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Pre-harvest sprouting (PHS) is mainly caused by the breaking of seed dormancy in
high rainfall regions, which leads to huge economic losses in wheat. In this study, we
evaluated 717 Chinese wheat landraces for PHS resistance and carried out genome-
wide association studies (GWAS) using to 9,740 DArT-seq and 178,803 SNP markers.
Landraces were grown across six environments in China and germination testing of
harvest-ripe grain was used to calculate the germination rate (GR) for each accession
at each site. GR was highly correlated across all environments. A large number of
landraces (194) displayed high levels of PHS resistance (i.e., mean GR < 0.20), which
included nine white-grained accessions. Overall, white-grained accessions displayed
a significantly higher mean GR (42.7–79.6%) compared to red-grained accessions
(19.1–56.0%) across the six environments. Landraces from mesic growing zones in
southern China showed higher levels of PHS resistance than those sourced from xeric
areas in northern and north-western China. Three main quantitative trait loci (QTL) were
detected by GWAS: one on 5D that appeared to be novel and two co-located with
the grain color transcription factor Tamyb10 on 3A and 3D. An additional 32 grain
color related QTL (GCR-QTL) were detected when the set of red-grained landraces
were analyzed separately. GCR-QTL occurred at high frequencies in the red-grained
accessions and a strong correlation was observed between the number of GCR-QTL
and GR (R2

= 0.62). These additional factors could be critical for maintaining high
levels of PHS resistance and represent targets for introgression into white-grained wheat
cultivars. Further, investigation of the origin of haplotypes associated with the three
main QTL revealed that favorable haplotypes for PHS resistance were more common
in accessions from higher rainfall zones in China. Thus, a combination of natural and
artificial selection likely resulted in landraces incorporating PHS resistance in China.
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INTRODUCTION

Pre-harvest sprouting (PHS) is defined as the germination of
grains within mature spikes on the mother plant before harvest
(Nyachiro, 2012). In wheat (Triticum aestivum L.), PHS is mainly
caused by the breaking or lack of seed dormancy under humid
and wet conditions, which leads to huge economic losses due
to decreased grain weight and end-use quality (Zhang and
Liu, 1989; Kulwal et al., 2012). Thus, seed dormancy (SD)
has been considered the major factor that determines PHS
resistance (Bewley and Black, 1982; Mares and Mrva, 2001;
Finch-Savage and Leubner-Metzger, 2006). The world’s major
wheat production regions, including Canada, Australia, and
China, experience regular losses due to PHS (Rajjou et al., 2012).
In China, PHS is a major abiotic constraint that reduces yield and
production quality of wheat grain and has affected about 24.91
million ha of wheat fields (Xiao et al., 2002). Therefore, breeding
for PHS-resistant cultivars is of great importance in China. The
Chinese Academy of Agricultural Sciences (CAAS) has defined 10
wheat-growing zones in China, according to wheat type, varietal
reactions to temperature, wheat-growing season and other factors
(He et al., 2001). PHS is common in zones III-YTS (Middle
and Low Yangtze Valleys Autumn-Sown Spring Wheat Zone),
IV-SAS (Southern Autumn-Sown Spring Wheat Zone), V-SWAS
(Southwestern Autumn-Sown Spring Wheat Zone), and VI-NES
(Northeastern Spring Wheat Zone) (Jin, 1996; He et al., 2000;
Xiao et al., 2002; Yuan et al., 2003; Liu L. et al., 2013).

A total of 110 quantitative trait loci (QTL) or loci associated
with resistance to PHS in wheat have been reported in 24
previous mapping studies (Supplementary Table S1). These
studies have either evaluated PHS resistance directly by testing
whole intact spikes in misting chambers or simulated rain
events in the field (Somyong et al., 2014; Albrecht et al., 2015),
or germination testing of harvest-ripe grain under controlled
conditions (Somyong et al., 2014; Zhang et al., 2014; Lin et al.,
2015). According to biparental genetic linkage analyses, all 21
chromosomes of wheat reportedly harbor QTL for PHS resistance
(Mohan et al., 2009; Cabral et al., 2014; Cao et al., 2016;
Fakthongphan et al., 2016), but the most consistently detected
regions are located on the group three chromosomes (Kato et al.,
2001; Osa et al., 2003; Kulwal et al., 2004; Mori et al., 2005; Liu
and Bai, 2010) and Chr 4A (Mares et al., 2005; Chen et al., 2008;
Singh et al., 2010; Cabral et al., 2014). The PHS resistance genes
underpinning the 3A, 3B, and 3D regions are considered to be
tightly linked or pleiotropic with red seed coat color determined
by dominant R alleles (Himi et al., 2011). Thus, red-grained
wheat cultivars typically display superior levels of PHS resistance.
However, the major QTL on Chr 4AL is not associated with grain
color (Mares et al., 2005; Tan et al., 2006; Chen et al., 2008; Imtiaz
et al., 2008; Ogbonnaya et al., 2008; Singh et al., 2010; Liu et al.,
2011; Cabral et al., 2014) and the underlying casual gene for grain
dormancy (MKK3) was recently cloned by Torada et al. (2016).

Several genome-wide association studies (GWAS) have
also reported candidate loci associated with PHS resistance
(Supplementary Table S1). Jaiswal et al. (2012) used 250 simple
sequence repeat (SSR) markers to scan 242 common wheat
accessions and identified 30 markers associated with PHS,

including eight previously reported markers. Kulwal et al. (2012)
scanned 198 white winter wheat accessions using 1,166 Diversity
Array Technology (DArT) and SSR markers, and identified eight
QTL on seven chromosomes, including a novel QTL on Chr 7BS.
Rehman Arif et al. (2012) reported 70 DArT markers positioned
on 11 chromosomes were associated with PHS and SD in a
collection of 96 winter wheat cultivars. Albrecht et al. (2015)
carried out GWAS for a panel of 124 European winter wheat
accessions using DArT and SSR markers, and detected five QTLs
on Chr 1B, 1D (two QTL), 3D, and 5D.

Chinese wheat landraces display higher PHS resistance than
improved cultivars (Wang et al., 2011; Liu et al., 2014), thus
present valuable genetic resources for identifying candidate loci
associated with PHS resistance that could be used in modern
breeding programs. In the present study, a collection of 717
wheat landraces from major wheat-growing zones in China were
phenotyped for PHS resistance over 4 years (2012–2015) at three
locations. In order to identify markers that are closely positioned
to new or known candidate genes and QTL, the accessions were
genotyped using high density DArT-seq and single nucleotide
polymorphism (SNP) arrays. We investigate the frequency of
favorable alleles for PHS resistance in landraces originating from
different wheat-growing regions in China.

MATERIALS AND METHODS

Chinese Wheat Landraces
Seven hundred and seventeen wheat landraces from 10 major
wheat-growing zones in China were obtained from the CAAS
(Supplementary Table S2 and Figure 1). The landraces were
evaluated from 2012 to 2015 at experimental farms at Wenjiang
(30◦42′41.1′′N 103◦52′06.7′′E), Chongzhou (30◦32′39.9′′N
103◦39′08.6′′E), and Ya’an (29◦58′39.9′′N 102◦59′21.9′′E) in
Sichuan.

Phenotyping for PHS Resistance
We evaluated PHS resistance by performing germination tests of
harvest-ripe grain under controlled conditions (Somyong et al.,
2014; Zhang et al., 2014; Lin et al., 2015). At each site, wheat
spikes were harvested at physiological maturity (i.e., after loss
of green pigmentation in the spikes and peduncles). The spikes
were air-dried at room temperature for 7 days, avoiding direct
sunlight and high temperature. Spikes were then stored at -
20◦C to preserve grain dormancy (Mares, 1983). Once samples
of all accessions had been collected, threshing was performed by
hand to aviod damaging the seed coat or embryos. Germination
testing was conducted at 20 ± 1◦C for 7 days and used three
replicate petri dishes lined with filter paper for each accession,
where each petri dish contained 50 grains. Germination was
defined as the rupture of the grain coat by the emerging radicle.
Germination was recorded over a period of 7 days and used
to calculate cumulative percentage germination or germination
rate (GR) to estimate the degree of SD (Osa et al., 2003; Mori
et al., 2005; Torada et al., 2005). A GR apoproaching 100%
indicates low levels of grain dormancy or PHS resistance (i.e., all
grains germinated), whereas a GR approaching 0% indicates high
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FIGURE 1 | Distribution of Chinese wheat landraces in 10 major agro-ecological production zones of China.

levels of grain dormancy or PHS resistance. One-Way Analysis
of variance (ANOVA) of GR for accessions derived from the 10
Chinese wheat-growing zones, which was performed by Duncan’s
multiple test in each phenotyping tested environment. Two-tailed
Pearson product-moment correlation coefficient tests were also
carried out for GR obtained across the six environments (Fieller
et al., 1957).

