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Species delimitation in tree species is notoriously challenging due to shared

polymorphisms among species. An integrative survey that considers multiple operational

criteria is a possible solution, and we aimed to test it in a species complex of aspens in

China. Genetic [four chloroplast DNA (cpDNA) fragments and 14 nuclear microsatellite

loci (nSSR)] and morphological variations were collected for 76 populations and 53

populations, respectively, covering the major geographic distribution of the Populus

davidiana-rotundifolia complex. Bayesian clustering, analysis of molecular variance

(AMOVA), Principle Coordinate Analysis (PCoA), ecological niche modeling (ENM),

and gene flow (migrants per generation), were employed to detect and test genetic

clustering, morphological and habitat differentiation, and gene flow between/among

putative species. The nSSR data and ENM suggested that there are two separately

evolving meta-population lineages that correspond to P. davidiana (pd) and P. rotundifolia

(pr). Furthermore, several lines of evidence supported a subdivision of P. davidiana

into Northeastern (NEC) and Central-North (CNC) groups, yet they are still functioning

as one species. CpDNA data revealed that five haplotype clades formed a pattern

of [pdNEC, ((pdCNC, pr), (pdCNC, pr))], but most haplotypes are species-specific.

Meanwhile, PCA based on morphology suggested a closer relationship between the

CNC group (P. davidiana) and P. rontundifolia. Discrepancy of nSSR and ENM vs. cpDNA

and morphology could have reflected a complex lineage divergence and convergence

history. P. davidiana and P. rotundifolia can be regarded as a recently diverged species

pair that experienced parapatric speciation due to ecological differentiation in the face of

gene flow. Our findings highlight the importance of integrative surveys at population level,

as we have undertaken, is an important approach to detect the boundary of a group of

species that have experienced complex evolutionary history.

Keywords: coalescent-based approach, ecological differentiation, gene flow, microsatellite, morphometric

analysis, Populus davidiana, Populus rotundifolia

INTRODUCTION

Species is a fundamental unit of biology, but there has been much debate about how to
define species (e.g., Sites and Marshall, 2003; De Queiroz, 2007). During the last decade, great
efforts have been made to delimit plant species based on DNA sequence variation (Kress et al.,
2005; China Plant BOL Group et al., 2011; CBOL Plant Working Group et al., 2009), yet
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species delimitation between closely related plant species remains
a challenge (Naciri and Linder, 2015). Speciation is a temporally
extended process, typically requiring millions of years before
total reproductive isolation is achieved (Coyne and Orr, 2004;
Seehausen et al., 2014). During speciation, divergence does not
happen at an even rate across the genome, because of selection,
genetic drift, reinforcement (if sympatric), and varying mutation
rates between DNA regions (Noor and Feder, 2006; Nosil et al.,
2009; Nosil and Feder, 2012; Abbott et al., 2013).

Of particular concern to efforts to delimit plant species based
on DNA markers is lineage sorting (Naciri and Linder, 2015).
Lineage sorting ultimately renders diverging species reciprocally
monophyletic for genetic markers, but until this process is
completed, one or both species may appear non-monophyletic
for some DNA markers, even if they have achieved complete
reproductive isolation (Shaffer and Thomson, 2007; Freeland
et al., 2011).

Species need not be completely reproductively isolated,
provided there is some ecological separation (Feder et al., 2012);
indeed a unifying concept defining species as separately evolving
meta-population lineages is now widely accepted (De Queiroz,
2007; Fujita et al., 2012; Su et al., 2015). Hence interspecific
gene flow (i.e., introgression) can, like incomplete lineage sorting,
also lead to shared polymorphisms between closely related
species (Degnan and Rosenberg, 2009). Given that ecological
niches commonly overlap within plants, there is no single
operational criterion that can consistently reveal true boundaries
between closely related species (Givnish, 2010). A potential
solution to this is to simultaneously evaluate multiple operational
criteria, for example reciprocally monophyletic haplotypes or
genotypes, reproductive isolation, ecological divergence, and
distinct morphology (De Queiroz, 2007; Bond and Stockman,
2008; Fujita et al., 2012; Su et al., 2015); boundaries between
species will be found where these criteria are largely in agreement
(e.g., Leaché et al., 2009; Satler et al., 2013; Su et al., 2015).

For trees, species delimitation is notoriously difficult. Factors
such as long generation time and large effective population
sizes may slow down lineage sorting (Rosenberg, 2003; Daïnou
et al., 2014), and this plus frequent introgression increases the
chance of shared polymorphisms of markers or traits (Freeland
et al., 2011; Jones et al., 2013). High levels of intraspecific
morphological variation may further obscure species boundaries,
e.g., in Abies, Eucalyptus, Picea, Pinus, and Populus (Wang et al.,
2011a; Feng et al., 2013; Hernández-León et al., 2013; Jones et al.,
2013; Sun et al., 2014).

The genus Populus L. (Poplars, Salicaceae) is widely
distributed in the Northern Hemisphere (Bradshaw et al., 2000;
Hamzeh and Dayanandan, 2004; Cervera et al., 2005), and
plays an important ecological role in boreal and temperate
forests, serving as wildlife habitats and watersheds; they
can dominate riparian forests, but are ecologically adaptable
(Braatne et al., 1992; Dickmann, 2001). In addition, they are
widely cultivated for their wood (Dickmann and Stuart, 1983;
Stettler et al., 1996; Heilman, 1999). However, due to high
levels of morphological variation and extensive interspecific
hybridization, species delimitation within Populus is highly
contentious (Eckenwalder, 1996; Hamzeh and Dayanandan,

2004; Fladung and Buschbom, 2009; Schroeder et al., 2012).
The number of proposed species in Populus has ranged from
22 to 85, plus hundreds of hybrids, varieties and cultivars
(Eckenwalder, 1977, 1996; Dickmann and Stuart, 1983; Hamzeh
andDayanandan, 2004). Variousmarkers have been tested for use
in differentiating species, hybrids, and even clones of Populus,
i.e., nuclear DNA fragments, simple sequence repeats (SSRs),
amplified fragment-length polymorphisms (AFLPs), chloroplast
DNA fragments, and mitochondrial DNA fragments (Cervera
et al., 2005; Smulders et al., 2008; Feng et al., 2013; Wan
et al., 2013). Based on a sample of 95 individuals from 21
native Chinese Populus species, it was found that the sharing
of chloroplast haplotypes and nuclear genotypes among closely
related species is common (Feng et al., 2013). From this,
Populus in China might better be regarded as a series of species
complexes, i.e., groups of closely related species that are difficult
to differentiate and may still exchange some germplasm. Species
complexes could be separated from one another relatively easily
using sparse sampling and a universal DNA barcode, but species
delimitation within a species complex would require dense,
population-level sampling, and highly variable markers (Feng
et al., 2013).

