechanism also seems to play a key role in determining
the fate of plastids within the cell (Ling et al., 2012). During
the photomorphogenic response, the sp1 single mutant displayed
inefficient de-etiolation with reduced levels of photosynthesis-
associated proteins and imbalanced TOC receptor levels.
The sp1 mutant also exhibited delayed senescence, and
this was accompanied by the delayed transformation from
chloroplasts to gerontoplasts within the cell. In contrast,
overexpression of SP1 accelerated both de-etiolation and
senescence. Hence, regulation of TOC components by the
ubiquitin–proteasome system appears to be indispensable for
determining both the quality and the quantity of plastid-
targeted proteins, thereby affecting the fate of plastid and plant
development.

REGULATION OF
PLASTID-TO-NUCLEUS RETROGRADE
SIGNALING VIA THE
UBIQUITIN–PROTEASOME PATHWAY

In addition to the anterograde signaling pathway, a recent
study demonstrated that the retrograde signaling pathway from
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FIGURE 1 | Control of bidirectional signaling between plastids and the nucleus by the ubiquitin–proteasome system. Chloroplast development is
promoted by the expression of nuclear-encoded PhANGs and the import of their products into chloroplasts. When excess precursors are produced, they are
recognized by the heat shock cognate 70-4 (Hsc70-4) complex in the cytosol. Subsequently, they are polyubiquitinated by an E3 ubiquitin ligase, carboxy terminus
of Hsc70-interacting protein (CHIP), resulting in their degradation by the proteasome. The translocon at the outer envelope membrane of chloroplasts (TOC) complex
is also directly targeted by the ubiquitin proteasome system. At least three TOC components, Toc159, Toc75, and Toc33, are polyubiquitinated by a
membrane-anchored E3 ubiquitin ligase, suppressor of ppi1 locus1 (SP1). To further optimize the amount of protein import into chloroplasts, retrograde signals from
chloroplasts regulate the level of the GOLDEN2-LIKE 1 (GLK1) transcription factor in the nucleus. Polyubiquitination of GLK1 is induced when chloroplast biogenesis
is inhibited. The degradation of GLK1 results in the down-regulation of PhANGs, thereby preventing the accumulation of unnecessary precursor proteins in the
cytosol. GLK1 is also regulated by retrograde signals at transcriptional level, and this regulation is mediated by GENOMES UNCOUPLED 1 (GUN1). Although this
figure proposes a model for photosynthetic tissues, similar regulation by the ubiquitin–proteasome system appears to play key roles in plastid development in other
tissues. Note that a number of other pathways between plastids and the nucleus have been identified, and those pathways are not shown in this figure due to space
limitations but can be found in other adequate reviews. UPS, ubiquitin–proteasome system; OEM, outer envelope membrane; IEM, inner envelope membrane; IMS,
intermembrane space; Ub, ubiquitin; PhANGs, photosynthesis-associated nuclear genes.

plastids to the nucleus is also subjected to ubiquitin–proteasome-
dependent regulation in A. thaliana (Tokumaru et al., 2017). The
key mechanism involves the regulation of the GOLDEN2-LIKE 1
(GLK1) transcription factor by the ubiquitin–proteasome system
(Figure 1).

The GLK family of transcription factors was originally
isolated in maize (Hall et al., 1998; Rossini et al., 2001). The
GLK genes positively regulate the expression of photosynthesis-
associated genes in numerous plants, thereby strongly promoting
chloroplast development (Fitter et al., 2002; Yasumura et al., 2005;
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Waters et al., 2009). Overexpression of GLK has been shown
to be sufficient to induce chloroplast development in rice calli
(Nakamura et al., 2009) and Arabidopsis root cells (Kobayashi
et al., 2012; Tokumaru et al., 2017). Two separate studies reported
that the expression of GLK genes responds to inhibitor treatment
thus compromising chloroplast development (Kakizaki et al.,
2009; Waters et al., 2009). The findings of those studies concluded
that GLK gene expression responds to plastid signals, resulting
in the regulation of photosynthesis-associated genes in response
to plastid signals. Intriguingly, impaired chloroplast development
caused by the ppi2 mutation also suppress GLK1 expression in
the nucleus (Kakizaki et al., 2009). This regulation is mediated
by the retrograde signaling pathway, because the GENOMES
UNCOUPLED 1 (GUN1) protein, which is localized in plastids,
appears to act upstream of GLK1. From those studies, it becomes
clear that plastids transmit signals to determine the amount of
anterograde protein import, thereby avoiding the accumulation
of excess levels of precursors within the cytosol.

Besides transcriptional regulation, a recent study showed
that plastid signals also directly regulate the level of GLK1
protein (Tokumaru et al., 2017). The GLK1 gene is fully
expressed in gun1 mutants treated with norflurazon. In contrast,
the level of GLK1 protein is much lower than that expected
from the GLK1 mRNA levels in the norflurazon-treated gun1
mutant. The discrepancy between GLK1 protein and mRNA
levels is in part attributable to the degradation of the GLK1
protein by the ubiquitin–proteasome system (Tokumaru et al.,
2017). When norflurazon-treated plants were further treated
with MG-132, a proteasome inhibitor, the accumulation of
GLK1 was partially restored. Because the gun1 mutant also
exhibited the same response, it appears that GUN1 is not
required for the proteasome-mediated regulation of GLK1.
Likewise, MG-132 treatment partially restored the level of GLK1
protein in the ppi2 mutant. Hence, this mechanism is also
used to optimize the expression of nuclear genes encoding
photosynthesis-associated proteins when plastid protein import
is compromised.

The level of GLK is also regulated by the ubiquitin–
proteasome system in fruit tissues of tomato. The Solanum
lycopersicum GLK2 protein, SlGLK2, regulates chloroplast
development in tomato fruit tissues, and fruits of the slglk2
mutant exhibit uniformly light green coloration (Powell et al.,
2012; Nguyen et al., 2014). SlGLK2 was found to be degraded
by the ubiquitin E3 ligase complex containing CULLIN4 (CUL4)
and UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1;
Tang et al., 2016). Consistent with this observation, a mutation

in DDB1 significantly increased the pigment contents and
chloroplast/chromoplast size in tomato fruits (Cookson et al.,
2003), presumably due to the excess accumulation of SlGLK2.
Although the roles of SlGLK2 in retrograde signaling remains
to be established, these studies further support the idea that
the ubiquitin–proteasome pathway is indispensable for the
regulation of GLKs.

CONCLUSION AND PERSPECTIVE

Although the de novo synthesis and targeting of plastid precursor
proteins are indispensable for plastid biogenesis, it becomes
clear that ubiquitin–proteasome-dependent protein degradation
also plays a key role in the regulation of plastid biogenesis.
Meanwhile, a number of questions remains to be solved: Are
there any other ubiquitin–proteasome regulated transcription
factors involved in the retrograde signaling from plastids to
the nucleus? Is ubiquitin–proteasome system indispensable for
the retrograde signaling from plastids other than chloroplasts?
Does operational control of retrograde signaling also requires
ubiquitin–proteasome system? In fact, other studies start
addressing these questions. Proteasome-regulated transcription
factors, such as ELONGATED HYPOCOTYL 5 (HY5) and
PHYTOCHROME INTERACTING FACTORS (PIFs), have been
shown to participate in retrograde signaling, as well as in
light signaling (Ruckle et al., 2007; Martin et al., 2016).
Reactive oxygen species-producing chloroplasts appear to be
ubiquitinated and subsequently degraded (Woodson et al., 2015).
Further investigation will provide novel insight into the roles of
the ubiquitin–proteasome system in regulating plastid biogenesis
and plant development.
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