Genotyping
The collection of 717 wheat landraces was genotyped using
the DArT-seq (Diversity Arrays Technology, Canberra, ACT,
Australia) genotyping-by-sequencing (GBS) platform. A subset
of 272 landraces, that were representative of the genetic diversity,
was also genotyped using the Axiom R© Wheat660 SNP array
(Affymetrix1, Santa Clara, CA, USA). A total of 89,284 probes
from the DArT-seq (DArT and DArT_GBS) and 630,517 probes
from the Wheat660 SNP arrays were used for genotyping.
Markers with maximum missing values of 10% were discarded

1http://www.affymetrix.com/catalog/prod850001/AFFY/Axiom%26%23174%3B-
Wheat-Genotyping-Arrays#1_3

and only those with minor allele frequency (MAF) ≥ 0.05 were
used for further analyses.

Genome-Wide Association Study (GWAS)
for PHS Resistance
Compressed mixed linear model (Wang et al., 2005; Zhang Z.
et al., 2010) accounting for the population structure (Pritchard,
et al., 2000) and familial relationship (Li et al., 2013) was used
to examine the association between markers and PHS phenotype
using Tassel 4.0 (Bradbury et al., 2007). Population structure was
assessed using the Bayesian clustering algorithm implemented by
Structure 2.3.4 (Pritchard et al., 2000; Falush et al., 2003; Hubisz
et al., 2009). An admixture model with 10 replicates for each
number of genetic clusters (K, ranging from 1 to 10) and 10,000
iterations of burn-in followed by 10,000 MCMC iterations was
used. The outputs of the genetic cluster analysis were extracted
in STRUCTURE HARVESTER (Earl and vonHoldt, 2012) and
the optimal alignment of the 10 iterations was determined using
CLUMPP (Jakobsson and Rosenberg, 2007).

Four separated GWAS analyses were performed with four sets
of STRUCTURE data in this study: (1) association analysis for
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717 Chinese landrace wheat accessions using DArT-seq markers,
(2) association analysis for 272 accessions using Wheat660 SNP
markers, (3) association analysis for 77 white-grained accessions
by Wheat660 SNP markers, and (4) association analysis for 186
red-grained accessions by Wheat660 SNP markers. GWAS sets
3 and 4 were conducted to explore the possibility of detecting
QTL specific to the white- and red-grained germaplsm pools,
termed grain colour releated QTL (GCR-QTL). The threshold
for significant marker-trait associations was set at -log10 (0.01/n,
where n= number of markers) for GWAS sets 1 and 2, and –log10
(0.001/n, where n = number of markers) for GWAS sets 3 and
4, which roughly equates to a Bonferroni correction (Weisstein,
2004; Su et al., 2016). Manhattan plots were generated using
the qqman R package (Turner, 2014) in R i386 3.0.3 (R Core
Team, 2014). Markers detected in at least two environments were
used for QTL determine, and markers positioned with a 10 Mb
region were considered the same QTL region. Markers associated
with PHS resistance in this study were compared with QTL, loci
and genes previously reported in the literature using a genetic
map including 90K SNP, expressed sequence tag, SSR and DArT
markers was reported by Cabral et al. (2014). The chromosomal
locations of the 90K SNPs (Supplementary Table S7), DArT-seq
markers and Wheat660 SNP markers were determined using the
wheat ‘Chinese Spring’ survey sequence version 2.282.

Estimation of Haplotype Effects
Haplotype analyses were carried out for major QTL detcted
in GWAS sets 1 and 2. Popart 1.73 (Leigh and Bryant, 2015)
was used to carry out haplotype analyses, and accessions
with missing values were not included. The minimum
spanning networks method was used to show the relationship
between haplotypes and Median-joining networks for inferring
intraspecific phylogenies (Bandelt et al., 1999). In each of the test
environments, analysis of vairance (ANOVA) was conducted by
taking genotypes as fixed effects and environments as random
effect using SPSS version 16.0 (SPSS Inc., Chicago, IL, USA).
‘Favorable’ haplotpyes (allele and allelic combinations) were
those that significantly lowered GR (increasing PHS resistance)
compared to alternative haplotypes based on ANOVA. Thus,
alterntive haplotypes were considered ‘unfavorable’ haplotpyes
for PHS resistance. Accessions genotyped with the Wheat660
SNP array were used to determine the number of favorable
haplotypes in each accession for haplotype pyramiding analysis.
The frequency of favorable haplotpyes in the landrace collection
was determined as the proportion of accessions that carried the
favorable haplotpye.

RESULTS

Variation for PHS Resistance in Chinese
Wheat Landraces
Pre-harvest sprouting resistance was evaluated for a collection of
717 landraces grown at three locations (Chongzhou, Wenjiang,

2ftp://ftp.ensemblgenomes.org/pub/release-28/plants/fasta/triticum_aestivum/dna/
3http://popart.otago.ac.nz

and Ya’an) from 2012 to 2015 (Figure 1 and Supplementary
Table S2). Most accessions displayed relatively stable phenotypes
across the six environments (Figure 2A). The lowest mean
GR (24.8%) was recorded in 2014 at Wenjiang, whereas the
highest mean GR (60.8%) was recorded in 2012 at Ya’an
(Supplementary Table S3). The GR was highly correlated
across environments (r = 0.54–0.80) based on the two-tailed
Pearson product-moment correlation coefficient test (Fieller
et al., 1957) (Table 1). A total of 194 landraces exhibited
a mean GR < 20.0%, of which 23 landraces displayed
consistently dormant phenotypes across all six environments
(Supplementary Table S2). Overall, white-grained accessions
displayed significantly higher GR (mean range 47.2–79.6%)
compared to red-grained accessions (mean range 19.1–56.0%)
across all test environments (p= 8.52E-28–9.88E-13). Most
landraces from wheat-growing zones III-YTS, IV-SAS, and
V-SWAS, which are high rainfall regions in southern China,
had red colored grain and displayed a significantly lower mean
GR than landraces from other wheat-growing zones (Figure 2B
and Supplementary Table S4). No accessions from zone IV-SAS
were white-grained and only 8.5 and 7.9% of landraces from
zones III-YTS and V-SWAS, respectively, produced white
grains. Only a small number of landraces with white grains
showed a mean GR < 20.0% across all six environments (i.e.,
Baitiaoyu, Baikangyangmai, Xiaoganmai, Baixu, Xiaoqingmang,
Tuotuomai, Hechuanmai, Changxuxuqiaomai, and Dabaili).
In contrast, 43.1 and 40.3% of landraces from zones I-NW
and II-Y&H were red-grained and exhibited a significantly
higher mean GR, respectively. Although higher percentages of
accessions with red grains were from zones VIII-NWS and
IX-Q&T, landraces from these two regions displayed lower levels
of PHS resistance.

