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WRKY transcription factor plays a key role in drought stress. However, the
characteristics of the WRKY gene family in the common bean (Phaseolus vulgaris
L.) are unknown. In this study, we identified 88 complete WRKY proteins from the
draft genome sequence of the “G19833” common bean. The predicted genes were
non-randomly distributed in all chromosomes. Basic information, amino acid motifs,
phylogenetic tree and the expression patterns of PvWRKY genes were analyzed, and
the proteins were classified into groups 1, 2, and 3. Group 2 was further divided into
five subgroups: 2a, 2b, 2c, 2d, and 2e. Finally, we detected 19 WRKY genes that
were responsive to drought stress using qRT-PCR; 11 were down-regulated, and 8
were up-regulated under drought stress. This study comprehensively examines WRKY
proteins in the common bean, a model food legume, and it provides a foundation for
the functional characterization of the WRKY family and opportunities for understanding
the mechanisms of drought stress tolerance in this plant.

Keywords: common bean, WRKY transcription factor, drought, qRT-PCR, genome sequence

INTRODUCTION

The average grain yield of common bean in China is approximately 1,200 kg ha−1, which is much
lower than its potential yields (FAO, 2014). This low productivity is due to biotic and abiotic stress
in the farmer’s field, such as diseases, insects, and especially drought (Wu et al., 2016). The main
common bean planting areas in China, i.e., Heilongjiang, Shanxi, and Guizhou Provinces, have
suffered from drought in recent years (Piao et al., 2010). Therefore, there is an urgent need to
discover new genes to enhance drought tolerance through molecular breeding.

Transcription factors (TFs) are an important class of genes and include NAM, ATAF1/2,
and CUC2 (NAC), basic/helix-loop-helix (bHLH), myeloblastosis (MYB), dehydration responsive
element binding protein (DREB), APETALA2/ethyleneresponsive element binding factor
(AP2/ERF), and WRKY, among others (Lata et al., 2014; Mao et al., 2015; Dossa et al., 2016; He
G.H. et al., 2016; Jin et al., 2016; Zhang et al., 2016). TFs are involved in responses to many types
of abiotic and biotic stresses, including drought. The TFs involved in the drought response include
ZMNAC111 (maize), TaNAC67 (wheat), TaNAC2 (wheat), OsMYB48-1 (rice), OsDREB2A (rice),
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TaMYBsm1 (wheat), OsAP21 (rice), OsGRAS23 (rice), and
others (Cui et al., 2011; Mao et al., 2012, 2014, 2015; Jin et al.,
2013; Xiong et al., 2014; Xu et al., 2015; Li M.J. et al., 2016).
In the first comprehensive review of the WRKY protein, SPF1
was reported to have been cloned from sweet potato 22 years
ago. Since then, many WRKY genes have been found in multiple
species, including Arabidopsis, rice, wheat, and soybean (Ishiguro
and Nakamura, 1994; Ren et al., 2010; Wang F. et al., 2015; Wang
et al., 2016; He Y. et al., 2016; Li W. et al., 2016; Yang et al.,
2016). PlantTFDB (V4.0) contains 14,549 WRKY genes from
166 species. The species with the most WRKY genes are Glycine
max (296), Brassica napus (285), Panicum virgatum (275), Zoysia
matrella (269), and Gossypium hirsutum (238). In contrast, 39
species, including Coffea canephora (49), Genlisea aurea (38), and
Carica papaya (49), have fewer than 50 WRKY loci as reported in
PlantTFDB.

It is well known that WRKY proteins contain the highly
conserved 60 AA WRKY domains (Eulgem et al., 2000; Xie
et al., 2005). However, the WRKY amino acid sequences
are also replaced by WSKY, WVKY, WKRY, or WKKY in a
few WRKY proteins (Xie et al., 2005; Song et al., 2016b).
Except for the WRKY domain, WRKY proteins contain zinc
finger-like motifs at the C-termini, and the structure is either
Cx4−5Cx22−23HxH or Cx7Cx23HxC (Eulgem et al., 2000).
WRKY proteins can be divided into three groups. Group
I contains two WRKY domains and two zinc finger motifs
(Cx4−5Cx22−23HxH), group II has one WRKY domain and one
zinc finger motif (Cx4−5Cx22−23HxH) and is divided into five
subgroups, and group III has one WRKY domain containing one
zinc finger motif (Cx7Cx23HxC) (Rushton et al., 2010; Chen et al.,
2012).

