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Bacterial wilt of potatoes—also called brown rot—is a devastating disease caused
by the vascular pathogen Ralstonia solanacearum that leads to significant yield loss.
As in other plant-pathogen interactions, the first contacts established between the
bacterium and the plant largely condition the disease outcome. Here, we studied
the transcriptome of R. solanacearum UYQ031 early after infection in two accessions
of the wild potato Solanum commersonii showing contrasting resistance to bacterial
wilt. Total RNAs obtained from asymptomatic infected roots were deep sequenced
and for 4,609 out of the 4,778 annotated genes in strain UYO31 were recovered.
Only 2 genes were differentially-expressed between the resistant and the susceptible
plant accessions, suggesting that the bacterial component plays a minor role in the
establishment of disease. On the contrary, 422 genes were differentially expressed (DE)
in planta compared to growth on a synthetic rich medium. Only 73 of these genes had
been previously identified as DE in a transcriptome of R. solanacearum extracted from
infected tomato xylem vessels. Virulence determinants such as the Type Three Secretion
System (T3SS) and its effector proteins, motility structures, and reactive oxygen species
(ROS) detoxifying enzymes were induced during infection of S. commersonii. On the
contrary, metabolic activities were mostly repressed during early root colonization, with
the notable exception of nitrogen metabolism, sulfate reduction and phosphate uptake.
Several of the R. solanacearum genes identified as significantly up-regulated during
infection had not been previously described as virulence factors. This is the first report
describing the R. solanacearum transcriptome directly obtained from infected tissue and
also the first to analyze bacterial gene expression in the roots, where plant infection takes
place. We also demonstrate that the bacterial transcriptome in planta can be studied
when pathogen numbers are low by sequencing transcripts from infected tissue avoiding
prokaryotic RNA enrichment.

Keywords: Ralstonia solanacearum, bacterial wilt, Solanum commersonii, RNA sequencing, transcriptomics,
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INTRODUCTION

Changes in pathogen gene expression control the switch from
a commensal to a parasitic relationship with the host, which
may subvert the host metabolism or development to the
pathogen’s benefit (Stes et al., 2011). However, there is still limited
information concerning how this is controlled. Understanding
how these trophic relationships initiate and persist in the
host requires deciphering the functional adaptations at the
transcriptomic level. Pioneer studies of the expression profiles
of bacterial animal pathogens in infected tissues showed that the
genes induced more strongly contributed to bacterial virulence
and/or survival in the host (reviewed in La et al., 2008).

Ralstonia solanacearum is the causal agent of the destructive
bacterial wilt disease in tropical and subtropical crops, including
tomato, tobacco, banana, peanut, and eggplant (Hayward, 1991;
Peeters et al., 2013). The disease in potato is also called brown
rot and is endemic in the Andean region, where potato is a
staple food, causing an important impact on food production
and the economy (Priou, 2004; Coll and Valls, 2013). Disease
control of bacterial wilt is very challenging, because of the
bacterium aggressiveness, its persistence in the field and the
lack of resistant commercial varieties in any of its hosts. Potato
breeding programs have used wild species related to Solanum
tuberosum, such as Solanum commersonii, as sources of resistance
against bacterial wilt (Kim-Lee et al., 2005; Siri et al., 2009).

As in most Gram-negative animal and plant pathogens, the
major pathogenicity determinant in R. solanacearum is the
type three secretion system (T3SS) (Boucher et al., 1987). This
system injects bacterial proteins called effectors directly into the
eukaryotic host cells to manipulate the host defenses and establish
disease (Buttner, 2016; Popa et al., 2016a). Amongst other factors
that contribute to R. solanacearum virulence are motility—either
caused by flagella or type IV pili- and the reactive oxygen species
(ROS)- detoxifying enzymes (Meng, 2013).

In vitro studies using microarrays allowed the study of
R. solanacearum virulence gene expression and the discovery of
novel regulatory networks (Occhialini et al., 2005; Valls et al.,
2006). However, the first studies on gene expression in planta
using quantitative reporters indicated that R. solanacearum
genes showed unexpected expression patterns
(Monteiro et al., 2012). Contrary to what was believed based on
in vitro studies, it was demonstrated that the genes encoding
the T3SS genes and its associated effectors were transcribed in
planta at late stages of infection (Monteiro et al., 2012). These
findings were later confirmed in transcriptomic studies with
R. solanacearum extracted from infected tomato and banana
plants (Jacobs et al., 2012; Ailloud et al., 2016). However, these
studies in planta could only be performed from heavily colonized
plants, as limited pathogen biomass has hindered until recently
the investigation of gene expression at the early stages of the
interaction, when plants are still asymptomatic.

In a previous work, we demonstrated that rRNA-depleted
RNAs obtained from infected roots could be used to determine
the transcriptomic responses of S. commersonnii plants resistant
or susceptible to bacterial wilt through RNA sequencing (Zuluaga
et al, 2015). Here, we have used these sequences to extract

virulence

R. solanacearum UY031 transcripts in silico and have compared
them to the bacterial transcriptomes obtained in synthetic
media to investigate the pathogen RNAs expressed during early
infection. Our results reveal differential expression of a number
of known and putative transcriptional regulators and virulence
factors during early plant colonization, providing insight into
their role in infection.