In order to investigate variation for PHS resistance associated
with the origin of Chinese landraces, the mean GR obtained by
accessions from each of the 10 zones were compared. Accessions
from high rainfall zones III-YTS, IV-SAS, and V-SWAS showed
a significantly lower mean GR than accessions derived from the
other seven zones in at least three environments (Figure 2B).
Further, accessions from zone IX-Q&T showed a significantly
higher mean GR than accessions from other zones in at least
three environments (Figure 2B). Accessions from zone IV-SAS
displayed the lowest mean GR across all six environments
(6.0–20.9%), however, this was similar to accessions from
zones III-YTS (12.0–30.0%) and V-SWAS (13.1–36.9%).
Accessions from zone VI-NES showed a significantly higher GR
(15.5–58.8%) compared to accessions from zone IV-SAS in two of
the six environments (i.e., Wenjiang in 2013 and Chongzhou in
2014). But accessions from zone VI-NES exhibited similar levels
of PHS resistance with those from zones III-YTS and V-SWAS
in all environments except Wenjiang in 2013. Accessions
from zone I-NW (30.7–8.1%), II-Y&H (30.0–56.0%), VII-NS
(29.4–66.0%), VIII-NWS (27.9–70.4%), IX-Q&T (58.9–80.8%),
and X-XJ (35.7–70.7%) showed a significantly higher mean GR
than accessions from zone IV-SAS in all test environments.
Overall, accessions from zone IX-Q&T showed the highest mean
GR compared to accessions from all other nine zones, but the
mean GR was only deemed significantly higher in two of the six
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FIGURE 2 | Phenotypic analysis for germination rate (GR) obtained by Chinese wheat landraces. (A) GR of Chinese wheat landraces grown from 2012 to
2015 at Wenjiang, Chongzhou, and Ya’an; (B) Box plot for GR obtained by accessions grouped according to origin (i.e., the 10 major agro-ecological production
zones of China). The middle horizontal line within each box represents the mean GR and vertical lines mark the range from 5 to 95% of the total GR within each
group.

TABLE 1 | Pearson product-moment correlation coefficient (PPCC) of germination rate among all measured environments.

Correlations 2012 Ya’an 2013 Wenjiang 2014 Wenjiang 2014 Chongzhou 2015 Wenjiang 2015 Chongzhou

2012 Ya’an

2013 Wenjiang 0.56∗∗

2014 Wenjiang 0.54∗∗ 0.70∗∗

2014 Chongzhou 0.55∗∗ 0.68∗∗ 0.69∗∗

2015 Wenjiang 0.56∗∗ 0.69∗∗ 0.81∗∗ 0.68∗∗

2015 Chongzhou 0.62∗∗ 0.68∗∗ 0.74∗∗ 0.68∗∗ 0.77∗∗

∗∗Correlation is significant at the 0.01 level (2-tailed).

test environments. Overall, analysis of germination data using
harvest-ripe grain collected from six environments revealed that
wheat landraces originating from high rainfall zones in China
(III-YTS, IV-SAS, and V-SWAS) displayed superior levels of PHS
resistance.

GWAS for PHS in Chinese Wheat
Landraces
A total of 9,740 polymorphic markers with MAF ≥ 0.05 were
selected from 89,284 DArT-seq markers for Bayes structure
analysis and GWAS using 717 landrace accessions. Out of the 717
accessions, 272 that were representative of the genetic diversity

were selected and genotyped using the Axiom R© Wheat660 SNP
array (Supplementary Table S2). From the Wheat660 SNP array,
178,803 polymorphic SNP markers with MAF ≥ 0.05 were
selected out of 630,517 total SNP markers. This subset of SNP
markers were used for Bayes structure analysis and GWAS. Based
on the genetic clusters analysis in Structure Harvester, K = 5
provided the highest peaks in both DArT-seq and Wheat660 data
sets.

Genome-wide association studies detected three highly
significant DArT-seq and seven highly significant SNP markers.
These markers satisfied the threshold for significance applied in
this study; a –log10P value > 6.55 [−log10 (0.01/178803)]
(Su et al., 2016) and were detected in at least two test

Frontiers in Plant Science | www.frontiersin.org 5 April 2017 | Volume 8 | Article 401

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00401 April 4, 2017 Time: 19:44 # 6

Zhou et al. GWAS for PHS in Wheat

environments. The chromosome position of these 10 highly
associated markers revealed three main QTL regions that
potentially contain PHS resistance genes (Figure 3A, Table 2,
and Supplementary Table S5). QTL1 and QTL3 were represented
by only one marker each, while QTL2 comprised eight markers.
SNP marker AX-111578083 located at 173.81 Mb was linked with
QTL1 on Chr 3A. This marker was detected in all environments
with the exception of 2012Ya’an and explained 11.5–25.1%
of the phenotypic variation. SNP marker AX-109028892
located at 39.36 Mb was linked with QTL 3 on Chr 5D. This
marker was identified in three environments; 2013Wenjiang,
2015Wenajiang, and 2015Chongzhou and explained 11.5–12.0%
of the phenotypic variation. The eight markers associated with
QTL2 on Chr 3D consisted of three DArT-seq markers and
five Wheat660 SNP markers. The three DArT-seq markers;
A11134, A36351, and A36269 were located at 110.99 Mb,
111.54 Mb, and 113.89 Mb, respectively. They were detected
in 4, 5, and 6 environments and explained 4.4–8.8% of the
phenotypic variation, respectively. The five SNP markers;
AX-111204246, AX-108879360, AX-111624595, AX-110772653,
and AX-95124645 were located at 112.35 Mb, 112.36 Mb,
112.63 Mb, 112.80 Mb, and 113.74 Mb on Chr 3D and explained
11.7–19.3% of the phenotypic variation, respectively (Table 2
and Supplementary Table S5). SNP markers AX-111204246
and AX-95124645 were associated in two environments, while
AX-111624595 and AX-110772653 were associated in four
environments, and AX-108879360 was associated in three
environments.

Among the three main QTL identified, QTL3 on Chr 5D
appears to be novel (Figure 3D, Tables 2, and Supplementary
Table S7) while QTL1 and QTL2 were located in close proximity
to known genes or previously reported QTL for grain dormancy
or PHS resistance in wheat (Figures 3B,C and Supplementary
Table S7). QTL1 was positioned close to the Tamyb10 gene
located at 174.1 Mb on Chr 3A which is significantly associated
with grain color and germination (Himi et al., 2011; Dong et al.,
2015; Lin et al., 2015). SNP maker AX-111578083 linked to QTL1
was positioned only 0.3 Mb away from Tamyb10 (Figure 3B).
At least three QTL have been previously mapped within the
region spanning 102.3–119.3 Mb on Chr 3D and includes the
R-loci (Groos et al., 2002; Fofana et al., 2009; Rasul et al., 2009).
QTL2 identified in this study (110.99–113.89 Mb, located near the
R-loci region) also overlaps with major QTL previously reported
on Chr 3D (Figure 3C). Overall, three main QTL for PHS
resistance detected in Chinese wheat landraces were located on
Chromosomes 3A, 3D, and 5D.

Haplotype Analyses for Main QTL
Confering PHS Resistance
Each main QTL detcted in the panel of 717 landraces (i.e.,
QTL1, QTL2, and QTL3) had two haplotypes; one favorable
and another unfavorable for PHS reisitance. Haplotype A for
QTL1 (QTL1-HAP-A) was observed in 71 accessions, where the
mean GR ranged from 60.9 to 89.5% across all evironments
(Table 3 and Figure 4). Whereas, haplotype G for QTL1 (QTL1-
HAP-G) was observed in 109 accessions that showed an average

GR of 9.0–38.8% (Table 3 and Figure 4). From the ANOVA
results, the GR of accessions from haplotpye G was significantly
lower than that of haplotpye A. Therefore, QTL1-HAP-G was
defined as the favorable haplotype and QTL1-HAP-A as the
unfavorable haplotype for PHS resistance. Haplotype TGTAC
in QTL2 (QTL2-HAP-TGTAC) was present in 30 accessions
showing an avgerage GR of 67.7–94.2% (Table 3 and Figure 4).
On the other hand, haplotype CACTT for QTL2 (QTL2-HAP-
CACTT) was observed in 176 accessions showing a significantly
lower average GR of 20.1–42.4% (Table 3 and Figure 4). Hence
the QTL2-HAP-CACTT was defined as the favorable haplotype
and QTL2-Hap-TGTAC as the unfavorable haplotpye for PHS
resistance. Haplotpye G for QTL3 (QTL3-HAP-G) was observed
in 74 accessions showing an average GR of 59.2–83.2% across the
enviornments (Table 3 and Figure 4). In contrast, haplotype A
for QTL3 (QTL3-HAP-A) was present in 179 accessions which
showed a significantly lower average GR of 21.7–35.5% (Table 3
and Figure 4), hence QTL3-HAP-A was defined as the favorable
haplotype and QTL3-HAP-G as the unfavorable haplotpye for
PHS resistance.

Geographic Distribution of Main QTL for
PHS Reisitance
To investigate the geographic distribution of the three main
QTL, the frequency of the six haplotypes was determined for
landraces sourced from 9 of the 10 Chinese wheat-growing zones
(Figure 5).