Many reports have highlighted the involvement of WRKY
proteins in seed development, seed dormancy, seed germination,
senescence, development, and biotic and abiotic stress responses
(Hinderhofer and Zentgraf, 2001; Robatzek and Somssich,
2001; Johnson et al., 2002; Sun et al., 2003; Zhang et al.,
2004; Luo et al., 2005; Eulgem, 2006; Zhou et al., 2008;
Li et al., 2009; Popescu et al., 2009; Qiu and Yu, 2009;
Tao et al., 2009). Here, we focus on the functional analysis
of WRKY proteins in response to abiotic stresses, such as
drought. Multiple studies have shown that WRKY genes
respond to drought. For example, in Arabidopsis, AtWRKY25,
AtWRKY33, AtWRKY46, AtWRKY57, and AtWRKY63 play
key roles in the responses to drought stress (Qiu and Yu,
2009; Wu et al., 2009; Song et al., 2010; Ding et al., 2014).
Similarly, in rice, overexpression of OsWRKY11, OsWRKY45,
and OsWRK72 results in enhanced drought tolerance (Qiu
and Yu, 2009; Wu et al., 2009; Song et al., 2010; Ding et al.,
2014). In other crops, HvWRKY38, TaWRKY1, TaWRKY33,
TaWRKY44, and TaWRKY93 are also involved in the drought
response (Marè et al., 2004; Qin et al., 2015; Wang X. et al.,
2015). However, compared the grass family, the action of
WRKY proteins in legumes is limited. Plants that overexpress
GmWRKY54 show enhanced drought tolerance (Zhou et al.,
2008).

WRKY proteins have been studied extensively in a variety of
plant species (Ishiguro and Nakamura, 1994; Wu et al., 2005;

Li et al., 2009, 2011; Lata et al., 2014; Song et al., 2014, 2016b;
He Y. et al., 2016; Wang et al., 2016; Yang et al., 2016). It
is important to identify various TF gene families from whole
genome sequences, and many have been identified this way,
such as the auxin/indole-3-acetic acid gene family from wheat,
AP2/ERF and MYB from foxtail millet, NAC from the common
bean, and WRKY from peanut (Lata et al., 2014; Muthamilarasan
et al., 2014; Qiao et al., 2015; Wu et al., 2016; Song et al.,
2016b). However, a comprehensive view of WRKY proteins in
the common bean is still lacking. Recently, the whole genome
sequences of the common bean (Andean and Mesoamerican gene
pools) have been released, and they are an important resource
for the genome-wide analysis of WRKY proteins (Schmutz et al.,
2014; Vlasova et al., 2016).

In this study, we performed a genome-wide identification
of WRKY TFs in the common bean and analyzed their
gene structure, genome distribution, conserved motifs and
expression patterns under drought stress in detail. We identified
a series of potential candidate WRKY genes related to drought
tolerance for future analyses of gene function in the common
bean.

MATERIALS AND METHODS

Plant Material
In this study, two common bean cultivars, Long 22-0579
(drought-tolerant genotype) and Naihua (drought-sensitive
genotype), were used to analyze gene expression patterns under
drought stress (Wu et al., 2014). The seeds were obtained from
the National Gene Bank (China, Beijing). The seedlings were
planted in 23-cm × 18-cm (diameter × depth) plastic pots in a
greenhouse under a 14/10-h photoperiod at 25◦C (day) and 20◦C
(night). All pots were irrigated to field capacity until 4 weeks
after seeding. Two treatments, terminal drought and optimal
irrigation, were applied. For the terminal drought treatment,
watering was restricted to 25% of field capacity in the pot media
from 5 weeks after seeding. For optimal irrigation, the pots were
maintained at field capacity throughout the experiment (Wu
et al., 2014).