MATERIALS AND METHODS

Bacterial Strains, Plant Accessions, and

Growth Conditions

The R. solanacearum isolate UY031, phylotype 1IB, sequevar 1,
originally isolated from potato (Siri et al., 2011), carrying the
LUX-operon under the psbA promoter (Monteiro et al., 2012)
was used for all experiments. Bacteria were routinely grown in
rich B medium as described (Monteiro et al., 2012).

S. commersonnii accessions F97 (susceptible to bacterial wilt)
and F118 (moderately resistant) obtained from a segregating
population were used in this work and propagated in vitro as
described (Zuluaga et al., 2015).

Sample Preparation

As a control condition, bacteria were grown for 2 days on
rich solid medium without tetrazolium chloride or antibiotics
at the appropriate dilution to obtain separate colonies. Bacteria
were recovered from plates and mixed with 5% of an ice-cold
transcription stop solution [5% (vol/vol) water-saturated phenol
in ethanol]. Cells were centrifuged at 4°C for 2 min at maximum
speed and the bacterial pellet was immediately frozen in liquid
nitrogen.

For plant RNA samples, S. commersonii F97 and F118 roots
were inoculated as described in Zuluaga et al. (2015). Briefly,
plant roots from 2-week old plants grown in soil were injured
with a 1 ml pipette tip and inoculated by soil drenching with a
bacterial solution at 107 colony forming units (cfu)/ml. Control
plants were mock-inoculated with water. After inoculation,
plants were kept in a growth chamber at 28°C in long-day
conditions. Luminescence quantification was used to select plants
with comparable infection levels in the susceptible and the
resistant accessions, corresponding to approximately 10° colony
forming units per g of tissue (Cruz et al., 2014).

RNA Extraction, Sequencing, and Library

Preparation

Total RNA from bacterial cultures was extracted using the
SV Total RNA Isolation System kit (Promega) following the
manufacturer’s instructions for Gram-negative Bacteria. Infected
plant RNA extractions were carried out as described (Cruz
et al, 2014). RNA concentration and quality was measured
using the Agilent 2100 Bioanalyzer. For rRNA depletion, 2.5 pg
of RNA were treated with the Ribo-zero('") magnetic kit for
bacteria (Epicenter). Three biological replicates per condition
were subjected to sequencing on an Illumina-Solexa Genome
Analyzer II apparatus in the Shanghai PSC Genomics facility
using multiplexing and kits specially adapted to obtain 100 bp
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paired-end reads in stranded libraries. Raw sequencing data is
available in the Sequence Read Archive under the accession code
SRP096020.

Read Mapping, Quantification, and

Differential Gene Expression Analysis

FASTQC was used to evaluate the quality of the RNA-seq
raw data. R. solanacearum reads were identified from total
infected root sequences using Bowtie2 (version 2.2.6; Langmead
and Salzberg, 2012) as described in the results section. The
completely sequenced genome of strain UY031 (Guarischi-
Sousa et al., 2016) was used as reference. For identification of
R. solanacearum reads, the Burrows-Wheeler Alignment (BWA)
tool was initially used. However, a high number of reads
from mock-inoculated control samples mapped to the bacterial
genome (Table 1). Visual evaluation of these mapped reads using
the Integrative Genomics Viewer (IGV) tool (Robinson et al.,
2011; Thorvaldsdottir et al., 2013) showed that most contained
mismatches to the R. solanacearum genome sequence, indicating
that they likely belonged to contaminating bacteria. BWA was
thus assayed with more stringent parameters (-B 20-O 30-E 5-
U 85), to increase penalties for mismatches, gap openings, gap
extension, and unpaired read pairs, resulting in a reduction of
only half of the reads mapping to the genome. Finally, Bowtie2
was assayed, once more using stringent parameters to penalize
mismatches and gaps (-mp 30-rdg 25,15-rfg 25,15). In this
case, mapped reads levels in mock-inoculated plants could be
considered background compared to the high read numbers from
inoculated samples, thus, Bowtie2 was finally used in all samples
analyzed, including RNA-seq reads coming from in vitro grown
bacteria (Table 1). Alignments were summarized by genes on
counting tables using HTSeq-count (version 0.6.1 pl; Anders
et al., 2015) and NCBTI’s reference annotation (genome features

were extracted from NCBI’s RefSeq sequences NZ_CP012687.1
and NZ_CP012688.1); alignments with quality lower than 10
were discarded. Differential expression (DE) analysis was carried
out with the DESeq2 (version 1.12.3; Love et al., 2014) package in
R (version 3.3.2). Benjamini-Hochberg procedure was used for
multiple testing corrections. Genes with log, (fold-change) >0.5
and g < 0.01 were considered as differentially expressed. We used
these thresholds to select for relevant and robust differentially
expressed genes. Final annotation of the genome was defined
based on the NCBI gene locus and the gene name and description
of the reference R. solanacearum GMI1000 genome annotation
(Supplementary Table 1).