High frequencies (94.4–100%) of the favorable haplotype for
QTL1 (QTL1-HAP-G) were observed in landraces from zones
III-YTS, IV-SAS, V-SWAS, and IX-Q&T. Half of the accessions
originating from zones VII-NS and VIII-NWS carried the QTL1-
HAP-G favorable haplotype, while only 18.2 and 30.7% of
accessions from zones I-NW and II-Y&H carried it. More than
50% of all accessions carried the favorable haplotype for QTL2
(QTL2-HAP-CACTT) in all test zones. The frequencies of QTL2-
HAP-CACTT were 53.3, 73.9, and 94.4% in landraces from
zones II-Y&H, I-NW, and III-YTS, respectively. All accessions
from zones IV-SAS, V-SWAS, VIII-NWS, and IX-Q&T had
the favorable haplotype QTL2-HAP-CACTT. None of the
accessions in zone VII-NS carried the favorable haplotype for
QTL3 (QTL3-HAP-A). The QTL3-HAP-A favorable haplotype
occurred in 33.3, 47.2, and 50.0% of accessions from zones
I-NW, II-Y&H, and X-XJ. High frequencies of QTL3-HAP-A
were observed in zones III-YTS, IV-SAS, V-SWAS, VIII-NWS,
and IX-Q&T. More than 80% of all accessions from zones
III-YTS, IV-SAS, V-SWAS, VIII-NWS, and IX-Q&T had all
three favorable haplotypes. Overall, the frequency of favorable
haplotypes for main QTL contributing PHS resistance in Chinese
wheat landraces varied depending on their geographical origin
(Figure 5).

Additional Grain Colour Related QTL
(GCR-QTL)
To investigate QTL that may have been masked by the main
QTL associated with grain color (e.g., QTL1 on 3A and QTL2 on
3D) GWAS was repeated for red- and white-grained accessions
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FIGURE 3 | Manhattan plots of genome-wide association studies (GWAS) results for pre-harvest sprouting (PHS) resistance in Chinese wheat
landraces. (A) Three main quantitative trait loci (QTL) identified by GWAS set 1 DArT-seq and 2 Wheat660; (B) QTL1 on Chr 3A and co-locating previously reported
QTL; (C) QTL2 on Chr 3D and co-locating previously reported QTL; (D) QTL3 on Chr 5D and co-locating previously reported QTL; (E) GWAS results of GWAS set 3
77 white-grained accessions; (F) GWAS results of set 4 186 red-grained accessions.

separately. Among the 272 accessions that were genotyped using
Wheat660 SNP array (Supplementary Table S2), 186 accessions
were red-grained, and 77 accessions were white-grained, while
9 accessions didn’t have any color information in Chinese Crop
Germplasm Resources Information System.

Firstly, 178,803 polymorphic SNP markers were used for
Bayes structure analysis of the two germplasm sets. K = 4
and K = 2 showed the highest peak in both white- and
red-grained accessions, respectively. Next, compressed mixed
linear model accounting for the population structure and familial
relationship was then used to examine marker-trait assoications
within both groups. In the white-grained accessions, no marker
was found to be significantly associated with GR (Figure 3E).
However, in the red-grained group, a total of 46 significant
markers obtained –log10P values > 8.25 [−log10(0.001/178803)]
in at least two environments (Figure 3F and Supplementary
Table S6). This resulted in the detection of 32 GCR-QTL for
PHS resistance within the red-grained sub-group, of which 20
QTL were previously reported, as indicated in Table 2. Eleven
GCR-QTL were detected in the A genome, 20 GCR-QTL in the B
genome, but only 1 GCR-QTL was detected in the D genome. In
addition, some markers displayed high –log10P values ( > 8.25) in
only one environment (e.g., AX-110367306, AX-108874755, and
AX-109979143), therefore were not selected for further analysis
(Figure 3F).

By determining the presence/absence of the favorable
haplotype for each of the 32 GCR-QTL in the 186 red-grained
wheat accessions, the total number of favorable haplotypes in
each landrace was calculated. Interestingly, a highly significant
correlation was observed between the number of favorable
haplotypes occurring in landrace accessions and the mean GR
obtained across all six environments (R2

= 0.62; Figure 6). Red-
grained landraces were highly enriched with favorable haplotypes
for GCR-QTL. For instance, 135 of the 186 red-grained landraces
carried more than 20 favorable haplotypes.

DISCUSSION

We have characterized the largest number of wheat landraces
for PHS resistance to date – providing new insight into the
genetic architecture of this important trait and the geographical
distribution of favorable haplotypes across the wheat-growing
zones in China.

Genome-wide association studies using germination data
collected across six environments identified three main QTL in
the collection of 717 landraces, plus 32 GCR-QTL when the red-
grained accessions were analyzed separately. However, this is
not the first study to report genes/QTL for PHS resistance in
Chinese wheat landraces (Zhang H.P. et al., 2010; Zhang et al.,
2014, 2017; Wang et al., 2011). For example, QTL located on Chr
4A in the landrace Tuotuomai and QTL on Chr 3A and 3B in
the landrace Wanxianbaimaizi are reported to be associated with
PHS resistance (Chen et al., 2008; Zhang H.P. et al., 2010). It
is clear that Chinese wheat landraces provide a useful source of
PHS resistance to develop modern cultivars incorporating PHS
resistance.

So far, seven genes associated with PHS have also been cloned
in wheat, including:TaVp1 (Nakamura and Toyama, 2001; Chang
et al., 2010, 2011; Wang et al., 2011), TaMFT (Nakamura et al.,
2011), TaPHS1 (Liu S. et al., 2013; Liu et al., 2015), TaSdr (Zhang
et al., 2014, 2017), TaPm19 (Barrero et al., 2015), Tamyb10
(Dong et al., 2015; Wang et al., 2016), and TaMKK3 (Torada
et al., 2016). Some of them (i.e., TaVp1, TaMFT, TaPHS1, and
TaSdr) have been used to test PHS in Chinese cultivars by
developing KASP markers (Rasheed et al., 2016). In this study,
highly significant main QTL were positioned on the group 3
chromosomes. Positioned in close proximity to the strong signals
detected on Chr 3A (QTL1) and Chr 3D (QTL2), is the grain
color transcription factor Tamyb10, known to be associated with
PHS resistance (Groos et al., 2002; Dong et al., 2015). Tamyb10
is located at the distal region of the long arm of Chr 3A, 3B,
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TABLE 2 | Summary of quantitative trait loci (QTL) results from genome-wide association studies (GWAS) of pre-harvest sprouting (PHS) resistance in
Chinese wheat landraces.

QTL Locus Marker Mb Env. −log10P R2 Reference

QTL1# 3A AX-111578083 173.81 5 7.23 ∼ 13.95a 11.5–25.1% Tamyb10-A1

QTL2# 3D A11134 ∼ A36269 110.99 ∼ 113.89 6 6.58 ∼ 12.74 4.4–19.3% Tamyb10-D1

QTL3# 5D AX-109028892 39.36 3 6.79 ∼ 7.00 11.5–12%

GCR-QTL1$ 1A AX-110008090 0.35 2 9.14 ∼ 10.86 21.8–33.8% Mohan et al., 2009

GCR-QTL2$ 1A AX-94464571 233.53 2 8.75 ∼ 9.68 23.5–30.6% Singh et al., 2010

GCR-QTL3$ 1B AX-109866527 221.04 3 8.62 ∼ 10.1 23–23.6% Jaiswal et al., 2012

GCR-QTL4$ 1B AX-109555236 248.86 2 8.58 ∼ 12.96 19.6–25.7%

GCR-QTL5$ 1D AX-111775865 20.07 2 8.53 ∼ 11.11 19.6–34.3%

GCR-QTL6$ 2A AX-109973468 104.07 3 9.36 ∼ 13.08a 21.2–31.2% Mohan et al., 2009; Jaiswal et al.,
2012

GCR-QTL7$ 2B AX-94693825 ∼
AX-110478651

102.36 ∼ 118.23 2 8.72 ∼ 11.40 21.4–34.6% Kumar et al., 2009; Zhang et al.,
2014

GCR-QTL8$ 2B AX-110645544 160.78 2 10.62 ∼ 12.48 21.5–29.5% Kumar et al., 2009; Zhang et al.,
2014