The P. davidiana-rotundifolia complex, within section
Populus, comprises P. davidiana and P. rotundifolia (Fang
et al., 1999). Populus davidiana occurs in northern and central
parts of China, plus Mongolia, Korea, and the Far East of
Russia. Populus rotundifolia occurs in southwestern China,
specifically the southeastern Qinghai-Tibetan Plateau, the
Hengduan Mountains, and the Yunnan-Guizhou Plateau; also
Bhutan (Fang et al., 1999). Where allopatric, the two species
differ consistently in subtle morphological traits (see Table S1).
However, transitional morphological traits blur the distinction
between them where their ranges meet, i.e., the eastern Qinghai-
Tibetan Plateau to central China. Based on 14 individuals, these
two species together formed a monophyletic group for cpDNA
and were identical for nuclear ITS (Feng et al., 2013); they were
shown to be closely related to each other in phylogenetic and
population genetic studies (Wang Z. et al., 2014; Du et al., 2015).

In the current study, we sought to identify independent
evolutionary lineages within the P. davidiana-rotundifolia
complex. We surveyed and analyzed genetic variation of four
chloroplast DNA (cpDNA) regions and 14 nuclear microsatellite
loci (nSSR) for 375 individuals from 76 populations, and
conducted morphometric analyses of leaf traits for representative
populations across the distribution range of P. davidiana
and P. rotundifolia. Subsequently, Bayesian clustering of nSSR
genotypes were adopted to differentiate separate evolutionary
lineages, Principal Component Analysis (PCA) was used to
examine morphological variation across lineages, a maximum
likelihood model (MIGRATE) was employed to assess gene
flow between/among lineages, and ecological niche modeling
was conducted to quantify niche differentiation between/among
lineages. We aimed to address the following questions: (1) How
many species are there in the P. davidiana-rotundifolia complex
using an integrative survey, e.g., genetic variation, morphological
variation and ecological divergence? (2) What lineage separation
history has the species complex experienced?
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MATERIALS AND METHODS

Sample Collection
Populations of the Populus davidiana-rotundifolia complex were
sampled throughout its geographical distribution in China. We
sampled a total of 375 trees from 76 populations. From 3 to 5
trees at least 100m apart in each population, leaf samples were
taken and dried immediately in silica gel for DNA extraction.
No population was encountered that appeared to contain both
P. davidiana and P. rotundifolia. Latitude, longitude, and altitude
for each sampled population were recorded using an Etrex GIS
monitor (Garmin, Taiwan; Table S2; Figure 1).

DNA Isolation, PCR, Genotyping, and
Sequencing
Total genomic DNA was isolated from each individual using the
hexadecyltrimethyl ammonium bromide (CTAB) method (Doyle
and Doyle, 1987), following the modifications of Su et al. (2015).
The total genomic DNAwas then subject to nSSR genotyping and
cpDNA fragments sequencing. A total of 16 SSRs primers were
developed based on the genome sequences of Populus euphratica
Oliv. and P. trichocarpa Torr. using the MIcroSAtellite (MISA)
program (Thiel et al., 2003; Ma et al., 2013; Jiang et al., 2016);
these were used to genotype each individual (see Table S3A for
details of each SSR primer pair). The PCRs were performed in
a volume of 25 ml, which contained: 50–100 ng diluted genomic
DNA, 0.5mMof each dNTP, 0.5µl of each primer, 2.5µl 10×Taq

buffer and 0.5 unit of Taq polymerase (Vazyme Biotech, Nanjing,
China). The PCR program used was: initially a single cycle at
95◦C for 5 min, followed by 36 cycles at 95◦C for 45 s, 55◦C for
40 s, and 72◦C for 80 s, with a final extension at 72◦C for 10 min.
The PCR products were checked on 1% agarose gels and sent to
Honor Tech (Beijing, China) for nSSR genotyping. Allele sizes for
each nSSR locus were analyzed with GeneMarker version 2.2.0
(Softgenetics, Pennsylvania, USA).

We also sequenced four chloroplast DNA (cpDNA)
fragments: matK, trnG-psbK, psbK-psbI, and ndhC-trnV,
for three individuals from each sampled population; in addition,
one individual of P. adenopoda was sequenced as outgroup.
Primers for the ndhC-trnV fragment were designed according to
the complete chloroplast genomes of P. rotundifolia (GenBank
accession number KX425853; Zheng et al., 2016) and P. alba
(GenBank accession number AP008956; Okumura et al., 2006;
Table S3B). Primers for the other cpDNA fragments were taken
from Feng et al. (2013) (Table S3B). Protocols for all cpDNA
PCRs followed Schroeder et al. (2012) and the China Plant BOL
Group et al. (2011). The PCR products were checked with 1%
agarose gels and sent to Tsingke Biological Technology (Beijing,
China) for DNA sequencing.

Nuclear Microsatellite Data: Genetic
Diversity and Population Structure
Steps were taken to minimize two types of potential error at
each nSSR locus. First, the effective allele sizes that are generated

FIGURE 1 | The sampling sites for the Populus davidiana-rotundifolia complex (small green circles) in China. Red triangles represent the five populations

from Korea (Lee et al., 2011) that were included in ecological niche modeling.
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by ABI sequencers may often be longer or shorter than the
true allele size. Therefore, we used the Program FlexiBin (Amos
et al., 2007) to automate the binning of nSSR alleles in order
to obtain accurate genotyping results. Second, null alleles are
alleles that fail to amplify in a PCR (Oddou-Muratorio et al.,
2009); these are common in microsatellites. The inclusion of null
alleles in population genetic analyses can lead to false results, e.g.,
an apparent excess of the proportion of homozygous genotypes
within a population as compared to the expected proportion
under Hardy–Weinberg equilibrium (Paetkau and Strobeck,
1995). Therefore, we checked for null alleles using CERVUS
version 3.0 (Kalinowski et al., 2007; http://www.fieldgenetics.
com). Two SSR loci that showed high null allele frequencies
(GCPM_126, PeuSSR_4817; p > 0.40; Dakin and Avise, 2004)
were excluded from all subsequent analyses.

Since all population genetic analyses will require a
delimitation of separate evolutionary lineages, we first conducted
a Bayesian clustering approach implemented in STRUCTURE
version 2.3.4 (Pritchard et al., 2000) to infer the number of
randomly mating groups in the P. davidiana-rotundifolia
complex. STRUCTURE simulations were run, using the
admixture model separately with each of correlated allele
frequencies and independent allele frequencies (Miao et al.,
2013; Havrdová et al., 2015; Zeng et al., 2015), under K-values
from 1 to 8. Each simulation had 20 independent repeats, and
comprised a burn-in of 500,000 steps followed by 1,500,000
MCMC (Monte Carlo Markov Chain) steps. The optimal value
of K was determined using the method of Pritchard et al. (2000)
and Evanno et al. (2005). To visualize the STRUCTURE output,
we used Structure Harvester (http://taylor0.biology.ucla.edu/
structureHarvester/; Earl and von Holdt, 2012). To cross-validate
the results of STRUCTURE, we also conducted a Principal
Coordinates Analysis (PCoA) on the nSSR data using GenAlEx
version 6.5 (Peakall and Smouse, 2012).

Having identified separate groupings, here termed
evolutionary lineages (i.e., potential species), using
STRUCTURE, we conducted a series analyses. Genetic diversity
indices were estimated in GenAlEx version 6.5 (Peakall
and Smouse, 2012), for each population in each presumed
evolutionary lineage across all SSR loci. For each nSSR locus,
descriptive statistics were assessed by estimating the average
number of alleles (Aa), effective number of alleles (Ae), observed
heterozygosity (Ho), expected heterozygosity (He), Shannon’s
information index (I) (Lewontin, 1972), Nei’s (1973) expected
heterozygosity, and F-statistics (Wright, 1965, 1978).