Homology Analysis

get_homologs  (version  2.0;  Contreras-Moreira  and
Vinuesa, 2013) was used for searching R. solanacearum
UY031 homologous genes on R. solanacearum GMI1000,
R. solanacearum IPO1609 and R. solanacearum UW551 strains
as well as in Pseudomonas syringae pv. syringae B728a; NCBI
RefSeq sequences GCF_001299555.1, GCF_000009125.1,
GCF_001050995.1, GCF_000167955.1, and GCF_000012245.1,
respectively. Default algorithm of bidirectional best-hits was
used on homologous genes search.

Functional Categories

R. solanacearum UYO031’s genes were functionally categorized
using two different strategies. Firstly, functional categories from
Pseudomonas syringae pv. syringae B728a as defined by Yu
et al. (2013), were translated to R. solanacearum UY031 based
on homology information between the two strains. Although
the P. syringae-derived categories should be more specific and
accurate for another bacterial plant pathogen, almost 70% of
the R. solanacearum UY031 genes could not be classified using
this method. Therefore, a second strategy based on Clusters of

TABLE 1 | Number and percentage of aligned reads to the R. solanacearum UY031 genome from mock-inoculated (Control) and inoculated Solanum

commersonii accessions.

BWA?2 BWA?stringentb Bowtie2_stringent

Condition® Replica Total reads Reads % Reads % Reads %
Resistant mock-inoculated 1 83867508 110859 0.1 66083 0.1 601 0.0
2 88913944 42040 0.0 25296 0.0 771 0.0

Resistant infected 1 71855042 348369 0.5 330968 0.5 290036 0.4
2 96470501 943974 1.0 924297 1.0 879112 0.9

3 23473454 249285 11 234153 1.0 183728 0.8

Susceptible mock-inoculated 1 100234418 70173 0.1 40797 0.0 300 0.0
2 27594608 15060 0.1 8889 0.0 137 0.0

Susceptible infected 1 75368620 249382 0.3 232550 0.3 211561 0.3
2 93023963 2103356 2.3 2010284 2.2 1867585 2.0

3 24695183 518872 21 484873 2.0 410525 1.7

aBurrows-Wheeler Alignment.
bBurrows-Wheeler Alignment using stringent parameters as described in methods.
¢Samples from Zuluaga, Solé, Lu, BMC Genomics, 2015.
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Orthologous Groups (COG) categories was applied. Genome
features were extracted from NCBI’s RefSeq annotation and
cdd2cog.pl script (version 0.1; Leimbach, 2016) was used to
assign COG IDs and functional categories to the differentially
expressed genes (Supplementary Table 1).

RESULTS

Obtaining R. solanacearum Sequences

from Infected Root Tissues

cDNA libraries from rRNA-depleted RNAs isolated from
S. commersonii roots inoculated with R. solanacearum were
sequenced using Illumina technology as previously reported
(Zuluaga et al., 2015). To generate the transcriptomic profile
of the bacteria growing inside root tissues, R. solanacearum
UY031 sequences were obtained following the pipeline detailed
in Figure 1. First, reads from mock-inoculated plants were used
as a control to determine the best alignment tool to map against
the R. solanacearum UY031 reference genome (Guarischi-Sousa
et al., 2016; see material and methods). The Bowtie2 alignment
tool with stringent parameters was used, as it retained a number
of R. solanacearum reads in mock-inoculated plants that could

be considered background levels compared to the high read
numbers from inoculated samples (Table 1). All samples were
analyzed with Bowtie2, including RNA-seq reads coming from
in vitro grown bacteria. We determined that around 1% of
the total sequenced reads from plant tissues corresponded to
R. solanacearum and these were retained for further analyses.
S. commersonnii sequences accounted on average for 63.15% of
the total reads sequenced and the remaining reads corresponded
mostly to contamination by other bacterial endophytes. The
retrieved bacterial sequences were quantified and differentially
expressed (DE) genes comparing the different conditions were
determined. Total RNAs from infected S. commersonii enabled
transcript quantification for over 96% of R. solanacearum UY031
predicted genes (4,609 out of the 4,778; Guarischi-Sousa et al.,
2016).

Similar R. solanacearum Genes Are
Differentially Expressed upon Infection of
Resistant and Susceptible S. commersonii

Plants
In order to compare the R. solanacearum gene expression
patterns during infection of resistant and susceptible wild potato

Solanum commersonii
Infected and mock-inoculated

Resistant

Susceptible

Ribo-zero
Reads

(fastq)

I

\

£
RNAseq

Solid rich B medium

Ralstonia solanacearum UY031

UYO031’s UYO031’s
genome annotation
(fasta) (gff)

Mapping

evaluation

Alignments
(bam)

1

——~ | Count —— | DE genes
table

FIGURE 1 | Workflow of the transcriptomic analysis. RNAseq was carried out from roots of infected and mock-inoculated Solanum commersonii resistant and
susceptible varieties and from bacteria grown in solid rich B medium. Three biological replicates were used for each condition. Total extracted RNAs were treated with
Ribo-zero to remove rRNA and sequenced using lllumina technology. Raw reads were aligned against the R. solanacearum UY031 genome using different alignment
tools and mapping was visually evaluated with the IGV Browser. Mapped reads were quantified using count tables and differential expression (DE) analysis was
carried out.