GCR-QTL9$ 2B AX-109008046 209.62 2 9.27 ∼ 11.48 25.6–32.9% Kumar et al., 2009; Zhang et al.,
2014

GCR-QTL10$ 2B AX-111478580 296.90 3 8.82 ∼ 10.93 21.9–29.7%

GCR-QTL11$ 2B AX-110610210 ∼
AX-111741521

338.83 ∼ 340.34 3 8.42 ∼ 12.95 22.1–30.1%

GCR-QTL12$ 3A AX-109376167 ∼
AX-111037462

151.44 ∼ 152.19 2 8.81 ∼ 11.67 19.3–35.7% Rasul et al., 2009

GCR-QTL13$ 3A AX-111578083 173.81 2 9.51 ∼ 12.81 22.4–37.1%b Tamyb10-A1

GCR-QTL14$ 3B AX-111495497 56.99 3 9.35 ∼ 11.6 23.1–31.3% Jaiswal et al., 2012

GCR-QTL15$ 3B AX-110619077 ∼
AX-111560777

121.63 ∼ 126.95 3 8.59 ∼ 13.27a 20.7–35.2% Mares et al., 2009; Chang et al.,
2010; Zhang H.P. et al., 2010

GCR-QTL16$ 3B AX-108930833 197.07 2 8.51 ∼ 10.11 28.1–29.1% Mares et al., 2009; Chang et al.,
2010; Zhang H.P. et al., 2010

GCR-QTL17$ 3B AX-109353822 249.91 2 8.19 ∼ 13.42a 19.3–37.3%b Mares et al., 2009; Chang et al.,
2010; Zhang H.P. et al., 2010

GCR-QTL18$ 3B AX-111819945 286.02 2 8.46 ∼ 8.63 19.3–20.2% Mares et al., 2009; Chang et al.,
2010; Zhang H.P. et al., 2010

GCR-QTL19$ 3B AX-110978491 299.58 3 8.59 ∼ 10.86 19.6–27.9% Mares et al., 2009; Chang et al.,
2010; Zhang H.P. et al., 2010

GCR-QTL20$ 3B AX-111529538 421.31 2 6.58 ∼ 11.29 15–26.6% Mares et al., 2009; Chang et al.,
2010; Zhang H.P. et al., 2010

GCR-QTL21$ 3B AX-109861314 ∼
AX-111106200

494.35 ∼ 505.33 3 8.37 ∼ 13.36a 19–36.5%b Jaiswal et al., 2012; Cabral et al.,
2014

GCR-QTL22$ 3B AX-111194600 767.96 2 8.15 ∼ 8.52 19.4–21.1% Rehman Arif et al., 2012; Jaiswal
et al., 2012

GCR-QTL23$ 4A AX-109919526 0.58 2 8.3 ∼ 8.76 21.6–25.1%

GCR-QTL24$ 4A AX-111634210 208.43 3 8.53 ∼ 12.86 19.5–36.4%b Albrecht et al., 2015; Lin et al.,
2015; Torada et al., 2016

GCR-QTL25$ 5A AX-109844264 ∼
AX-111698406

100.05 ∼ 103.36 2 8.46 ∼ 10.60 21–28.5%

GCR-QTL26$ 5B AX-89623229 19.77 3 8.43 ∼ 9.66 19.1–23.1%

GCR-QTL27$ 6A AX-111007766 ∼
AX-111732156

23.31 ∼ 31.33 2 8.52 ∼ 13.06a 19.4–34.9%

GCR-QTL28$ 6B AX-109834362 79.00 3 8.32 ∼ 13.05a 20.4–37.4%b

GCR-QTL29$ 6B AX-108844376 92.71 2 9.3 ∼ 11.53 22.1–31.6%

GCR-QTL30$ 7A AX-110909277 ∼
AX-111486355

136.77 ∼ 141.52 3 8.27 ∼ 12.8 18.7–36%

GCR-QTL31$ 7A AX-110478067 170.37 3 10.15 ∼ 12.65 24.4–34%

GCR-QTL32$ 7B AX-110932737 102.42 2 9.32 ∼ 12.66 22.3–35.3% Cabral et al., 2014

# indicates a main QTL identified using all accessions; $ indicates a grain color related QTL (GCR-QTL) identified in the red-grained group; a indicates the −log10P value is
higher than 13; b indicates the QTL explained more than 36% of the phenotypic variance.
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TABLE 3 | Phenotypes (GR) and frequencies of haplotypes (or alleles) for the three main QTL identified via GWAS using all accessions.

Main
QTL

Haplotpye Frequency
of Hap

GR 2012
Ya’an

GR 2013
Wenjiang

GR 2014
Wenjiang

GR 2014
Chongzhou

GR 2015
Wenjiang

GR 2015
Chongzhou

QTL1 Hap-Aa 60.6% 38.8% 15.8% 9.0% 12.6% 10.7% 17.7%

Hap-Gb 39.4% 89.5% 85.2% 63.9% 63.8% 60.9% 73.4%

QTL2 Hap-CACTTa 85.4% 42.4% 31.3% 20.1% 25.4% 23.5% 29.0%

Hap-TGTACb 14.6% 94.2% 91.4% 71.6% 67.7% 68.8% 77.1%

QTL3 Hap-Aa 70.8% 30.1% 32.5% 21.7% 26.2% 24.0% 30.1%

Hap-Gb 29.2% 71.8% 83.2% 59.7% 60.7% 59.1% 71.8%

aFavorable haplotpye, bUnfavorable haplotpye determined by ANOVA test.

FIGURE 4 | Haplotype networks for the three main QTL. The nodes represent variants for the haplotype blocks, with sizes proportional to the number of
genotypes carrying the respective variant and colors indicating phenotypic means among genotypes carrying the specific haplotype variant. ∗The germination rate
for accessions carrying the favorable haplotype is significantly lower than accessions carrying the unfavorable haplotype (p < 0.01).

FIGURE 5 | Geographic distribution of haplotypes for the three main QTL in 10 Chinese Wheat-growing Zones.
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FIGURE 6 | Pyramiding effect of favorable haplotypes for 32 grain color related QTL (GCR-QTL) in red-grained landrace accessions. (A) Box plot for
GR obtained by accessions grouped according to favorable haplotype numbers. The middle horizontal line within each box represents the mean GR and vertical
lines mark the range from 5 to 95% of the total GR within each group. (B) Regression analysis with GR and the number of favorable haplotypes.

and 3D, as reported by Himi and Noda (2005) and Himi et al.
(2011). Tamyb10 is considered a strong candidate for the R-1
gene, which regulates grain color and SD in wheat (Groos et al.,
2002) by regulating both ABA and anthocyanin accumulation
(Medina-Puche et al., 2014). Although Tamyb10-D1 has not been
mapped on the ‘Chinese Spring’ survey sequence, it is likely
that the strong signal of R-loci on Chr 3D in the current study
is Tamyb10-D1. Recently, a molecular investigation of allelic
variation in Tamyb10 provided information on grain color and
GR in Chinese wheat (Wang et al., 2016) and Aegilops tauschii
(Dong et al., 2015). In this study, two genes associated with grain
color (Tamyb10-A1 and Tamyb10-D1) were positioned in close
proximity to PHS-resistant QTL (Figure 3A). However, a QTL
was not detected in the region harboring the B genome ortholog
Tamyb10-B1, which was detected in U.S. winter wheat (Lin et al.,
2016). Two color-related genes showed the strongest signals, thus
grain color appears to play an important role in PHS resistance
in Chinese landraces (Flintham, 2000; Warner et al., 2000; Himi
et al., 2002). In all test environments conducted in this study, the
germination level of white-grained accessions was significantly
higher than red-grained accessions. While red-grained wheat is
generally more resistant to PHS (Probert, 2000; Warner et al.,
2000), some white-grained accessions have been reported to
display high levels of resistance (Torada and Amano, 2002;
Bi et al., 2014). In this study, nine white-grained accessions
displayed high levels of PHS resistance and were selected for
breeding and further genetic studies.

The main QTL positioned on Chr 5D (QTL3) in this study
was considered a novel genomic region potentially harboring loci
for PHS resistance. This region seems promising for introgression
into white-grained wheat cultivars because it does not co-locate
with known genes influencing grain color.