The distribution of genetic variation was examined using
analysis of molecular variance (AMOVA) as implemented in
ARLEQUIN version 3.0 (Excoffier et al., 2005), with significance
tests based on 1,000 permutations. Genetic variation was
hierarchically partitioned into three levels: among evolutionary
lineages, among populations within evolutionary lineage, and
within populations.

To test the significance of isolation by distance, we
performed a Mantel test on the matrix of genetic distances
and the matrix of geographical distances between populations
with 1,000 random permutations, using GenAlEx version 6.5
(Peakall and Smouse, 2012). This was done separately for each

evolutionary lineage, and for all samples grouped as one species
complex.

CpDNA Data: Genetic Variation and
Phylogeographic Structure
Sequences were edited and aligned with ClustalW in MEGA
5 (Tamura et al., 2011) with subsequent manual adjustments.
All sequences were then deposited in GenBank (Accession
Numbers: KY285968–KY285983, KY285946–KY285967).
Haplotypes and variable sites were identified in DnaSP v5
(Librado and Rozas, 2009), and indels were coded as single
binary characters using Gapcoder (Young and Healy, 2003).
Network version 4.2.0.1 (Bandelt et al., 1999) was then used
to construct the network of relationships between haplotypes
according to the median-joining model. Additionally, a
phylogenetic tree of haplotypes was constructed based on
cpDNA sequences using Bayesian method. Bayesian analysis
was conducted using the parallel version of MrBayes 3.2
(Ronquist et al., 2012). MrBayes was run for 10,000,000
generations, sampling and printing every 1,000 generations. Two
independent Markov chain Monte Carlo (MCMC) chains runs
with four chains (one cold and three hot) were conducted per
Bayesian analysis. Subsequently, genetic diversity was estimated,
including haplotype diversity (Hd) and nucleotide diversity
(πs) at the species and the population level respectively using
DNASP v5. Furthermore, using 1,000 permutations within
PERMUT (available at: http://www.pierroton.inra.fr/genetics/
labo/Software/PermutCpSSR) we estimated the population
differentiation coefficients GST and NST, the total genetic
diversity (HT), and average genetic diversity within population
(HS). A significantly larger NST than GST implies the presence
of significant phylogeographic structure (Pons and Petit, 1996).
Finally, a hierarchical analysis of genetic differentiation for
cpDNA was examined between and within the evolutionary
lineages by analysis of molecular variance (AMOVA) as
implemented in ARLEQUIN version 3.0 (Excoffier et al., 2005),
with significance tests based on 1,000 permutations.

Examination of Gene Flow between the
Two Evolutionary Lineages
Based on nSSR variation, cpDNA variation, and previous
phylogeographic hypotheses (Guo et al., 2014; Liu et al., 2014;
Bai et al., 2016), we divided populations of the species complex
into three range sectors to aid analysis: Southwestern China
(“SWC”, P1–P42), Central-North China (“CNC”, P43–P60), and
Northeastern China (“NEC”, P61–P76; Table S2; Figure 6B).
Historical gene flow among different evolutionary lineages
and range sectors of the P. davidiana-rotundifolia complex
was assessed using the software package MIGRATE version
3.2.6 (Beerli, 2006). The amount of immigrants received per
generation from neighboring populations and direction of gene
flow was estimated from the nSSR data by calculating mutation-
scaled effective population sizes (θ = 4Neµ) and mutation-
scaled migration rates (M = m/µ), under an assumption that
θ is variable between/among populations and M is symmetric
between any pair of populations. We adopted the mutation rate
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of 10−3 per gamete per generation in Populus (Lexer et al., 2005),
and applied the continuous Brownian motion model. We used
uniform priors for both effective population size (θ = 4Neµ) and
mutation-scaled migration (M =m/µ) with ranges (0, 0.05) and
(0, 5,000), respectively. The initial 100,000 steps were discarded
as burn-in, and followed by two long chains of 10,000,000 steps,
with sampling every 100 steps, under a constant mutation model.
After checking for data convergence from two parallel runs, we
estimated for each parameter the mode, mean, median, and 95%
highest posterior density (HPD) values. The MIGRATE analyses
were evaluated based on effective sampling size as well as the
posterior distribution of each parameter.

Ecological Niche Modeling
To determine the degree of ecological divergence between the
evolutionary lineages comprising the P. davidiana-rotundifolia
complex, we employed ecological niche modeling (ENM) to
predict their potential distribution at present, during the Middle
Holocene [MH, ca. 6,000 years ago (Kya) before present] and
the last glacial maximum (LGM, ca. 21 to 18 Kya before
present). To model the ecological niches of each evolutionary
lineage, the maximum entropy machine-learning algorithm was
implemented inMAXENT v3.3.3 software package (Phillips et al.,
2006; Pearson et al., 2007; Phillips and Dudík, 2008). All 76
locilities of occurence, from our field survey dataset (Table S2)
were assigned to lineages and range sectors according to our
DNA analyses, creating a subset of occurrence points for each
lineage and range sector. Because the northwestern part of the
range of the P. davidiana-rotundifolia complex contained only
one genealogical cluster from the STRUCTURE analysis when
K = 2, five additional records from Korea (Table S4; Lee et al.,
2011) were assumed to belong to this lineage, and used to provide
additional presence points for it.

For each of the three periods, 20 environmental variables
(altitude and 19 bioclimatic variables) were downloaded from
WorldClim database (Hijmans et al., 2005). Data layers were
of 2.5 arc-min spatial resolutions. To avoid contradiction
between different global climate models during theMH (CCSM4,
MIROC-ESM, MPI-ESM-P, and the other six models available
at the WorldClim database) and the LGM (CCSM4, MIROC-
ESM, MPI-ESM-P), we generated average-over-pixel bioclimatic
variables for these two periods using DIVA-GIS 7.5 (http://www.
diva-gis.org/; Hijmans et al., 2001). To reduce over-fitting of
ecological niche modeling, we conducted Pearson correlation for
environmental variables using the methods of Sheppard (2013).
Any environmental variable that possessed pairwise Pearson
correlation (with any other variable) greater than 0.75 with two or
more other environmental variables was excluded; this reduced
to 10 the number of environmental variables. These 10 (Table S5)
were used to model the distributional ranges of each evolutionary
lineage.

ENMs were constructed according to the present-day
environmental layers and then projected onto the MH and the
LGM periods. The maximum entropy model was simulated for
20 replicates, 80% of the distribution coordinates for training
and 20% for testing, and the maximum number of iterations was
set to 5,000. The “10 percentile presence” threshold was applied

because presence-only data were available. The output format
was set to be logistic, and for each grid cell the probability of
suitable environmental conditions may range from 0 to 1. DIVA-
GIS version 7.5 (Hijmans et al., 2001) was employed to draw the
graphics for the potential distributions of niche model for each
period.