Frontiers in Plant Science | www.frontiersin.org 4 March 2017 | Volume 8 | Article 370


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Puigvert et al.

R. solanacearum Transcriptome Inside Wild Potato

plants, we analyzed separately the bacterial reads obtained from
infected S. commersonii accessions F118 and F97, respectively.
Surprisingly, only two out of the 4,609 genes for which
expression was detected showed differential expression between
the two genotypes. The differentially-expressed (DE) genes,
RSUY_RS08455, and RSUY_RS16950, were both up-regulated
in bacteria grown inside the resistant accession (Table 2). The
first gene corresponds to an uncharacterized member of the
MarR transcriptional regulator family, while the second encodes
a hypothetical protein.

Since R. solanacearum showed extremely similar (>99.9%)
transcriptional ~ behavior during interaction with both
S. commersonii accessions, bacterial reads from both accessions
were treated as biological replicates in the rest of this study.

R. solanacearum Activates Stress-Related
Genes and Shuts Down Metabolic

Activities during Early Root Colonization

The R. solanacearum in planta gene expression dataset was
compared to a reference condition consisting of bacteria grown
on solid rich B medium. Bacteria grown on solid medium
were used as the reference condition instead of liquid cultures.
R. solanacearum colonies grown on solid media better mimic the
biofilms and microcolonies formed by R. solanacearum during
early infection, when most bacteria occupy plant intercellular
spaces (Mori et al., 2016). A total of 422 genes were differentially
expressed during pre-symptomatic infection (231 up-regulated
and 191 down-regulated), compared to growth on rich medium
(Supplementary Table 2). These DE genes were classified into the
functional categories previously used for gene expression studies
in the plant pathogenic bacterium P. syringae (Yu et al., 2013;
Supplementary Table 3). The number of successfully classified
genes in each category was quantified in differentially induced
or repressed groups and in the whole genome as a reference
(Figure 2). This analysis revealed four categories highly over-
represented in the up-regulated genes and under-represented
in down-regulated genes: stress, secretion, chemosensing, and
motility and phage and insertion sequences (IS). These categories
represent together approximately 20% of the total induced genes
in planta. The opposite trend (under-representation in up-
regulated and over-representation in down-regulated genes) is
observed in the categories including genes for transport and
metabolism of amino acids and carbohydrates. In addition,
the categories replication and DNA repair, transport, fatty
acid metabolism and cofactor metabolism are strongly under-
represented amongst the up-regulated genes in planta (Figure 2).

We used the P. syringae categories because they were created
to describe the genes of a bacterial plant pathogen and are
thus very informative for this study. However, the same analysis
was carried out using the widely used but more general
COG categories, and the results confirmed the previously-
described tendencies (Supplementary Figure 1). Genes involved
in carbohydrate, amino acid, lipid, cofactor, and secondary
metabolism were over-represented among those down-regulated
in planta. A clear enrichment of replication, cell motility and
recombination and repair (where IS elements are included)
was observed in the up-regulated genes. Interestingly, a clear
asymmetry was seen for unclassified genes in this case, for they
represent 40% of the up-regulated but only 7% of the down-
regulated genes.

Closer scrutiny of the up-regulated genes in the plant revealed
that the category secretion included 11 genes encoding the T3SS
and its associated effectors and four chemosensing and motility
genes, coding for pilus assembly and flagellum transcriptional
activators (Table 3).

Taken together, these results show a major induction of stress-
related activities and an inhibition of the central metabolism
when the bacterium grows in planta compared to synthetic
media.

R. solanacearum Virulence Genes Are
Differentially Expressed in Wild Potato

Roots

Among the 422 genes DE during S. commersonii root
colonization, 34% (80 induced and 65 repressed genes) had
been identified in previous studies analyzing gene expression of
R. solanacearum cells recovered from infected plant stems (see
references below). Notably, 73 genes were also DE in microarray
analyses of R. solanacearum UW551 -a phylotype IIB strain
highly similar to UY031- isolated from tomato (Jacobs et al,
2012). Also, 42 genes have been shown to be induced in a
temperature-dependent manner when bacteria grew in tomato
xylem or rhizosphere (Bocsanczy et al., 2014; Meng et al., 2015).
In addition, 31 DE genes (most of them induced in planta) are
part of either the HrpB or HrpG regulons, which are known
to trigger expression of the T3SS and other virulence genes in
response to direct plant cell contact (Valls et al., 2006).

Amongst the R. solanacearum genes induced during plant
colonization, 31 encode already reported virulence traits
(Table 3). As expected, genes encoding the T3SS (hrpY, hrpX,
hrpK, hrcT) and some of its related effectors (ripV2, popC,
ripD, popF1, awr5_1, popB, and popA) were induced inside the

TABLE 2 | R. solanacearum UY031 genes differentially expressed in resistant vs. susceptible S. commersonii.