Separate GWAS analyses for white- and red-grained
accessions were performed in search for GCR-QTL that may
have been masked by main QTL. Although a small number of
white-grained accessions displayed PHS resistance, no GCR-QTL
was detected within this set. This could be due to population size,
as this set only contained 77 accessions. Regardless, the genetic
architecture of PHS resistance in the identified white-grained

accessions should be subjected to further investigation. When
GWAS was carried out for the red-grained accessions, a total of
32 GCR-QTL were detected. Of these regions, almost two-thirds
(20 GCR-QTL) have been reported in previous mapping studies.
Interestingly, Tamyb10 in the B and D genomes were not
identified, only Tamyb10 (GCR-QTL13). Although grain color
genes contribute to PHS resistance in wheat, there is evidence
for genetic factors that are not affected by grain color (Lin et al.,
2016). Apart from GCR-QTL13, the remaining 31 GCR-QTL
did not co-locate with known genes influencing grain color,
thus present good candidates to improve PHS resistance in
white-grained wheat. Surprisingly, red-grained landraces were
enriched with favorable haplotypes for the GCR-QTL and the
number of favorable haplotypes was highly correlated with
GR (Figure 6). This provided further evidence that GCR-QTL
significantly contribute to levels of PHS resistance in red-grained
wheat accessions. Further, this highlights the genetic complexity
of PHS resistance and the challenge plant breeders face to
assemble genotypes incorporating adequate levels of resistance.

Certainly, the process of wheat domestication affected many
traits, including SD (Huang et al., 2010a). But following
domestication, wheat landraces were cultivated for 1000s of
years under diverse eco-geographical conditions prior to modern
breeding (Dwivedi et al., 2016; Riaz et al., 2016). Interesting
links between the origin and spread of haplotypes associated
with agro-climatic traits have been found in sorghum (Morris
et al., 2013), rice (Weng et al., 2008; Huang et al., 2010b),
and soybean (Zhou et al., 2015). PHS resistance traits and
their underlying genes may have been subject to natural and
artificial selection performed by farmers in specific environments.
In this study, the frequency of favorable haplotypes for PHS
resistance QTL varied among landraces originating from the 10
wheat grown zones of China. Favorable haplotypes occurred at
high frequencies (92.8–97.0%) in landrace accessions sourced
from mesic zones III-YTS, IV-SAS, and V-SWAS (Figure 4).
Notably, PHS occurs more frequently in these zones compared
to zones in northern and north-western China (Jin, 1996; He
et al., 2000; Xiao et al., 2002; Yuan et al., 2003; Liu L. et al.,
2013). Therefore, it seems PHS resistance was an important
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trait for crop improvement in southern and eastern China
where selective pressure for genes/loci controlling PHS resistance
is apparent. The high frequency of favorable haplotypes in
landraces originating from high rainfall environments highlights
the importance of these haplotypes for future breeding efforts to
develop cultivars incorporating PHS resistance.

AUTHOR CONTRIBUTIONS

YZ, HT, M-PC, and KD carried out experiments, analyzed the
data, and contributed to writing; Z-XC, Z-YL, SG, Y-XL, Q-TJ,
X-JL, Z-EP, Y-MW, and Y-LZ carried out experiments and
analyzed the data. LH contributed to the analysis and writing
for the association mapping; J-RW formulated the questions,
designed and carried out experiments, analyzed the data and
wrote the manuscript.

ACKNOWLEDGMENTS

The authors thank Drs. Lihui Li and Xiuquan Li (Chinese
Academy of Agricultural Science) for plant materials (Chinese
wheat landraces) support. This work was supported by the
National Basic Research Program of China (2014CB147200), the
National Natural Science Foundation of China (31571654 and
31171555). Dr. Jirui Wang thanks the National Supercomputer
Centre in Guangzhou houses (SUN YAT-SEN University) for
granting CPU-time on the Tianhe-2 (http://en.nscc-gz.cn/).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fpls.2017.00401/
full#supplementary-material

REFERENCES
Albrecht, T., Oberforster, M., Kempf, H., Ramgraber, L., Schacht, J., Kazman, E.,

et al. (2015). Genome-wide association mapping of preharvest sprouting
resistance in a diversity panel of European winter wheats. J. Appl. Genet. 56,
277–285. doi: 10.1007/s13353-015-0286-5

Bandelt, H. J., Forster, P., and Röhl, A. (1999). Median-joining networks for
inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. doi: 10.1093/
oxfordjournals.molbev.a026036

Barrero, J. M., Cavanagh, C., Verbyla, K. L., Tibbits, J. F., Verbyla, A. P., Huang,
B. E., et al. (2015). Transcriptomic analysis of wheat near-isogenic lines
identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome
Biol. 16, 93. doi: 10.1186/s13059-015-0665-6

Bewley, J. D., and Black, M. (1982). “Viability and longevity,” in Physiology and
Biochemistry of Seeds in Relation to Germination, eds J. D. Bewley and M. Black
(Berlin: Springer), 1–59. doi: 10.1007/978-3-642-68643-6_1

Bi, H. H., Sun, Y. W., Xiao, Y. G., and Xia, L. Q. (2014). Characterization of DFR
allelic variations and their associations with pre-harvest sprouting resistance
in a set of red-grained Chinese wheat germplasm. Euphytica 195, 197–207.
doi: 10.1007/s10681-013-0986-z

Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y.,
and Buckler, E. S. (2007). TASSEL: software for association mapping of
complex traits in diverse samples. Bioinformatics 23, 2633–2635. doi: 10.1093/
bioinformatics/btm308

Cabral, A. L., Jordan, M. C., McCartney, C. A., You, F. M., Humphreys, D. G.,
MacLachlan, R., et al. (2014). Identification of candidate genes, regions and
markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.).
BMC Plant Biol. 14:340. doi: 10.1186/s12870-014-0340-1

Cao, L., Hayashi, K., Tokui, M., Mori, M., Miura, H., and Onishi, K. (2016).
Detection of QTLs for traits associated with pre-harvest sprouting resistance
in bread wheat (Triticum aestivum L.). Breed. Sci. 66, 260–270. doi: 10.1270/
jsbbs.66.260

Chang, C., Feng, J. M., Si, H. Q., Yin, B., Zhang, H. P., and Ma, C. X. (2010).
Validating a novel allele of viviparous-1 (Vp-1Bf) associated with high seed
dormancy of Chinese wheat landrace, Wanxianbaimaizi. Mol. Breed. 25,
517–525. doi: 10.1007/s11032-009-9350-3

Chang, C., Zhang, H. P., Zhao, Q. X., Feng, J. M., Si, H. Q., Lu, J., et al.
(2011). Rich allelic variations of Viviparous-1A and their associations with seed
dormancy/pre-harvest sprouting of common wheat. Euphytica 179, 343–353.
doi: 10.1007/s10681-011-0348-7

Chen, C. X., Cai, S. B., and Bai, G. H. (2008). A major QTL controlling seed
dormancy and pre-harvest sprouting resistance on chromosome 4A in a
Chinese wheat landrace. Mol. Breed. 21, 351–358. doi: 10.1007/s11032-007-
9135-5

Dong, Z. D., Chen, J., Li, T., Chen, F., and Cui, D. Q. (2015). Molecular survey of
Tamyb10-1 genes and their association with grain colour and germinability in

Chinese wheat andAegilops tauschii. J. Genet. 94, 453–459. doi: 10.1007/s12041-
015-0559-0

Dwivedi, S. L., Ceccarelli, S., Blair, M. W., Upadhyaya, H. D., Are, A. K., and
Ortiz, R. (2016). Landrace germplasm for improving yield and abiotic stress
adaptation. Trends Plant Sci. 21, 31–42. doi: 10.1016/j.tplants.2015.10.012

Earl, D. A., and vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and
program for visualizing STRUCTURE output and implementing the Evanno
method. Conserv. Genet. Resour. 4, 359–361. doi: 10.1007/s12686-011-9548-7

Fakthongphan, J., Graybosch, R. A., and Baenziger, P. S. (2016). Combining ability
for tolerance to pre-harvest sprouting in common wheat (Triticum aestivum L.).
Crop Sci. 56, 1025–1035. doi: 10.2135/cropsci2015.08.0490

Falush, D., Stephens, M., and Pritchard, J. K. (2003). Inference of population
structure using multilocus genotype data: linked loci and correlated allele
frequencies. Genetics 164, 1567–1587..