Sequence Retrieval and WRKY Gene
Identification
Common bean whole genome sequences and transcript data were
downloaded from the Phytozome genome database (Schmutz
et al., 2014). The hidden Markov model (HMM) profile of the
WRKY family (PF03106) was extracted from the Pfam database
(Finn et al., 2016), and the WRKY HMM profile was used to
search the common bean whole genome protein database for the
WRKY domain using HMMER 3.0 (Finn et al., 2015). All non-
redundant sequences hits with expected values lower than 1E-5
were selected and conserved domain checked using PlantTFDB1

and SMART2 web server.

1http://planttfdb.cbi.pku.edu.cn/
2http://smart.embl-heidelberg.de/
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Phylogenetic Analysis
Phylogenetic trees were generated using MEGA 4.1 software,
and cis-acting regulatory elements (CAREs) were identified
using the PlantCARE website3 (Lescot et al., 2002). Pairwise
non-synonymous substitutions rates (Ks) and synonymous
substitutions rates (Ka) were calculated using codeml in PAML
4.3a with the F3 × 4 codon frequency model (Yang, 2007). The
divergence time was calculated using the formula T = Ks/2λ,
assuming a common bean and soybean substitution rate (λ) of
6.1× 10−9 substitutions/synonymous site/year (Egan and Doyle,
2010).

Analysis of Protein Features
ExPASy was used to determine the basic WRKY gene information
[molecular weight (MW), number of amino acids, open
reading frame (ORF), ORF length, and isoelectric point (pI)4].
Multiple alignment analysis was performed using ClustalW5,
and subcellular localization was predicted using the softberry
website6. The structure of the WRKY genes was investigated
using the Gene Structure Display Server websites7.

Quantitative RT-PCR
Leaves were obtained from 10 individual plants as they began
to wilt under drought stress, immediately frozen in liquid
nitrogen and stored at −80◦C. Four samples were designated as
LOI, LTD, NOI, and NTD according to cultivar (Long 22-0579
[L] or Naihua [N]) and treatment (optimal irrigation [OI] or
terminal drought [TD]). Total RNA was extracted using TRIzol
reagent (Tiangen, Beijing) according to the manufacturer’s
instructions. The quality and quantity of RNA was evaluated
by agarose gel electrophoresis and NanoDrop (Thermo Fisher
Scientific, Waltham, MA, USA), respectively. For first-strand
cDNA synthesis, 1 µg of total RNA after DNA enzyme digestion
was synthesized using the SuperScript R© II reverse transcriptase
kit following the manufacturer’s protocols (Invitrogen, USA).

The qRT-PCR reactions were performed with an ABI PRISM
7300 Sequence Detection System (Thermo Fisher Scientific,
Waltham, MA, USA) as follows: 95◦C for 30 s followed by
40 cycles of 95◦C for 5 s and 60◦C for 31 s using SYBR R©

Premix Ex TaqTM (TaKaRa, Tokyo, Japan). A melting curve was
generated as follows: 95◦C for 15 s, 60◦C for 60 s, and 95◦C for
15 s.

All reactions were performed in triplicate, and the relative
expression levels were calculated using the 2−11CT method with
normalization to the internal control gene, Skip16 (Borges et al.,
2012). The specific gene primers are listed in Supplementary
Table S1 and were designed with Primer 5.0 software. In this
study, differentially expressed genes with higher expression levels
in TD samples than in OI samples were denoted by “up-
regulated,” and those with lower expression levels were denoted
by “down-regulated.”