To evaluate the performance of each niche model, the area
under the ROC curve (AUC) can quantify the ability of the model
to discriminate between sites with or without the presence of the
species in question (Peterson et al., 2008; Elith and Leathwick,
2009). AUC values range from 0 to 1, where a score of 1
indicates perfect discrimination, a score of 0.5 indicates that the
model performs no better than random, and scores above 0.7
are considered to indicate good model performance (Fielding
and Bell, 1997). We also performed a jackknife test to measure
the percent contributions of different environmental variables to
model simulations.

To measure niche differences between evolutionary lineages
or range sectors, we calculated Schoener’sD (Schoener, 1968) and
standardized Hellinger distance (calculated as I) in ENMTOOLS
version 1.3 (Warren et al., 2008, 2010). BothD and I ranged from
0 (no niche overlap) to 1 (identical niches). We then performed
an identity test with 100 replicates to estimate the similarity of the
ENMs of the identified evolutionary lineages. The observed niche
overlaps were compared with the null distribution, and tested for
significance; histograms were drawn using R 2.13 (http://www.r-
project.org/).

Detecting the Differentiation of
Morphological Traits
Finally, to test whether or not the differentiation of
morphological traits corroborates with genetic divergence,
we examined a set of morphological traits of leaves and
analyzed their pattern of variation. We took images from 252
representative herbarium specimens, gathered from 53 of the
sampled populations during fieldwork (23 populations, 118
specimens for P. rotundifolia; 30 populations, 134 specimens
for P. davidiana; Figure S1), and transformed every image into
a vector diagram using tpsUtil32 software. We recorded the
x and y coordinates of 16 landmarks from the leaf blade, and
1 ruler landmark from each image by using TPSDIG (Rohlf,
2001). We implemented morphometrics analyses in MORPHOJ
software package, within which a principal component analysis
of morphological variations was conducted and plotted (http://
www.flywings.org.uk/MorphoJ_page.htm; Klingenberg, 2011).

RESULTS

Population Genetic Diversity and Structure
Inferred From Nuclear Microsatellite
Markers
We genotyped 16 nSSR loci for 375 sampled individuals from
76 populations of the P. davidiana-rotundifolia complex. Two
loci that showed a high frequency of null alleles were eliminated
from further analyses. A total of 141 alleles were scored for
the remaining 14 loci, and across all populations the number
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of alleles per locus varied from 4 to 19 alleles, with an average
of 10.071 (Table S6). Averaged across all 76 populations, allele
number (Aa) was 34.408, effective allele number (Ae) per locus
was 1.990, observed heterozygosity (Ho) was 0.390, and expected
heterozygosity (He) was 0.376 (Table S7). The fixation index
averaged across all loci (average FST = 0.363; Table S6) indicated
a pronounced level of genetic differentiation among populations.

Our Bayesian clustering analyses using STRUCTURE with
correlated allele frequencies suggested that the optimal number
of free mating meta-populations across the 76 sampled
populations is two (K = 2). The log-likelihood value reached
a plateau after K = 2, although it increased gradually as K
raised from 2 to 8; meanwhile, the delta K had a single peak
value at K = 2 (Figure 2). When K = 2, the southwestern
populations clustered into one group and the northeastern and
central populations clustered into the other group, although
lineage admixture was observed in a few populations where the
distribution of the two lineages overlapped (Figure 3). Similar
results were obtained using STRUCTURE with independent
allele frequencies (see Figure S2). The PCoA based on genetic
distance revealed a clear separation between the same two
lineages (Figure 4). Under STRUCTURE analysis with K = 3,
southwestern populations remained as one group, whereas the

northeastern populations now formed a separate group from the
central populations although there was considerable admixture
between them (Figure S3).

Mantel tests revealed a significant correlation between
geographical distance and genetic differentiation across
the P. davidiana-rotundifolia complex (r2 = 0.0407, P =

0.01; Figure 5). However, when Mantel tests were applied
to each of the two evolutionary lineages separately, no
significant correlation between geographic structure and
genetic differentiation was detected (southwestern cluster:
r2 = 0.0003, P = 0.420; central/northeastern cluster: r2 =

0.0001, P = 0.430). These results suggested that the hierarchical
population structure is credible, as geographic isolation may
have contributed to differentiation between lineages but not
within them.

At the same time, AMOVA analyses revealed that 15.58%
of genetic variation was attributed to genetic differentiation
between the two groups (i.e., evolutionary lineages), 17.47% was
due to genetic differentiation among populations within groups,
and 66.95% was ascribed to genetic differentiation between
individuals within populations (Table 1).

Therefore, the allocation of genetic variation at our 14
sampled nSSR loci suggested that the species complex comprises

FIGURE 2 | Bayesian clustering plots for 76 populations of the Populus davidiana-rotundifolia complex based on variation at 14 nSSR loci. The optimal

K-value was estimated using (A) the posterior probability of the data given each K (20 replicates) (mean ± SD) and (B) the distribution of delta K, the histogram of the

STRUCTURE assignment test when (C) K = 2 and (D) K = 3 were presented.
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FIGURE 3 | Geographic distribution of nSSR genetic clusters for the 76 populations of the Populus davidiana-rotundifolia complex under the optimal

K-value (K = 2) as inferred by STRUCTURE. See Figure 2C for the histogram of STRUCTURE assignment test. Brown and orange dashed lines encompass the

putative assignment of populations to P. davidiana and P. rotundifolia, respectively.

two separate evolutionary lineages. Since the geographic
distributions of them roughly correspond to that of P. davidiana
and P. rotundifolia, from here onwewill refer to the southwestern

populations (SWC sector, and Group 1 in Figures 2–4) as P.
rotundifolia, and the northeastern and central populations as P.
davidiana (NEC+ CNC sectors; Group 2 in Figures 2–4).
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FIGURE 4 | Principal Coordinates Analysis (PCoA) of the 76

populations of the Populus davidiana-rotundifolia complex based on

genetic distance using nSSR data. Group 1: the populations in

southwestern China (SWC); Group 2: the populations in northeastern (NEC)

and central-north China (CNC).

FIGURE 5 | The Mantel Test plotting of genetic distance [y-axis:

Linearized FST(LinFST)] vs. geographical distance (x-axis: GGD) for the

76 populations of the Populus davidiana-rotundifolia complex based

on nSSR data.

Genetic Variation of CpDNA Markers
The total length of the alignment matrix of concatenated cpDNA
sequences is 2,113 bp, within which 14 substitutions and 21 indels
were detected (Table S8). These polymorphisms differentiated
a total of 21 haplotypes (Figure 6), which were clustered into
five clades (I–V) according to NETWORK analysis (Figure 6A).
Among these, haplotypes H6–H12 were present only in the
populations of P. rotundifolia; these form subgroups III and IV
in the network analysis, which occur only in the SWC range
sector (Figure 6). Likewise haplotypes H18–H21 form Group
I, a monophyletic clade present only in the NEC range sector
of P. davidiana. The other two groups, II and V, each formed
monophyletic clades, but were shared between evolutionary
lineages. Group V comprised five haplotypes (H13–H17), of
which four H13–H16 were present in P. davidiana’s CNC range
sector, whereas H17 was only in the westernmost edge of the
NEC range sector. Notably, H13 also occurred disjunctly in the
southern part of P. rotundifolia’s range (Figure 6; Figure S4).
Group II likewise occurred mainly in the western part of P.
davidiana’s range; but was also in three populations of P.