UY031 NCBI locus? UY031 Prokka locus? GMI1000 locus® Gene product LogoFC Adjusted p-value
RSUY_RS08455 RSUY_17320 RSc1295 MarR family transcriptional regulator 2.37 0.0004
RSUY_RS16950 RSUY_34650 RSp0403 hypothetical protein 2.53 0.0017

aAccording to R. solanacearum UY031 genome annotation available at GenBank (NCBI).

bAccording to R. solanacearum UY031 genome annotation from Guarischi-Sousa et al. (2016).

¢According to the homology Supplementary Table 1.
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% of genes

Up-regulated
mDown-regulated

= Genome

FIGURE 2 | Percentage of DE genes classified into Pseudomonas syringae-derived functional categories (Yu et al., 2013). Genes DE between growth in
planta vs. rich medium were classified according to the functional categories described for P syringae (Yu et al., 2013). Categories were grouped by function similarity
for better visualization (Supplementary Table 4). As a reference, functional category distribution considering all annotated genes in the UY031 genome is shown.

plant (Boucher et al., 1987; Cunnac et al.,, 2004). Motility and
adherence genes were also up-regulated, including type IV pili
(pilG, pilH, pilN, pilM, pilY, pilW, and fimV), as well as the
transcriptional activators of the flagellum genes fIhC and flhD
(Kang et al., 2002; Tans-Kersten et al., 2004). Other induced genes
encoding described factors that are key for bacterial virulence
included hdfA (Delaspre et al., 2007), efe (Valls et al., 2006),
metE (Plener et al.,, 2012), and rpoNI (Lundgren et al., 2015;
Ray et al., 2015; Table 3). Peroxidases, catalases (katE, katG)
and alkyl hydroperoxide reductases (ahpCl, ahpF), which have
been described to combat the oxidative stress response during
plant infection (Rocha and Smith, 1999; Flores-Cruz and Allen,
2009; Ailloud et al., 2016) were also induced. Similarly, the
flavohemoprotein hmpX, involved in NO-detoxification (Dalsing
and Allen, 2014), was also induced.

In contrast, only 10 reported virulence determinants were
down-regulated, including the type III effectors ripQ, ripS2,
and ripTPS, the quorum sensing regulator soll (Flavier et al.,
1997) and the Type II secretion system genes gspE, gsp/
(Table 3).

R. solanacearum Genes for Plant
Colonization Are Differentially Expressed in

S. commersonii Roots

Thirty-six R. solanacearum genes previously described as related
to plant colonization in gene expression studies in other plant
species were also induced in potato. Few metabolic genes were
induced in planta, being an exception nadB2, involved in the
degradation of L-aspartate in the xylem (Brown and Allen, 2004)
and the ptsN and narL nitrogen metabolism genes, known to

be active during plant colonization (Dalsing and Allen, 2014;
Dalsing et al., 2015; Table 3).

Amongst the down-regulated genes, 42 had also been
described as specifically down-regulated during plant
colonization (Jacobs et al, 2012). Most repressed genes
encoded metabolic enzymes and transporters. Examples are
the xylose transporters xylF, xyIG, and xylH, glycine catabolism
genes gcvP, gevT, and gevA, the adenilate cyclase coding gene
RSUY_RS02845, four siderophore biosynthesis genes and 11
genes involved in amino acid metabolism (Table 3). Also, the
stress response gene speE2 and five transcriptional and response
regulators were repressed in planta.

Novel Putative Virulence Genes and
Metabolic Traits Involved in Early Stages of

Wild Potato Infection by R. solanacearum
Transcriptomic analysis of S. commersoni early root infection
revealed highly induced R. solanacearum virulence factors still
uncharacterized in this pathogen that may play a role at this
stage of the interaction with the host. An example of this is
suhB, a global virulence regulator controlling the type III and
type VI secretion systems, flagellum biosynthesis, and biofilm
formation in the human pathogens Burkholderia cenocepacia and
Pseudomonas aeruginosa (Rosales-Reyes et al., 2012; Li et al,
2013). Similarly, a P. aeruginosa orthologue of the in planta
induced type IV secretion gene Rhs has been described as a
virulence determinant (Kung et al., 2012).