3http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
4http://www.expasy.ch/tools/pi_tool.html
5http://www.genome.jp/tools/clustalw/
6http://linux1.softberry.com/
7http://gsds.cbi.pku.edu.cn/

RESULTS

Identification and Distribution of the
WRKY Proteins in the Common Bean
A total of 102 candidate genes corresponding to the Pfam WRKY
family were obtained with the HMM (Supplementary Table S2),
and 90 non-redundant WRKY genes were identified in the
common bean genome, of which 88 full-length protein sequences
were used for further analyses (Supplementary Table S3). A total
of 88 WRKY proteins were identified from the common bean
(G19833) using a bioinformatics approach (Supplementary Table
S3). Gene characteristics, including the length of the full-length
sequence, length of the CDS, length of the protein sequence,
gene MW, pI, subcellular localization and the corresponding
positions, were analyzed (Supplementary Table S3). These genes
were named PvWRKY1 to PvWRKY88. The length of all full-
length sequences ranged from 685 (PvWRKY72) to 7,722 bp
(PvWRKY62), with an average of 2,340 bp. The length of the
CDS ranged from 450 (PvWRKY23) to 2,223 bp (PvWRKY34),
with an average of 1143 bp. The length of the protein sequences
ranged from 149 (PvWRKY23) to 740 AA (PvWRKY34), with an
average of 380 AA. The gene MW ranged from 17.36 (PvWRKY1)
to 80.20 kDa (PvWRKY34), with an average of 42.07 kDa; and
the pI ranged from 4.83 (PvWRKY7) to 9.94 (PvWRKY29)
with an average of 7.07. The predicted subcellular localization
results indicated that 65 PvWRKY proteins were located in the
nuclear region, whereas the remaining proteins were located in
the extracellular region.

Figure 1 shows that all common bean WRKY genes
are distributed across all 11 chromosomes (Ch1–Ch11). The
distribution of these genes is uneven. Some chromosomes (e.g.,
Chr 2 and Chr 8, which represent 18.2% of the WRKY genes)
have more genes, whereas others have few (e.g., Chr 9 and Chr 1);
some chromosomes have only one gene (Chr 4 and Chr 11); and
some of these genes are clustered. To form a cluster, the distance
between neighboring WRKY genes had to be less than 200 kb,
and separated by no more than eight non-WRKY genes between
the WRKY genes (Lozano et al., 2015). We identified 11 small
clusters containing 24 WRKY genes, and the average number of
WRKY genes in a cluster was 2.2 (Supplementary Table S3). Most
of the clusters had two members; only clusters 4 and 8 had three
members. Cluster size ranged from 9,066 to 823,695 bp. Cluster 3
was the longest cluster, and cluster 10 was the shortest cluster.

Multiple Sequence Alignment and
Structure Analysis
WRKY proteins contain two very conservative and important
motifs, the first of which is the WRKYGQK sequence that always
recognizes and binds to the W-box element. In addition to the
WRKYGQK sequences, four variants, WRKYGKK, WRKYGEK,
WKKYEDK, and WKKYCEDK, were observed in the common
bean WRKY proteins (Supplementary Figure S1 and Table S3).
The WRKYGQK sequences represented the major variant in
PvWRKY proteins at approximately 90.1%. The second motif is a
zinc finger structure containing two types of zinc finger motifs:
Cx4−5Cx22−23HxH and Cx7Cx23HxC, both of which were

Frontiers in Plant Science | www.frontiersin.org 3 March 2017 | Volume 8 | Article 380

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://www.expasy.ch/tools/pi_tool.html
http://www.genome.jp/tools/clustalw/
http://linux1.softberry.com/
http://gsds.cbi.pku.edu.cn/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00380 March 21, 2017 Time: 15:52 # 4

Wu et al. Drought-Related WRKYs in Common Bean

FIGURE 1 | Chromosomal distribution of common bean WRKY genes. The position of each PvWRKY gene can be determined using the scale on the left.

observed in the common bean WRKY proteins. Furthermore,
74 PvWRKY proteins contained Cx4−5Cx22−23HxH-type zinc
finger motifs, and 14 PvWRKY proteins contained Cx7Cx23HxC-
type zinc finger motifs (Supplementary Figure S1 and Table S3).