Fieller, E. C., Hartley, H. O., and Pearson, E. S. (1957). Tests for rank correlation
coefficients I. Biometrika 44, 470–481. doi: 10.1093/biomet/44.3-4.470

Finch-Savage, W. E., and Leubner-Metzger, G. (2006). Seed dormancy and the
control of germination. New Phytol. 171, 501–523. doi: 10.1111/j.1469-8137.
2006.01787.x

Flintham, J. E. (2000). Different genetic components control coat-imposed and
embryo-imposeddormancy in wheat. Seed Sci. Res. 10, 43–50. doi: 10.1017/
S0960258500000052

Fofana, B., Humphreys, D. G., Rasul, G., Cloutier, S., Brûlé-Babel, A., Woods, S.,
et al. (2009). Mapping quantitative trait loci controlling pre-harvest sprouting
resistance in a red × white seeded spring wheat cross. Euphytica 165, 509–521.
doi: 10.1007/s10681-008-9766-6

Groos, C., Gay, G., Perretant, M. R., Gervais, L., Bernard, M., Dedryver, F., et al.
(2002). Study of the relationship between pre-harvest sprouting and grain color
by quantitative trait loci analysis in a white × red grain bread-wheat cross.
Theor. Appl. Genet. 104, 39–47. doi: 10.1007/s001220200004

He, Z. H., Rajaram, S., Xin, Z. Y., and Huang, G. Z. (2001). A History of Wheat
Breeding in China. Texcoco: CIMMYT. Available at: libcatalog.cimmyt.org/
download/cim/74633.pdf

He, Z. T., Chen, X. N., and Han, Y. P. (2000). Progress on preharvest sprouting
resistance in white wheat. J. Triticeae Crops 20, 84–87.

Himi, E., Maekawa, M., Miura, H., and Noda, K. (2011). Development of PCR
markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor. Appl.
Genet. 122, 1561–1576. doi: 10.1007/s00122-011-1555-2

Himi, E., Mares, D. J., Yanagisawa, A., and Noda, K. (2002). Effect of grain colour
gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA)
in wheat. J. Exp. Bot. 53, 1569–1574. doi: 10.1093/jxb/erf005

Himi, E., and Noda, K. (2005). Red grain colour gene (R) of wheat is a Myb-
type transcription factor. Euphytica 143, 239–242. doi: 10.1007/s10681-005-
7854-4

Huang, X., Schmitt, J., Dorn, L., Griffith, C., Effgen, S., Takao, S., et al. (2010a).
The earliest stages of adaptation in an experimental plant population: strong

Frontiers in Plant Science | www.frontiersin.org 11 April 2017 | Volume 8 | Article 401

http://en.nscc-gz.cn/
http://journal.frontiersin.org/article/10.3389/fpls.2017.00401/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fpls.2017.00401/full#supplementary-material
https://doi.org/10.1007/s13353-015-0286-5
https://doi.org/10.1093/oxfordjournals.molbev.a026036
https://doi.org/10.1093/oxfordjournals.molbev.a026036
https://doi.org/10.1186/s13059-015-0665-6
https://doi.org/10.1007/978-3-642-68643-6_1
https://doi.org/10.1007/s10681-013-0986-z
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1186/s12870-014-0340-1
https://doi.org/10.1270/jsbbs.66.260
https://doi.org/10.1270/jsbbs.66.260
https://doi.org/10.1007/s11032-009-9350-3
https://doi.org/10.1007/s10681-011-0348-7
https://doi.org/10.1007/s11032-007-9135-5
https://doi.org/10.1007/s11032-007-9135-5
https://doi.org/10.1007/s12041-015-0559-0
https://doi.org/10.1007/s12041-015-0559-0
https://doi.org/10.1016/j.tplants.2015.10.012
https://doi.org/10.1007/s12686-011-9548-7
https://doi.org/10.2135/cropsci2015.08.0490
https://doi.org/10.1093/biomet/44.3-4.470
https://doi.org/10.1111/j.1469-8137.2006.01787.x
https://doi.org/10.1111/j.1469-8137.2006.01787.x
https://doi.org/10.1017/S0960258500000052
https://doi.org/10.1017/S0960258500000052
https://doi.org/10.1007/s10681-008-9766-6
https://doi.org/10.1007/s001220200004
libcatalog.cimmyt.org/download/cim/74633.pdf
libcatalog.cimmyt.org/download/cim/74633.pdf
https://doi.org/10.1007/s00122-011-1555-2
https://doi.org/10.1093/jxb/erf005
https://doi.org/10.1007/s10681-005-7854-4
https://doi.org/10.1007/s10681-005-7854-4
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00401 April 4, 2017 Time: 19:44 # 12

Zhou et al. GWAS for PHS in Wheat

selection on QTLS for seed dormancy. Mol. Ecol. 19, 1335–1351. doi: 10.1111/j.
1365-294X.2010.04557.x

Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., et al. (2010b). Genome-
wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42,
961–967. doi: 10.1038/ng.695

Hubisz, M. J., Falush, D., Stephens, M., and Pritchard, J. K. (2009). Inferring weak
population structure with the assistance of sample group information. Mol.
Ecol. Resour. 9, 1322–1332. doi: 10.1111/j.1755-0998.2009.02591.x

Imtiaz, M., Ogbonnaya, F. C., Oman, J., and van Ginkel, M. (2008).
Characterization of quantitative trait loci controlling genetic variation for
preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178,
1725–1736. doi: 10.1534/genetics.107.084939

Jaiswal, V., Mir, R. R., Mohan, A., Balyan, H. S., and Gupta, P. K. (2012).
Association mapping for pre-harvest sprouting tolerance in common wheat
(Triticum aestivum L.). Euphytica 188, 89–102. doi: 10.1007/s10681-012-
0713-1

Jakobsson, M., and Rosenberg, N. A. (2007). CLUMPP: a cluster matching and
permutation program for dealing with label switching and multimodality in
analysis of population structure. Bioinformatics 23, 1801–1806. doi: 10.1093/
bioinformatics/btm233

Jin, S. B. (1996). Wheat in China. Beijing: Chinese agricultural publisher.
Kato, K., Nakamura, W., Tabiki, T., Miura, H., and Sawada, S. (2001). Detection

of loci controlling seed dormancy on group 4 chromosomes of wheat and
comparative mapping with rice and barley genomes. Theor. Appl. Genet. 102,
980–985. doi: 10.1007/s001220000494

Kulwal, P., Ishikawa, G., Benscher, D., Feng, Z., Yu, L. X., Jadhav, A., et al. (2012).
Association mapping for pre-harvest sprouting resistance in white winter
wheat. Theor. Appl. Genet. 125, 793–805. doi: 10.1007/s00122-012-1872-0

Kulwal, P. L., Singh, R., Balyan, H. S., and Gupta, P. K. (2004). Genetic basis of
pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses
in bread wheat. Funct. Integr. Genom. 4, 94–101. doi: 10.1007/s10142-004-
0105-2

Kumar, A., Kumar, J., Singh, R., Garg, T., Chhuneja, P., and Gupta, P. K. (2009).
QTL analysis for grain colour and pre-harvest sprouting in bread wheat. Plant
Sci. 177, 114–122. doi: 10.1016/j.plantsci.2009.04.004

Leigh, J. W., and Bryant, D. (2015). Popart: full-feature software for haplotype
network construction. Methods Ecol. Evol. 6, 1110–1116. doi: 10.1111/2041-
210X.12410

Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., and Wang, J. (2013). Genome-wide
association study dissects the genetic architecture of oil biosynthesis in maize
kernels. Nat. Genet. 45, 43–50. doi: 10.1038/ng.2484

Lin, M., Cai, S., Wang, S., Liu, S., Zhang, G., and Bai, G. (2015). Genotyping-
by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest
sprouting resistance. Theor. Appl. Genet. 128, 1385–1395. doi: 10.1007/s00122-
015-2513-1

Lin, M., Zhang, D., Liu, S., Zhang, G., Yu, J., Fritz, A. K., et al. (2016). Genome-wide
association analysis on pre-harvest sprouting resistance and grain color in U.S.
winter wheat. BMC Genomics 17:794. doi: 10.1186/s12864-016-3148-6

Liu, L., Wang, H. Q., and Chen, Z. G. (2013). Advances on Resistance to Pre-
Harvest Sprouting in Wheat. Crops 4, 6–10.