TABLE 1 | Analysis of molecular variance (AMOVA) for the two groups of

populations (two putative species, P. davidiana and P. rotundifolia) based

on nSSR and cpDNA.

Source of variation df SS VC V% F-statistic

TWO GROUPS

SSR markers

Among groups 1 274.181 0.70888 15.58 FCT = 0.15576*

Among populations

within groups

74 806.167 0.79528 17.47 FST = 0.33049*

Within populations 674 2053.742 3.04709 66.95 FSC = 0.20698*

Total 749 3134.089 4.55125

cpDNA

Among groups 1 75.693 0.71237 31.62 FCT = 0.31623*

Among populations

within groups

74 245.683 1.03400 45.90 FST = 0.77522*

Within populations 131 66.333 0.50636 22.48 FSC = 0.67127*

Total 206 387.710 2.25274

df, degrees of freedom; SS, sum of squares; VC, variance components; V%, percent

variation; FST , the proportion of differentiation among populations; FSC, the proportion

of differentiation among populations within species; FCT , the proportion of differentiation

among species; *P < 0.01, 1,000 permutations.

rotundifolia. Among the haplotype groups, I is basal, Group V
is derived from Group IV, and these two together are sister to
a clade wherein Group II is sister to Group III (Figure 6B).
Bayesian analysis also supported the basal position of Group I,
but could not resolve relationships among the other four groups
(Figure S5).

A significant phylogeographic structure was detected for
cpDNA across the whole species complex, as well as within
each of P. davidiana and P. rotundifolia individually (NST >

GST, P < 0.05; Pons and Petit, 1996; Table 2), reflecting
that genetic closely related haplotypes tend to occur in
adjacent areas (Figure 6). Furthermore, AMOVA analyses of
the cpDNA sequence dataset revealed a high FCT value, which
indicated significant differentiation between P. davidiana and P.
rotundifolia (FCT = 0.3162, P < 0.01; Table 1), although the
percentage of variation among populations within evolutionary
lineages (45.90%) is higher than variation between evolutionary
lineages (31.62%).

The total genetic diversity (HT) and the diversity within
populations (HS) based on cpDNA were higher in P. davidiana
than P. rotundifolia (Table 2). The within-population haplotype
diversity (Hd) was 0.7523 for P. rotundifolia, 0.8884 for P.
davidiana, and 0.8950 across all populations. Nucleotide diversity
(πs) was 0.00112 for P. rotundifolia, 0.00207 for P. davidiana, and
0.00189 across all populations.

Examination of Gene Flow between and
Within the Two Evolutionary Lineages
The MIGRATE analysis produced a single module posterior
distribution for θ and M parameters and the effective sampling
size of all parameters are>5,000. θ for P. rotundifoliawas slightly
higher than P. davidiana, and effective immigration was slightly
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FIGURE 6 | The (A) minimum spanning network showing the phylogenetic relationships among the 21 chloroplast DNA (cpDNA) haplotypes in the Populus

davidiana-rotundifolia complex and (B) their geographic distribution pattern. Colors of these haplotypes in any of the five haplotype groups are identical. Population

codes are identified in Table S2. In (A), the black dot represents an outgroup haplotype from P. adenopoda that was involved as outgroup for rooting purpose; each

circle represents a haplotype and circle sizes are proportional to the number of samples per haplotype; oval black dashed lines encompass haplotypes representing

the five cpDNA haplotype groups. Brown and orange dashed lines in (B) delineate P. davidiana and P. rotundifolia, and gray dashed line in (B) delineate the

Central-North China (CNC) and Northeastern China (NEC) regions within P. davidiana.
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TABLE 2 | Estimates of average gene diversity within populations (HS),

total gene diversity (HT), inter-population differentiation considering only

haplotype frequency (GST), and inter-population differentiation

considering both haplotype frequency and phylogenetic relationships

among haplotypes (NST) (mean ± SE in parentheses) within the

distribution range of each putative species and the Populus

davidiana-rotundifolia complex.

Group HS HT GST NST

P. rotundifolia 0.371 (0.0638) 0.753 (0.0411) 0.507 (0.0806) 0.542 (0.0807) *

P. davidiana 0.420 (0.0818) 0.899 (0.0375) 0.532 (0.0941) 0.788 (0.0659) *

Total 0.391 (0.0500) 0.892 (0.0205) 0.562 (0.0552) 0.730 (0.0465) *

These estimates were calculated with PERMUT based on cpDNA haplotypes, using a

permutation test with 1,000 replicates. *Indicates that NST is significantly different from

GST (0.01 < P < 0.05).

higher from P. rotundifolia into P. davidiana (2Nem = 8.05)
than vice versa (2Nem = 7.43; Table 3A). To examine gene
flow between geographical sectors, two populations where the
percentage of the predominant cluster is lower than 0.875 were
excluded (P44 and P46). These admixed populations would have
caused biased (most likely overestimation) of gene flow between
the SWC andCNC range sectors. Gene flowwas far stronger from
NEC to CNC (2Nem= 5.14) and to SWC (2Nem: 4.30) than from
CNC to NEC (2Nem = 2.07) or SWC to NEC (2Nem = 2.90).
Gene flow from SWC to CNC (2Nem = 5.14) was stronger than
vice versa (2Nem= 3.52; Table 3B; Figure S6).

Ecological Niche Modeling
The predicted distributions of the two evolutionary lineages
at present, during the MH and the LGM are illustrated in
Figure 7A. The respective areas under the receiver operating
characteristic curve (AUC) values for the present-day model,
the MH model and the LGM model, for different groupings,
were as follows: P. rotundifolia, 0.989 ± 0.004, 0.988 ±

0.007, 0.985 ± 0.006; P. davidiana, 0.954 ± 0.019, 0.948 ±

0.022, 0.957 ± 0.018. This indicates that all models were
better than random expectation. According to variable jackknife
analyses, the environmental variables that contributed most
to potential models were Altitude, Isothermality (bio 3) and
Mean Temperature of the Driest Quarters (bio 9) for P.
rotundifolia, and Mean Temperature of the Driest Quarters (bio
9), Precipitation of Wettest Month (bio 13) and Precipitation
of Warmest Quarter (bio 18) for P. davidiana (Figure S7).
Although, the potential distribution of both evolutionary lineages
for the present day partly overlaps in the southwestern China
(Figure 7A), the niche identity tests of the pair of evolutionary
lineages showed that observed values for both I and D were
significantly smaller than the predicted scores under the null
hypothesis (Figure 7B), suggesting that they occupy significantly
different ecological niches. Meanwhile, considering that P.
davidiana populations in the NEC and CNC are genetically
different from each other, we further tested ecological niche
differentiation between them, as well as between the CNC
populations and P. rotundifolia (i.e., the SWC populations)
(Figure S8A). The AUC values for the present-daymodel of CNC
and NEC populations of P. davidiana were 0.966 ± 0.017 and

0.968 ± 0.023, respectively. Niche identity tests suggested that
CNC occupies a significantly different ecological niche from both
NEC and SWC (Figures S8B,C).