The PvWRKY proteins could all be divided into three
groups, 1, 2, and 3, containing 15, 57, and 14 proteins,
respectively. Notably, PvWRKY65 and PvWRKY66 were not
assigned to any group and existed alone because of their
unique WRKY sequences (WKKY/CEDK). To better separate
the groups, a phylogenetic tree was generated based on the
protein sequences of all the PvWRKY genes and 35 homologous
soybean WRKY proteins, and the WRKY genes were divided
into three groups: 1 (15 sequences), 2 (57 sequences), and
3 (14 sequences) (Figures 2A, 3). Fifty-five sequences from
group 2 were further classified into five subgroups: 2a (5

sequences), 2b (15 sequences), 2c (19 sequences), 2d (8
sequences), and 2e (10 sequences). Similar results were also
observed in soybean (Song et al., 2016a). Furthermore, each
group had a different WRKYGQK sequence and zinc finger
motifs; group 1 had two WRKYGQK sequences and two zinc
finger motifs. The WRKYGQK sequence of all PvWRKY proteins
except PvWRKY 83 from this group was WRKYGQK, and
all zinc finger motifs at the N-terminus were CxX4Cx22Hx1H.
In contrast, all zinc finger motifs at the C-terminus were
Cx4Cx23Hx1H. In group 2, subgroups 2a, 2b, 2d, and 2e had
the same motif, WRKYGQK and Cx5Cx23Hx1H. Notably, the
WRKYGQK sequence in the subgroup 2c WRKY proteins
showed several variations: WRKYGQK was detected in most
of the subgroup 2c WRKY proteins; WRKYGKK was detected
in PvWRKY1, PvWRKY21, PvWRKY72, and PvWRKY77; and
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FIGURE 2 | Phylogenetic tree and gene structure of common bean WRKY genes. (A) The phylogenetic tree was constructed with MEGA 4.1 software by the
neighbor-joining (NJ) method with 1,000 bootstrap replicates. (B) Exon/intron structure of PvWRKY genes: the introns and exons are represented by gray lines and
black boxes, respectively.

WRKYGEK was detected in PvWRKY23. However, the PvWRKY
proteins from group 3 had a consistent motif: WRKYGQK and
Cx7Cx23Hx1C.

A detailed illustration of the gene structures is shown in
Figure 2B and Supplementary Table S3. The number of introns
ranged from one to six in all members of the common bean

WRKY gene family except PvWRKY65 and PvWRKY66, and the
average number of exons among the full-length WRKY genes
in the common bean genome was 3.73. Most PvWRKY genes
contained the typical splicing of three exons and two introns (45
of the 88 PvWRKY genes); however, PvWRKY28, PvWRKY47,
and PvWRKY52 had the greatest numbers, seven exons and six
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FIGURE 3 | Phylogenetic tree of PvWRKY proteins and homologous soybean WRKY proteins. The phylogenetic tree was constructed using same method
as used for Figure 2A.

introns, whereas PvWRKY65 and PvWRKY66 each harbored one
exon. Overall, the phylogenetic analysis of the PvWRKY gene
family showed that genes within the same group generally had
a similar structure (Figure 2B); for example, subgroups 2d and
2e contained three exons and two introns.

Cis-Acting Regulatory Element Analysis
of the WRKY Promoter
We analyzed 1500-bp sequences upstream of the translational
start site (Supplementary Table S4) and divided these elements
into seven groups: essential element, enhancer, light responsive,
tissue-specific expression, abiotic stress, hormone, and other
types of elements. In putative essential CAREs, TATA, and
CAAT boxes were detected upstream of the transcription
start site. The light-responsive type had the highest number
of members, harboring 35 elements including Gap-box, AE-
box, ATCT-motif, and Box-4. Some CAREs involved in the
tissue-specific expression of root, shoot, seed, and meristem
were found in the promoter regions of WRKY genes, such