Metabolic traits that might be key at this point of plant
infection are the assimilatory sulfate reduction pathway and
phosphate mobilization, since cysD, cysN, and cysI (sulfate
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reduction) and pstB and pstSI (phosphate mobilization)
were induced during S. commersonii root infection. Also,
% carbonic anhydrase (RSUY_RS16085), which plays a role in
< disease establishment between potato and Phytophthora infestans
[0}
5 (Restrepo et al., 2005), was also found to be up-regulated in the
s = p p-reg
o £ R. solanacearum interaction with wild potato.
- 2 o The most important category amongst the R. solanacearum
= 9 2 . o2 .
2 < woo g & F genes down-regulated in S. commersonii with so far no assigned
D O = = .
3 35 333 5 g g functions in plant colonization or virulence was metabolite
= g ggog
g 2 € % £21 3 k transporters. Almost half of these corresponded to the ABC-
= %] = = f- .
230 s £ 8% 28 < family, including five amino acid transporters. In contrast, the
Ire ) = > © . .1 .
3 8% o EE22| 2% g seven major facilitator superfami ransporters foun
5 5% EL22/ 38 3 facilitat family (MFS) t ters found
12BR7) 8 a8 0 g O c £ c ) p y p
552 c S?7EE£8 838 in this category are involved with carbohydrate transport.
EE588| SO S c 2 gory Y p
812238 & . S8 E é g é.(? The rest of genes were classified as permeases or RND
BT  28%20| £8a0S3 36 (Resistance-Nodulation-Division) efflux systems (Table 3). The
1 88355 BotftET| ®E T Y
S 9233 S EE % S 53 5§ major metabolic activities identified as repressed in planta for the
s & ¢ IS S 9% g . - e .
& 555 § e gL o8¢ first time were lipid mobilization and cofactor metabolism, such
%
(G] n D == & © a o< 5 £ o . C . . . ,
as the anaerobic cobalamin biosynthesis operon (cbiA, cbiG, and
E cbiL), and stress-response genes such as rfcA and rtcR, involved
<4 in RNA repair (Das and Shuman, 2013).
c
€1 %% T2 0 Qg In sum, our work reflects important gene expression changes
8 8%, =888 &3 %8 between parasitic life and growth in rich medium (see below).
o This was corroborated by the fact that seven genes annotated
'-'é ¥ 33 § 3 'i E é % 5389 as response regulators were also DE, five of them induced
a - - — - = le 3
3 i N (Table 3).
o
[}
3
3 DISCUSSION
o
1= N - O @ ~ 0 - O M D 9 o .
S 93980 55838 |8¢8 Some R. solanacearum Virulence and
2 3838 $992% 8383 Stress-Responsive Genes are Induced
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Several transposable elements had been identified in an in vivo
screening for genes expressed during R. solanacearum growth
in tomato plants (Brown and Allen, 2004), and we found 16
transposases up-regulated in potato (Table 3). This may reflect
common stressing conditions in various plant hosts, as stress
is known to turn on transcription of transposable elements in
various organisms (Capy et al., 2000). Oxidative stress seems also
a condition generally encountered by R. solanacearum in plant
tissues, as peroxidases, catalases, and peroxiredoxins, required for
the bacterium to combat this stress in different plants (Rocha and
Smith, 1999; Flores-Cruz and Allen, 2009; Ailloud et al., 2016),
were also induced in potato.

Changes in the Host Environment and/or
the Disease Stage May Account for
Opposing Bacterial Virulence Gene

Expression in Different Plants

Some of the R. solanacearum virulence genes DE in potato
showed opposite trends in other host plants. ripQ and ripS2,
two of the three type III secreted effectors inhibited in potato
were, respectively, upregulated and not DE in melon, tomato
and banana (Ailloud et al, 2016). Interestingly, these two
downregulated effectors, together with the also repressed stress
response gene speE2, are located in a genomic region that is
deleted in the avirulent R. solanacearum strain UY043 (Siri et al.,
2014), which suggests their involvement in bacterial virulence.
Similarly, the effector awr5_1I, which was described to trigger
hypersensitive response (HR) in tobacco and to inhibit the TOR
pathway (Sole et al., 2012; Popa et al., 2016b), showed opposite
regulation in potato when compared to tomato and melon
(Ailloud et al., 2016), suggesting that it may play host-specific
roles. Similarly, genes pilG, pilH, pilN, pilM, pilY, and pilW,
coding for structural components of the type IV pili involved in
twitching motility and adherence (Liu et al., 2001; Kang et al.,
2002) were induced in the current work but repressed in other
plant species (Jacobs et al., 2012).

In addition, some virulence determinants well-described as
induced during growth in planta were repressed or not DE
in potato. Remarkably, the exopolysaccharide synthesis and
regulation genes (eps) as well as most known cell wall degrading
enzymes (pehA, pehB, pehC, egl, and cbhA), which are virulence
determinants (Schell, 2000) induced during tomato infection
(UW0551 strain) infection (Jacobs et al., 2012) were absent from
the potato DE dataset.

Differences in the host environment or in the tissue
environment and disease stage are the two most plausible reasons
for the discrepancies between virulence gene expression data in
potato and in other plant hosts. We favor the latter explanation,
as our samples were collected from bacteria growing in the root
(including apoplastic and xylematic bacteria) at early times after
inoculation while all previous transcriptomic work had been
performed from bacteria extracted from xylem at later infection
stages.

Three independent observations support the existence of
stage-specific environmental cues that differentially affect gene
expression in this work compared to previous studies. First, genes

that are induced at high bacterial densities are absent from the
potato DE genes. Examples are the mentioned exopolysaccharide
synthesis genes or the quorum sensing regulator soll, repressed
in our conditions but slightly induced in bacteria isolated from
the tomato shoot xylem (Jacobs et al., 2012). In the low bacterial
cell densities in the roots the phcA cell-density regulator was
not induced, impeding soll or eps expression (Huang et al,
1995; Flavier et al., 1997). Second, three out of the six type III
effectors that are induced in potato were described as secreted
at early stages (Lonjon et al., 2016), two of them (popFI and
popA) also proposed to play an important role in the first steps
of infection (Kanda et al., 2003). On the contrary, only two out
of the 38 described as “late” effectors (ripD and popC) were
induced in our root transcriptome. Third, the afore-mentioned
transcriptional regulators flhC and flhD responsible for the
activation of the flagellum genes were up-regulated in potato root
samples (Table 3) and also in the tomato xylem (Jacobs et al.,
2012), but only in the latter were the flagellum structural genes
induced, suggesting that the potato transcriptome represents an
earlier stage where complete activation of this regulon has not
yet occurred. These observations imply that our transcriptome
represents a snapshot of a precise stage of the genetic programs
deployed consecutively during plant colonization.