Principal Component Analysis on
Morphology
Based on morphological traits of all specimens sampled across
the entire species complex, statistical analysis detected no
clear differentiation between P. davidiana and P. rotundifolia
(Figure 8). However, when populations of P. davidiana from the
CNC andNEC sectors are treated separately, then a clear dividing
line appears between NEC and P. rotundifolia, whereas CNC
overlaps with P. rotundifolia more than it overlaps with NEC
(Figures S9A,B). Hence the CNC populations might contain an
admixture of characters from the two lineages.

DISCUSSION

Recognition of Two Species Based on
Multiple Nuclear Loci and Ecological Niche
Differentiation
An integrative survey of 76 representative populations of the
P. davidiana-rotundifolia complex revealed clear evidence from
nSSRs for two separate evolutionary lineages (Figures 2, 4).
Bayesian clustering suggested that the most likely number of
free mating meta-populations is two (Figure 2), and PCoA of
genetic variation based on genetic distance also supported the
same genetic clustering pattern (Figure 4). Admixture between
lineages for these markers is only detectable in those populations
close to the contact zone of the two evolutionary lineages
(Figure 3), consistent with the limited gene flow between lineages
that was indicated by our coalescent-based approach (Table 3A).
The two lineages occur in central (CNC) to northeastern (NEC)
China, and in southwestern China (SWC; Figure 3), which
corresponds with the respective distributions of the described
species P. davidiana and P. rotundifolia (Fang et al., 1999).

Ecological niche modeling confirms that these two lineages
have a clear ecological separation (Figure 7). Considering only
areas predicted to have high habitat suitability (>0.50), the
distributions of the two lineages have no overlap; however when
predicted ranges also incorporate areas of lower suitability (0.15–
0.50), then there is overlap in the eastern Hengduan mountains
and northern Yunnan–Guizhou Plateau (Figure 7A). This visible
pattern is supported by the niche identity test, where both indices
(D and I) indicated that they occupy significantly different niches
(Figure 7B).

Out of 21 cpDNA haplotypes detected, 17 were lineage
specific (Figure S10A), and 31.62% of cpDNA variation occurred
between lineages (Table 1). Despite this, the network of
haplotypes resolved neither of the two lineages as monophyletic
(Figure 6A; Figure S10B). Morphological separation was also
incomplete: P. rotundifolia was clearly differentiated from NEC
populations of P. davidiana (Figure S9B), but CNC populations
of P. davidiana overlapped the morphology of both (Figure 8).

According to a unified species concept that defines species
as separately evolving meta-population lineages (De Queiroz,
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TABLE 3 | (A) Historical gene flow as estimated by MIGRATE between the two putative species of the Populus davidiana-rotundifolia complex based on

nSSR data; (B) Historical gene flow as estimated by MIGRATE among P. rotundifolia and the two range sectors (CNC and NEC) of P. davidiana based on

nSSR data.

(A) M (m/µ) Ne 2Nem1→2 2Nem2→1

Species θ P. rotundifolia→ P. davidiana→ P. rotundifolia→ P. davidiana→

P. rotundifolia 5.244 [4.392–6.048] 2.833 [1.133–4.533] 1,311 [1,098–1,512] 7.43 [2.49–13.71]

P. davidiana 4.692 [3.792–5.496] 3.433 [1.667–5.133] 1,173 [948–1,374] 8.05 [3.16–14.11]

(B) M (m/µ) Ne 2Nem

Areas θ SWC→ CNC→ NEC→ SWC→ CNC→ NEC→

SWC 2.345

[0.770–3.640]

3.000

[0.000–19.333]

3.667

[0.000–20.000]

586.25

[192.5–910]

3.52

[0.00–35.19]

4.30

[0.00–36.40]

CNC 1.622

[0.910–2.310]

6.333

[0.000–23.333]

6.333

[0.000–23.333]

405.5

[227.5–577.5]

5.14

[0.00–26.95]

5.14

[0.00–26.95]

NEC 0.828

[0.140–1.493]

7.000

[0.000–23.333]

5.000

[0.000–21.333]

207

[35.00–373.25]

2.90

[0.00–17.42]

2.07

[0.00–15.93]

Two populations from the CNC sector, which are high likely to be hybrid populations, were excluded to avoid over estimation of gene flow between P. rotundifolia (which occur in the SWC

area) and CNC P. davidiana. θ , 4Neµ; →, source populations; M, mutation-scaled immigration rate; m, immigration rate; µ, mutation rate. The mode value of the posterior distribution

of each parameters was listed, and the values of the lower and upper 95% credibility intervals were shown in square brackets.

2007), sister species may become genetically isolated, and
then subsequently become genetically monophyletic; they also
gradually become morphologically and ecologically distinct as
the speciation process advances. In the case of the P. davidiana-
rotundifolia complex, separation has arisen at the functional
level—i.e., for nuclear germplasm (multiple loci) and ecology;
however, for other markers often used to distinguish taxa, i.e.,
morphology and cpDNA, separation is incomplete. Hence, P.
davidiana and P. rotundifolia are functioning as two distinct
species. Our findings support arguments that multiple criteria
should be considered when delimitating closely related species
in evolutionarily complex taxonomic groups (De Queiroz, 2007;
Leaché et al., 2009; Fujita et al., 2012; Hendrixson et al., 2013;
Su et al., 2015), and demonstrate the value of using population
level sampling and highly variable markers, as a part of a tiered
barcoding system, for such a purpose (Feng et al., 2013).

Parapatric Speciation between
P. davidiana and P. rotundifolia
In the geographic context, the modes of speciation could
be classified as allopatric, sympatric or parapatric speciation
depending on the degree of range overlaps between evolutionary
lineages during the speciation process (Mayr, 1942; Schluter,
2001; Coyne and Orr, 2004; Butlin et al., 2008). Where there is
total (sympatric) or partial (parapatric) range overlap, speciation
can proceed despite a degree of gene flow between speciating
lineages (Schluter, 2001; Butlin et al., 2008). In these modes,
ecological divergence and the formation of an intrinsic barrier
to gene flowmay have played important roles (Feder et al., 2012).

In the case of P. davidiana and P. rotundifolia, multiple lines of
evidence suggest that they most likely have undergone parapatric
speciation. First of all, as noted above, the two species occupy
significant different ecological niches (Figures 7A,B) yet their

distribution ranges are adjacent. Interestingly, the distribution
of each species roughly matches a different floristic subkingdom
in China (Wu and Wu, 1996; Qiu et al., 2011). The range
of P. davidiana corresponds roughly to the northern part of
the “Sino-Japanese Forest” floristic subkingdom (Wu and Wu,
1996; Qiu et al., 2011), which comprises North China (30/33N-
42N), subtropical (Central/East/South) China (22N-30/33N), the
Korean Peninsula, and the Japanese Archipelago. Likewise, P.
rotundifolia occurs within the “Sino-Himalayan Forest” floristic
subkingdom (Wu and Wu, 1996; Qiu et al., 2011), stretching
from the eastern Himalaya Mountains through the Hengduan
Mountains to the Yunnan–Guizhou Plateau. Hence the genetic
divergence between these two species might reflect adaptation
to these two environmentally divergent subkingdoms. Genetic
divergence between sister species or sister lineages within species
due to ecological differentiation have been observed in many
plant species in China (Li et al., 2013;Wang et al., 2013; Sun et al.,
2015; Yin et al., 2016), especially within the “Sino-Himalayan
Forest” floristic subkingdom (Fan et al., 2013; Liu et al., 2013;
Zhao et al., 2016) where environmental heterogeneity is relatively
high.