as AACA_motif, which is related to endosperm-specific
negative expression, and CCGTCC-box, which is involved in
meristem-specific activation. The most noteworthy result is
that the CAREs associated with abiotic or biotic stress and
the related hormones were found in the promoter region;
ABRE is involved in abscisic acid responsiveness; P-box,
TATC-box, and GARE-motif are gibberellin-responsive
elements; TCA-element and SARE are involved in salicylic
acid responsiveness; CGTCA-motif and TGACG-motif are
involved in MeJA responsiveness; TGA-element and AuxRR-
core are involved in auxin responsiveness; MBS is involved in
drought inducibility; and DRE and LTR are involved in the
responses to dehydration, low temperatures, and salt stress.
Furthermore, we observed that more than one abiotic or biotic
stress and hormone element occur in one promoter region;
for example, PvWRKY67 contained five abiotic or biotic stress
elements (LTR, HSE, MBS, WUN-motif, and TC-rich repeats)
and four hormone elements (ELI-box3, P-box, CGTCA-motif,
TGA-element, and TGACG element), and PvWRKY32 included
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FIGURE 4 | Heat map of the PvWRKY gene expression profiles in different tissues.

four abiotic or biotic stress elements (HSE, MBS, WUN-
motif, and DRE) and six hormone elements (TCA-element,
ABRE, P-box, GARE-motif, CGTCA-motif, and TGACG
element).

Evolutionary Patterns and Divergence of
the WRKY Gene Family between the
Common Bean and Soybean
The common bean and soybean belong to the legume family
and are closely related. In this paper, we determined the
Ka/Ks substitution ratio in the coding sequences of orthologs
between the WRKY families of the common bean and soybean
(Supplementary Table S5). All pairwise Ka/Ks ratios were

below 1 and ranged from 0.0937 to 0.9787, suggesting that
the PvWRKY genes are under purifying selection. To confirm
the divergence time between the common bean and soybean,
divergence times were calculated with relative Ks values. Most
of the Ks values concentrated at 0.2–0.3, suggesting a large-
scale event approximately 16.1–24.2 million years ago (MYA).
A previous study estimated that common bean and soybean
diverged∼19.2 MYA (Lavin et al., 2005).

Transcriptome Atlas Analysis of the
WRKY Gene Family
The availability of transcriptome data facilitates study of the basic
biology of the common bean. Expression data were obtained
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FIGURE 5 | The expression pattern of PvWRKY genes under drought stress. The expression values are relative to optimal irrigation conditions (control) for
each gene, and the bars represent the averages for the optimally irrigated plants (LOI and NOI) and the drought-stressed plants (LTD and NTD). ∗Significantly
different at P < 0.05; ∗∗significantly different at P < 0.01.

for 87 PvWRKY TFs in nine tissues including young trifoliates,
leaves, flower buds, flowers, green mature pods, young pods,
roots, stems, and nodules (Figure 4 and Supplementary Table S6).
However, PvWRKY50 lacked expression data. Approximately
93.18% of the PvWRKYs were expressed in nodules, followed
by flower and young pods (92.05%), roots (90.91%), and flower
buds (86.36%); few WRKY genes were detected in leaves
(78.41%). In the common bean, 69.3% (61 of 88) of the PvWRKY
proteins were constitutively expressed in every tested tissue.
Furthermore, PvWRKY16 and PvWRKY49 were specifically
expressed in green mature pods and young pods, respectively.
PvWRKY15 was co-expressed in flowers and young pods,
whereas PvWRKY35 was co-expressed in nodules and roots.
Moreover, PvWRKY4, PvWRKY10, PvWRKY29, PvWRKY32,
PvWRKY34, PvWRKY51, PvWRKY54, PvWRKY64, and
PvWRKY81 were highly expressed in the vast majority of
common bean tissues.

Expression Profiles of the WRKY Gene
Family under Drought Stresses
To determine the expression profiles of the PvWRKY gene
family under drought stress, 88 PvWRKY genes were analyzed
by qRT-PCR. The expression of the PvWRKY genes was
significantly altered (fold change ≥ 2) under drought stress.
We obtained 19 PvWRKY genes showing different expression
levels under drought stress, including 7 up-regulated and 12
down-regulated genes (Figure 5 and Table 1). Seven WRKY
genes showed different expression levels between drought-
tolerant and drought-sensitive genotypes. Among these genes,
only PvWRKY33 showed a lower expression level in the drought-
tolerant genotype than in the drought-sensitive genotype. For
the drought-tolerant genotype, PvWRKY8 and PvWRKY52
were up-regulated under drought stress, and five WRKY genes
were down-regulated. For the drought-sensitive genotype, six
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TABLE 1 | The differential expression levels of PvWRKY genes.