Finally, we cannot rule out that changes in R. solanacearum
DE genes in different studies are due to the use of different
strains. Differing transcriptomes of two R. solanacearum strains
in the same plant environment have already been reported
(Ailloud et al, 2016). However, the fact that previous gene
expression studies were performed with strain UW551, which
is genetically extremely close to UY031 used here, render this
explanation unlikely. Standardization of the plant inoculation
and sampling procedures and a systematic analysis of plant-
pathogen interactions dissecting gene expression over time in a
defined strain-host pathosystem would clarify the nature of the
observed discrepancies between transcriptomic studies.

The R. solanacearum Metabolic State

during Potato Root Colonization

From the transcriptomic information gathered in this work,
we can infer for the first time the environmental conditions
encountered by R. solanacearum in the root, the site where plant
infection takes place.

A first observation is that the bacterium seems to start to
run out of O,. An indication of this is the highly induced
Cbb3-cco, a high affinity cytochrome c oxidase known to
contribute to the growth of R. solanacearum and other bacteria
in microaerobic or anoxic environments (Colburn-Clifford and
Allen, 2010; Hamada et al., 2014), such as the plant xylem
(Pegg, 1985). Upregulation of the low O, affinity cytochrome
ubiquinol oxidase genes cyoAI and cyoBI reinforces the notion of
a microaerobic rather than an anoxic environment. In agreement
with this, nrdB, which is required for growth in aerobiosis
(Casado et al., 1991), was up-regulated, and nrdG and nrdD,
required in strict anaerobiosis (Garriga et al., 1996; Ailloud
et al,, 2016) were not induced. Further, the cbiA, cbil, and
cbiG genes, which are involved in anaerobic cobalamin synthesis

Frontiers in Plant Science | www.frontiersin.org

13

March 2017 | Volume 8 | Article 370


http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

Puigvert et al.

R. solanacearum Transcriptome Inside Wild Potato

(Roessner and Scott, 2006), were repressed. Another indication of
microaerobic conditions is the induction of genes driving nitrate
and sulfate anaerobic respiration. Examples are the cys genes,
involved in the assimilatory sulfate reduction pathway (Kredich,
1992), ptsN—a nitrogen-dependent regulatory protein, rpoNI,
-the global nitrogen regulator- and narL -the nitrate/nitrite-
responsive transcriptional regulator- were all induced in wild
potato roots. All these findings suggest that during early root
infection R. solanacearum is experiencing the transition from an
aerobic environment to the anaerobic conditions established at
the onset of disease during xylem colonization (Ailloud et al.,
2016).

Another take home message from the root transcriptomes
is that few central metabolic pathways seem to be active.
It was previously described that a large proportion of the
R. solanacearum genes involved in amino acid metabolism
and transport was down-regulated during growth in the xylem
(Ailloud et al., 2016) and we found that this was also the
case during growth in the root tissues at early stages of
infection. For instance, the glycine catabolism genes gcvP,
gevT, and gevA as well as the dipeptide uptake gene dppDI
were repressed in both cases (Table 3; Ailloud et al, 2016).
Other R. solanacearum metabolic genes previously known to
be repressed in planta also down-regulated here included
carbohydrate metabolism genes such as the xylose transporter
operon xylFGH and Glucosamine 6-phosphate synthetase, the
key enzyme controlling amino sugar biosynthesis (Milewski,
2002; Jacobs et al,, 2012). Lipid metabolism was also strikingly
repressed during root colonization. Out of the 21 DE genes
involved in lipid mobilization, only 2 have been found in previous
gene expression studies in R. solanacearum (Table 3; Jacobs et al.,
2012). Thus, the downregulation of lipid metabolism could be
specific to early infection stages or to wild potato colonization.
In this sense, lipid metabolism has been reported to play an
important role during plant-host interactions by modulating
defense responses in plants and pathogen infection (Casadevall
and Pirofski, 2001; Wenk, 2006). Cofactor metabolism was also
repressed including the folate synthesis gene pabB (Table 3),
already known to be down-regulated in planta (Shinohara et al.,
2005), the cobalamin biosynthesis genes and adenilate cyclase.
Repression of adenylate cyclase, which is a global metabolic
regulator in bacteria (Ullmann and Danchin, 1980), illustrates
the magnitude of the metabolic shutdown experienced by
R. solanacearum in the roots of S. commersonii.