A second line of evidence is the lack of functional geographic
barriers that would prevent gene flow between these species,
based both on currently known sites (Figure 1) and the
range predicted by ecological niche modeling (Figure 7A).
The mountains at the eastern edge of the Qinghai-Tibetan
Plateau form a potential geographic barrier, yet four populations
containing P. davidiana occur to the south of these, very close to
P. rotundifolia (Figure 3). Moreover, the predicted distributions
of these species during the MH and LGM periods revealed
a greater degree of overlap than exists at present (Figure 7),
showing no evidence for geographic separation nor functional
geographic barriers to gene flow between them. Hence there is
no obvious mechanism for allopatric speciation based on current
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FIGURE 7 | (A) Potential distributions of P. rotundifolia, P. davidianaas predicted by ecological niche modeling using MAXENT, and (B) identity test between their

ecological niches. In (A), the potential distributions are shown for the present time (Present), during the middle Holocene (MH) and the last glacial maximum (LGM). In

(B), bars indicate the null distributions of D or I, x-axis indicates values of I or D, y-axis indicates number of randomizations, and arrow indicates value of I or D in

actual MAXENT runs.

geography or reconstructed past ranges; for it to have happened,
there would have to have been some other separating factor not
detectable by our analysis.

MIGRATE analyses based on nSSR markers, which may be
dispersed via both seeds and pollen, revealed that a considerable
level of gene flow has occurred in both directions between
the two lineages (2Nem ≥ 7.43, Table 3A). Seeds and pollen
of poplars are wind-dispersed (e.g., Fang et al., 1999); hence
both are able to travel a long distance, mediating gene flow

between populations. A similar level of bi-directional gene flow
was detected using nuclear markers in a pair of ecologically
diverged Populus species (euphratica and pruinosa), which co-
occur in desert regions in Western China, and which underwent
speciation during the Pleistocene (Wang et al., 2011b; Wang
J. et al., 2014). Similarly, nuclear gene flow occurs between
P. trichocarpa and P. balsamifera, which diverged even more
recently, and occupy significantly different habitats in the North
America (Levsen et al., 2012). Hence, speciation in the face
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FIGURE 8 | The Principal Component Analysis (PCA) plot for the

morphological variations of 53 representative populations of the

Populus davidiana-rotundifolia complex. Each dot represents one

individual; blue, green, red dots represent individuals of NEC P. davidiana,

CNC P. davidiana and P. rotundifolia, respectively.

of gene flow appears to be a common pattern in the genus
Populus.

Finally, our data is consistent with gene flow having occurred
at different periods during the speciation process. In addition to
gene flow we have detected using nSSR loci, NETWORK analysis
revealed sharing between lineages of both haplotypes and clades
(haplotype groups). The 21 detected cpDNA haplotypes were
clustered into five groups (Figure 6A), with the basal Group
I confined to the northeastern range of P. davidiana (NEC).
Otherwise, the haplotypes formed two pairs of groups, with each
pair containing one group that was mainly in P. davidiana and
another mainly in P. rotundifolia. Group III is almost exclusively
P. rotundifolia, the exception being its presence in two nearby
populations that are mainly P. davidiana according to nuclear
data. However, it is sister to Group II, which occurs mainly in
P. davidiana but also three populations of P. rotundifolia that are
close to where the species overlap. A very similar pattern occurs
in Groups IV and V: Group IV occurs in P. rotundifolia, plus
one nearby population that is mainly P. davidiana according to
nuclear data; Group IV is derived from Group V, all of whose
haplotypes occur in P. davidiana, although haplotype H13 is
also present in eight populations in the southeastern range of
P. rotundifolia (Figure S11). Taken at face value, such a pattern
fits the stochastic nature of lineage sorting (Freeland et al., 2011),
with the five groups predating the divergence of the two species,
and then the diverging P. rotundifolia happening to contain
groups III and IV while the others were in P. davidiana. Limited
sharing of groups II–IV near the contact zone between these
species could be attributed to recent and possibly ongoing but
limited gene flow, as detected by our data.

Our data is also consistent with an alternative hypothesis,
wherein the initially diverging lineages gave rise to the current
NEC and SWC populations, which subsequently gave rise to the
CNC populations through ongoing admixture and hybridization,
with SWC populations contributing cpDNA haplotypes and

NEC contributing most of the nuclear genomes (based on nSSR
clusters). In this scenario, the sister relationship of two pairs
of cpDNA haplotype groups could represent two independent
rounds of hybridization and introgression between lineages
shortly after initial divergence. A third possibility is that the
initial split was between NEC and the common ancestor of
CNC and SWCpopulations, following which CNC diverged from
SWC, and then finally the CNC populations were homogenized
by nuclear gene flow from NEC, which left their chloroplast
genomes unaffected.

Regardless of exactly how speciation occurred, the
interspecific sharing of H13 must reflect a gene flow event
that occurred long after speciation, because it concerns one
haplotype, rather than a clade or its common ancestor. Even
so, the event must have occurred some time ago, because the
haplotype is spread across eight populations of P. rotundifolia.
Hence it might have been caused by Quaternary climate
oscillations.

Intraspecific Differentiation of P. davidiana
Our data indicates that the NEC and CNC populations function
as a single species, P. davidiana, yet multiple lines of evidence
support a subdivision between NEC and CNC. First, as we have
discussed above, NEC harbors predominantly haplotype Group
I, and CNC has groups II and V (Figure 6; Figures S4,S10B).
Second, STRUCTURE analysis using the admittedly suboptimal
value of K = 3 split P. davidiana into two groups, roughly
matching this geographic divide, although mixed populations
occurred especially in CNC (Figure S3). Third, it appears from
MIGRATE analysis that the CNC group received similar levels of
gene flow from both NEC and P. rotundifolia (SWC; Table 3B).
Fourth, while NEC material had a consistent morphological
separation from P. rotundifolia, CNC material was closer in
morphology to P. rotundifolia than to NEC material (Figure 8).
This morphological pattern might be due to recent divergence
between the species (Figure 6), bi-directional gene flow between
them (Table 3B; Figure S6), or both, but either is consistent
with a degree of separation between NEC and CNC material.
Finally, the ecological niche of the CNC group is significantly
different from theNEC group (Figures S8A,C). The geographical
dividing line between these NEC and CNC roughly corresponds
to an infraspecific genetic divide within Acer mono (Guo et al.,
2014; Liu et al., 2014), and a significant between-species dividing
line among members of Juglans section Cardiocaryon (Bai et al.,
2016). This suggests the presence of an enduring of incomplete
phytogeographic barrier between these regions.