Expression pattern Genes Fold change (LOI to LTD) Fold change (NOI to NTD) Fold change (LOI to NOI)

Up-regulated LOI/NOI and NOI/NTD PvWRKY8 2.08 3.67

PvWRKY52 2.28 2.25

NOI/NTD PvWRKY5 3.53

PvWRKY39 8.14

PvWRKY40 2.09

PvWRKY59 3.08

LOI/NOI PvWRKY33 12.64

Down-regulated LOI/LTD PvWRKY60 −2.02

LOI/NOI and NOI/NTD PvWRKY6 −2.62 −5.39

PvWRKY77 −3.41 −12.10

NOI/NTD PvWRKY24 −3.43

PvWRKY38 −2.40

PvWRKY58 −2.09

LOI/NOI PvWRKY1 −3.33

PvWRKY3 −2.69

PvWRKY21 −2.17

PvWRKY43 −2.33

LOI/LTD and LOI/NOI PvWRKY2 −2.71 −8.08

PvWRKY28 −2.76 −4.07

WRKY genes were up-regulated under drought stress, and five
were down-regulated. Four genes showed the same expression
pattern in the drought-sensitive and drought-tolerant genotypes
under drought stress: PvWRKY8 and PvWRKY52 were up-
regulated, and PvWRKY6 and PvWRKY77 were down-regulated.
PvWRKY2 and PvWRKY28 were down-regulated between
LOI/LTD and LOI/NOI.

DISCUSSION

WRKY proteins have been detected in various organisms,
such as spike mosses, single-celled green algae, slime molds
and protozoa (Rushton et al., 2010). In monocots and dicots,
such as rice, soybean, wheat, and cotton, an especially large
number of WRKY proteins have been confirmed to have various
functions in recent years (Qiu and Yu, 2009; Luo et al., 2013;
Qin et al., 2015; He G.H. et al., 2016; Liu et al., 2016).
However, our study is the first to identify and characterize
WRKY proteins from whole genome sequences of the common
bean.

An increasing number of whole plant genomes have been
sequenced, and an increasing number of WRKY genes have
been identified in plant species (Yin et al., 2013; He Y. et al.,
2016; Song et al., 2016a,b; Wei et al., 2016; Yue et al., 2016).
Completion of the common bean genome makes it possible
to analyze WRKY TFs at the whole genome level (Schmutz
et al., 2014), and in this study, we systematically identified 88
WRKY members in common bean accession G19833. The most
obvious variation occurred in CDS length, protein length, PI
value, MW, and other basic information, which is consistent
with the WRKY family in other plants, such as peanut (Song
et al., 2016b). The distributions of the PvWRKY genes across