In contrast with the global metabolic shutdown, aspartate
and tryptophan catabolism genes were up-regulated when
R. solanacearum grew in the plant roots. The aspartate catabolism
gene nadB2 had already been identified as an essential gene for in
planta growth in an in vivo screening (Brown and Allen, 2004).
Interestingly, aspartate is the second most abundant aminoacid in
the tomato apoplast and less so in the xylem (Zuluaga et al., 2013),
which is in agreement with the bacterium mostly thriving in the
apoplastic root spaces at the early infection times analyzed. Also
induced was the Tryptophan 2,3-dioxygenase. Concentrations
of this aminoacid are high at lateral root emergence sites
(Jaeger et al, 1999), and it was suggested that it is also
present in the tomato apoplast (Yu et al., 2013). Induction of

tryptophan catabolism would thus be indicative of early plant
colonization.

These results likely indicate the existence of a trade-off
between the expression of virulence and metabolic genes.
This has already been described in a previous study where
the quorum-sensing-dependent regulatory protein PhcA
regulated a trade-off between production of R. solanacearum
exopolysaccharides and bacterial proliferation (Peyraud et al.,
2016).

Proposed New Virulence Determinants

Important for Early Root Colonization
RSUY_RS08455 and RSUY_RS16950 were found to be
upregulated in a resistant S. commersonii accession compared to
a susceptible one (Table 2), as well as during root colonization
compared to rich medium (Table 3). Although these genes also
appeared in the microarray transcriptome of bacteria extracted
from infected tomato xylem vessels (Jacobs et al., 2012), they
have not been characterized.

Similarly, the gene encoding an avrD-like protein was up-
regulated in tomato xylem (Jacobs et al, 2012) and in wild
potato (Table 3). AvrD is required in P. syringae for the synthesis
of syringolide, small molecules that can elicit a hypersensitive
response on resistant plants (Keen et al, 1990; Mucyn et al.,
2014). In R. solanacearum the avrD-like protein encoding gene
is activated by the master virulence regulator HrpG (Valls et al.,
2006). Considering the persistence of these three genes among
the up-regulated during plant colonization, we suggest that
they encode for potential virulence factors, probably necessary
independently of the host or the infection stage.

Three genes found up-regulated in S. commersonii (suhB,
rhs and the carbonic anhydrase gene RSUY_RS16085, Table 3)
have been involved in bacterial virulence on animals and
constitute putative virulence genes in R. solanacearum. Although
classified as a phosphate mobilization gene (Table 3), suhB
is a super-regulator involved in the proper rRNA folding
(Singh et al., 2016). It plays a role in virulence of animal
bacterial pathogens, influencing T3SS, T6SS, flagellum and
biofilm regulation and probably acts in opposite ways in
different bacteria (Rosales-Reyes et al.,, 2012; Li et al.,, 2013).
Interestingly, SuhB differential expression was also observed
in two R. solanacearum strains (Meng et al, 2015). The
function of Rhs (Rearrangement Hot Spot) proteins is ill-
defined but they are considered to promote recombination
(Lin et al, 1984). Interestingly, a member of the Rhs family
was described to be induced during infection and associated
with increased bacterial numbers and decreased survival in
mice during pneumonia caused by P. aeruginosa (Kung et al.,
2012). Finally, carbonic anhydrase catalyzes the inter-conversion
between carbon dioxide and bicarbonate but is also required for
growth of many animal pathogenic microorganisms (Capasso
and Supuran, 2015). In addition, a role in disease establishment
between potato and Phytophthora infestans was also reported
(Restrepo et al., 2005), suggesting the possible implication of
CAs during host colonization. These evidences suggest that suhB,
rhs, and RSUY_RS16085 encode putative virulence factors shared
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between gram-negative bacterial pathogens that infect animals
and plants.

The assimilatory sulfate reduction pathway (cysD, cysN, and
cysl) and the phosphate mobilization (pstB and pstSI) were
also induced during root colonization (Table 3). cysD and cysN,
encode an ATP sulfurylase that produces APS, which can be
in turn reduced to PAPS to ultimately synthesize cysteine by
cysl. A study carried out in a closely related plant pathogenic
bacterium, Xanthomonas oryzae pv. Oryzae, was demonstrated
that mutation of either raxP or raxQ (homologs of cysD and
cysN) impaired production of APS and PAPS and were required
for the correct activity of the avirulence protein AvrXa2l (Shen
etal., 2002). Further, several studies demonstrated that mutations
on the pst system, responsible for phosphate uptake, affected
virulence in diverse animal pathogenic bacteria (Rao et al., 2004;
Lamarche et al., 2005, 2008). Altogether, these studies suggest
that both systems might be regulators of bacterial pathogenicity,
which could also be conserved in plant pathogens.

Finally, the rtcA and its regulator rtcR are down-regulated in
planta (Table 3). The rtc system is involved in the regulation of
the RNA repair system for ribosome homeostasis through the
activation of rtcR by different agents and genetic lesions which
in turn activates the rtcAB genes (Das and Shuman, 2013). The
rtc system was also involved in the functioning of chemotaxis
and motility in Escherichia coli (Engl et al., 2016), as mutations
in either rtcA or rtcB increased motility. Since rtc acts a repressor
of motility, its down-regulation in S. commersonii colonization
could influence bacterial motility, a key virulence determinant.
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