Remarkably, our cpDNA data appears to indicate that NEC
material diverged from CNC material before the divergence
between the latter and P. rotundifolia (SWC material), because
NEC material is dominated by the earliest diverging haplotype
group, I (Figure 6; Figure S5). Conversely, nuclear divergence
between NEC and CNC, indicated by nSSR data, happened
later, and after the divergence of P. rotundifolia. This fits with
a hypothesis of ongoing, or periodic, nuclear gene flow between
CNC and NEC, but could also reflect separation followed by a
phase of nuclear homogenization. Either way, the two currently
seem to function as a single species, and are separated neither
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by the optimal STRUCTURE value of K (K = 2; Figure 3), nor
PCoA analysis (Figure 4). Genetic differentiation between NEC
and CNC occurs when K = 3 (Figure S3), but it is much weaker
than that between the species. Moreover, Mantel tests on nSSR
data within P. davidiana found no significant correlation between
geographic structure and genetic differentiation (r2 = 0.0001,
P = 0.430), indicating at most weak geographical structuring,
hence minimal separation between NEC and CNC. Conversely,
significant geographic structuring is revealed when both species
are examined together (r2 = 0.0407, P = 0.01; Figure 5). In
summary, weak differentiation and periodic or ongoing gene
flow between populations of NEC and CNC based on nSSR data
suggest that they are currently functioned as one species.

In summary, our integrative approach which considering
multiple lines of evidence suggests that although P. davidiana
and P. rotundifolia are not completely separated according to
cpDNA and morphology data, they are functionally two species
that possess distinct nuclear germplasms and habitats. The
species pair most likely have experienced a lineage separation
history that is consistent with parapatric speciation in the face
of gene flow due to adaptation to different ecological niches.
A further subdivision of P. davidiana into Central-North and
Northeastern groups is supported by multiple lines of evidence,
with the former sharing morphological traits and some cpDNA
with P. rotundifolia. This indicates a complex history, with
interspecific gene flow likely occurring after the incipient species
began to diverge. Hence, P. davidiana and P. rotundifolia can
be regarded as a recently diverged species pair, where the
speciation process is more or less complete, but the signature
of the early divergence stages is still visible. Our findings
emphasize that taking integrative survey at population level, as
we have undertaken here, is an important approach to detect the
boundary of a group of species that have experienced complex
evolutionary history.
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Table S1 | Morphological difference between Populus davidiana and

P. rotundifolia according to the Flora of China (Fang et al., 1999).

Table S2 | Detailed information for the 76 sampled populations of the

Populus davidiana-rotundifolia complex that were adopted for genetic

survey using nSSR and cpDNA.

Table S3 | Details for the (A) 14 microsatellite loci and (B) four chloroplast DNA
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(Lee et al., 2011) that were used for ecological niche modeling.

Table S5 | The 10 environmental variables used for ecological niche

modeling in this study.

Table S6 | Estimates of genetic diversity among the populations of the

Populus davidiana-rotundifolia complex based on each of the 14 nSSR

loci.

Table S7 | Descriptive statistics of genetic variation for each populations

of the Populus davidiana-rotundifolia complex based on nSSR.

Table S8 | Variable sites of the aligned chloroplast DNA sequences among

the 21 detected haplotypes in the Populus davidiana-rotundifolia complex.

Figure S1 | The sampling location of the 53 representative populations of

P. rotundifolia (small red pie), CNC P. davidiana (small green pie), and NEC

P. davidiana (small blue pie), respectively, that were adopted for

morphologically statistical analysis.

Figure S2 | The result of STRUCTURE simulations that used admixture

model with independent allele frequencies.

Figure S3 | Geographic distribution of nSSR genetic clusters for the 76

populations of the Populus davidiana-rotundifolia complex under the

suboptimal K-value (K = 3) as inferred by STRUCTURE. See Figure 2D for

the histogram of STRUCTURE assignment test. Brown and orange dashed lines

encompass the putative assignment of populations to P. davidiana and P.

rotundifolia, respectively.

Figure S4 | The (A) minimum spanning network showing the phylogenetic

relationships among the 21 chloroplast DNA (cpDNA) haplotypes in the

Populus davidiana-rotundifolia complex and (B) their geographic

distribution pattern, emphasizing the geographic distribution of

haplotypes in group II and V. Colors of these haplotypes in haplotype groups I,

III, and IV are identical. Population codes are identified in Table 1. In (A), the black

dot represents an outgroup haplotype from P. adenopoda that was involved as

outgroup for rooting purpose; each circle represents a haplotype and circle sizes

are proportional to the number of samples per haplotype; oval black dashed lines

encompass haplotypes representing the five cpDNA haplotype groups. Brown

and orange dashed lines in (B) delineate P. davidiana and P. rotundifolia, and gray

dashed line in (B) delineate the Central-North China (NCN) and Northeastern

China (NEC) regions within P. davidiana.

Figure S5 | A phylogenetic tree of haplotypes was constructed based on

cpDNA sequences using MrBayes 3.2 version in parallel. The posterior

probability support values are labeled for each node.

Figure S6 | Pie chart of the effective population sizes (Ne) in P.

rotundifolia, and P. davidiana in the Central-North China (CNC) and the

Northeastern China (NEC), and effective migration rates (Nem) between

three groups estimated by MIGRATE.

Figure S7 | Effects of bioclimatic variables on gain of the species

distribution models using jackknife test.
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Figure S8 | (A) Predicted distributions of Populus rotundifolia,

Central-North group (CNC) and the Northeastern group (NEC) of

P. davidiana at present based on ecological niche modeling using Maxent.

(B) The identity test between the ecological niches of P. rotundifolia and CNC P.

davidiana, and (C) of NEC and CNC P. davidiana, respectively. In (B,C), bars

indicate the null distributions of D or I, x-axis indicates values of I or D, y-axis

indicates number of randomizations, and arrow indicates value of I or D in actual

MAXENT runs.

Figure S9 | (A) The location of the representative populations of P. rotundifolia

and the northeastern P. davidiana for morphologically statistical analysis. (B) The

Principal Component Analysis (PCA) plot for the morphological variations of the

representative populations of P. rotundifolia and the northeastern P. davidiana.

Each dot represents one individual; blue and red dots represent individuals of NEC

P. davidiana and P. rotundifolia, respectively.

Figure S10 | The minimum spanning network showing the phylogenetic

relationships among the 21 chloroplast DNA (cpDNA) haplotypes in the

Populus davidiana-rotundifolia complex, and their occurrence in (A) each

species and (B) each range sector. (A) Red and blue on the pie chart of network

represent haplotypes that occur in P. rotundifolia and P. davidiana, respectively. (B)

Red, green, and blue represent haplotypes that occur in P. rotundifolia, CNC P.

davidiana, and NEC P. davidiana, respectively.

Figure S11 | The (A) minimum spanning network showing the phylogenetic

relationships among the 21 chloroplast DNA (cpDNA) haplotypes in the Populus

davidiana-rotundifolia complex and (B) their geographic distribution pattern. Each

haplotype was assigned a unique color. Population codes are identified in

Table S2. In (A), the black dot represents an outgroup haplotype from P.

adenopoda that was involved as outgroup for rooting purpose; each circle

represents a haplotype and circle sizes are proportional to the number of samples

per haplotype; oval black dashed lines encompass haplotypes representing the

five cpDNA haplotype groups. Brown and orange dashed lines in (B) delineate P.

davidiana and P. rotundifolia. The boundary between the CNC and NEC

populations of P. davidiana runs between Pop 60 and 61.
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