the chromosome appeared to be non-random, as they always
formed a gene cluster, which is similar to the results for the
WRKY family in other plants and previous genome-wide reports
on NAC genes in the common bean (Song et al., 2016a,b;
Wu et al., 2016; Yue et al., 2016). Furthermore, in previous
studies, WRKY gene numbers varied among species; 74 WRKY
proteins have been identified in A. thaliana (Ülker and Somssich,
2004), 102 in Oryza sativa ssp. indica (Ross et al., 2007), 97
in Oryza sativa ssp. japonica (Rushton et al., 2010), and 75
in Medicago truncatula (Rushton et al., 2010). These numbers
are similar to the number of WRKY genes in the common
bean. In contrast, the number of WRKY genes in soybean
(197) (Schmutz et al., 2010) is twice that in the common
bean. This difference may be related to species differences in
the size of the genome: common bean, 587 Mb (Schmutz
et al., 2014); Arabidopsis, 119 Mb (The Arabidopsis Genome
Initiative, 2000); Oryza sativa ssp. indica, 466 Mb (Yu et al.,
2002); Oryza sativa ssp. japonica, 420 Mb (Goff et al., 2002);
Medicago truncatula, 500 Mb (Young et al., 2011); and soybean,
1100 Mb (Schmutz et al., 2010). Therefore, the abundance of
WRKY genes has expanded, which may be a result of genome
duplications. In the common bean, PvWRKY proteins can be
divided into three groups, and group 2 can be divided into
five subgroups, 2a, 2b, 2c, 2d, and 2e, based on the amino
acid sequences outside the WRKY domain. We also observed
that the number of proteins in subgroup 2c was the highest
among all subgroups. These results are consistent with the
results for other species (Yin et al., 2013; He G.H. et al.,
2016; Song et al., 2016a,b; Wei et al., 2016; Yue et al., 2016).
However, the variants WRKYGKK, WRKYGEK, WKKYEDK,
and WKKYCEDK were mainly observed in subgroup 2c of the
common bean, suggesting that the WRKY proteins of subgroup
2c may have a variety of biological functions. The expression
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profiles revealed different expression patterns for each PvWRKY
gene in different tissues, providing a valuable resource for gene
functional research. Most PvWRKY genes were expressed in all
nine tissues, and nine PvWRKY genes were highly expressed,
which suggests that these PvWRKY genes may be essential for
plant growth. However, several PvWRKY genes were expressed
only in one specific tissue, suggesting that these genes might have
tissue-specific functions. The expression profiles generated in this
study provide very rich data resources to further investigate the
function of PvWRKY genes.

Among the TF families in higher plants, WRKY TFs
have been found to play important roles under biotic and
abiotic stress, especially drought (Ding et al., 2014; Qin
et al., 2015; He Y. et al., 2016; Liu et al., 2016; Yue
et al., 2016). Using qRT-PCR in the present study, we
identified 19 common bean WRKY TFs that were responsive
to drought stress. Among these, 10 PvWRKYs contain MBS
elements involved in drought inducibility, such as PvWRKY1,
PvWRKY21, PvWRKY28, PvWRKY24, and PvWRKY52. We
also found that six PvWRKYs contain ABRE elements involved
in drought stress tolerance (Song L. et al., 2016), including
PvWRKY2, PvWRKY3, PvWRKY5, PvWRKY38, PvWRKY43,
and PvWRKY58. These results support the qRT-PCR results.
Furthermore, these genes can be divided two groups: those
that were differentially expressed between drought-tolerant and
drought-sensitive genotypes and those that were differentially
expressed between the treatment and the control. These genes
may be good candidates for enhancing drought stress tolerance
because we can putatively predict the function of PvWRKY genes
based on their identified homologous genes (Supplementary
Figure S2). For example, GmWRKY27, a PvWRKY40 homolog,
improves drought tolerance in transgenic soybean (Wang
F. et al., 2015), and GmWRKY54, a PvWRKY53 homolog,
confers drought tolerance (Zhou et al., 2008). Interestingly,
there have been no reports regarding the functions of several
PvWRKY homolog genes, such as PvWRKY5, PvWRKY33, and
PvWRKY58; therefore, there may be additional WRKY TFs
that are involved in drought resistance in the common bean.
However, we also found several PvWRKY genes that were not
induced by drought stress but have homologs in other species that
function under drought stress. It is possible that the expression of
these genes differed only slightly between drought-tolerant and
drought-sensitive genotypes. However, different PvWRKYs play
different roles in regulating the stress response; therefore, further
investigation into their expression patterns under different
stresses (salt, heat, and low temperature) is necessary. The results
reported here provide some candidates for future studies of the
drought resistance mechanism.

In this study, the phylogenetic relationships, exon/intron
structures, and expression pattern of WRKY family members
under drought stress were evaluated in the common bean, and
we identified 19 PvWRKY genes that are responsive to drought
stress. As only a few WRKY genes have been detected in the
common bean to date, our results will facilitate the functional
analysis of PvWRKY genes. These results offer a useful resource
for understanding the potential physiological role of individual
WRKY genes during drought stress.
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