Liu, S., and Bai, G. (2010). Dissection and fine mapping of a major QTL for
preharvest sprouting resistance in white wheat Rio Blanco. Theor. Appl. Genet.
121, 1395–1404. doi: 10.1007/s00122-010-1396-4

Liu, S., Bai, G., Cai, S., and Chen, C. (2011). Dissection of genetic components
of preharvest sprouting resistance in white wheat. Mol. Breed. 27, 511–523.
doi: 10.1007/s11032-010-9448-7

Liu, S., Li, J., and Wang, Q. (2014). Germplasm screening for resistance to pre-
harvest sprouting in southwest China. Southw. China J. Agric. Sci. 27, 931–937.

Liu, S., Sehgal, S. K., Li, J., Lin, M., Trick, H. N., Yu, J., et al. (2013). Cloning
and characterization of a critical regulator for preharvest sprouting in wheat.
Genetics 195, 263–273. doi: 10.1534/genetics.113.152330

Liu, S., Sehgal, S. K., Lin, M., Li, J., Trick, H. N., and Gill, B. S. (2015). Independent
mis-splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS)
resistance during wheat domestication. New Phytol. 208, 928–935. doi: 10.1111/
nph.13489

Mares, D., Rathjen, J., Mrva, K., and Cheong, J. (2009). Genetic and environmental
control of dormancy in white-grained wheat (Triticum aestivum L.). Euphytica
168, 311–318. doi: 10.1007/s10681-009-9927-2

Mares, D. J. (1983). Preservation of dormancy in freshly harvested wheat grain.
Crop Pasture Sci. 34, 33–38. doi: 10.1071/AR9830033

Mares, D. J., and Mrva, K. (2001). Mapping quantitative trait loci associated
with variation in grain dormancy in Australian wheat. Crop Pasture Sci. 52,
1257–1265. doi: 10.1071/AR01049

Mares, D. J., Mrva, K., Cheong, J., Williams, K., Watson, B., Storlie, E., et al.
(2005). A QTL located on chromosome 4A associated with dormancy in white-
and red-grained wheats of diverse origin. Theor. Appl. Genet. 111, 1357–1364.
doi: 10.1007/s00122-005-0065-5

Medina-Puche, L., Cumplido-Laso, G., Amil-Ruiz, F., Hoffmann, T., Ring, L.,
Rodríguez-Franco, A., et al. (2014). MYB10 plays a major role in the
regulation of flavonoid/phenylpropanoid metabolism during ripening of
Fragaria × ananassa fruits. J. Exp. Bot. 65, 401–417. doi: 10.1093/jxb/
ert377

Mohan, A., Kulwal, P., Singh, R., Kumar, V., Mir, R. R., Kumar, J., et al. (2009).
Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat.
Euphytica 168, 319–329. doi: 10.1007/s10681-009-9935-2

Mori, M., Uchino, N., Chono, M., Kato, K., and Miura, H. (2005). Mapping QTLs
for grain dormancy on wheat chromosome 3A and the group 4 chromosomes,
and their combined effect. Theor. Appl. Genet. 110, 1315–1323. doi: 10.1007/
s00122-005-1972-1

Morris, G. P., Ramu, P., Deshpande, S. P., Hash, C. T., Shah, T., Upadhyaya,
H. D., et al. (2013). Population genomic and genome-wide association studies
of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. U.S.A. 110, 453–458.
doi: 10.1073/pnas.1215985110

Nakamura, S., Abe, F., Kawahigashi, H., Nakazono, K., Tagiri, A., Matsumoto,
T., et al. (2011). A wheat homolog of MOTHER OF FT AND TFL1 acts in
the regulation of germination. Plant Cell 23, 3215–3229. doi: 10.1105/tpc.111.
088492

Nakamura, S., and Toyama, T. (2001). Isolation of a VP1 homologue from
wheat and analysis of its expression in embryos of dormant and non-dormant
cultivars. J. Exp. Bot. 52, 875–876. doi: 10.1093/jexbot/52.357.875

Nyachiro, J. M. (2012). Pre-harvest sprouting in cereals. Euphytica 188, 1–5.
doi: 10.1007/s10681-012-0779-9

Ogbonnaya, F. C., Imtiaz, M., Ye, G., Hearnden, P. R., Hernandez, E., and
Eastwood, R. F. (2008). Genetic and QTL analyses of seed dormancy and
preharvest sprouting resistance in the wheat germplasm CN10955. Theor. Appl.
Genet. 116, 891–902. doi: 10.1007/s00122-008-0712-8

Osa, M., Kato, K., Mori, M., Shindo, C., Torada, A., and Miura, H. (2003). Mapping
QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat.
Theor. Appl. Genet. 106, 1491–1496. doi: 10.1007/s00122-003-1208-1

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population
structure using multilocus genotype data. Genetics 155, 945–959..

Probert, R. J. (2000). The role of temperature in the regulation of seed dormancy
and germination. Seeds 261, 292. doi: 10.1079/9780851994321.0261

R Core Team (2014). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., and Job, D. (2012).
Seed germination and vigor. Annu. Rev. Plant Biol. 63, 507–533. doi: 10.1146/
annurev-arplant-042811-105550

Rasheed, A., Wen, W., Gao, F., Zhai, S., Jin, H., and He, Z. (2016). Development
and validation of KASP assays for genes underpinning key economic traits
in bread wheat. Theor. Appl. Genet. 129, 1843–1860. doi: 10.1007/s00122-016-
2743-x

Rasul, G., Humphreys, D. G., Brule-Babel, A., McCartney, C. A., Knox, R. E.,
and DePauw, R. M. (2009). Mapping QTLs for pre-harvest sprouting traits
in the spring wheat cross ‘RL4452/AC Domain’. Euphytica 168, 363–378.
doi: 10.1007/s10681-009-9934-3

Rehman Arif, M. A., Neumann, K., Nagel, M., Kobiljski, B., Lohwasser, U., and
Börner, A. (2012). An association mapping analysis of dormancy and pre-
harvest sprouting in wheat. Euphytica 188, 409–417. doi: 10.1007/s10681-012-
0705-1

Riaz, A., Hathorn, A., Dinglasan, E., Ziems, L., Richard, C., and Hickey, L. (2016).
Into the vault of the Vavilov wheats: old diversity for new alleles. Genet. Resour.
Crop Evol. 64, 531–544. doi: 10.1007/s10722-016-0380-5

Singh, R., Matus-Cádiz, M., Båga, M., Hucl, P., and Chibbar, R. N. (2010).
Identification of genomic regions associated with seed dormancy in white-
grained wheat. Euphytica 174, 391–408. doi: 10.1007/s10681-010-0137-8

Frontiers in Plant Science | www.frontiersin.org 12 April 2017 | Volume 8 | Article 401

https://doi.org/10.1111/j.1365-294X.2010.04557.x
https://doi.org/10.1111/j.1365-294X.2010.04557.x
https://doi.org/10.1038/ng.695
https://doi.org/10.1111/j.1755-0998.2009.02591.x
https://doi.org/10.1534/genetics.107.084939
https://doi.org/10.1007/s10681-012-0713-1
https://doi.org/10.1007/s10681-012-0713-1
https://doi.org/10.1093/bioinformatics/btm233
https://doi.org/10.1093/bioinformatics/btm233
https://doi.org/10.1007/s001220000494
https://doi.org/10.1007/s00122-012-1872-0
https://doi.org/10.1007/s10142-004-0105-2
https://doi.org/10.1007/s10142-004-0105-2
https://doi.org/10.1016/j.plantsci.2009.04.004
https://doi.org/10.1111/2041-210X.12410
https://doi.org/10.1111/2041-210X.12410
https://doi.org/10.1038/ng.2484
https://doi.org/10.1007/s00122-015-2513-1
https://doi.org/10.1007/s00122-015-2513-1
https://doi.org/10.1186/s12864-016-3148-6
https://doi.org/10.1007/s00122-010-1396-4
https://doi.org/10.1007/s11032-010-9448-7
https://doi.org/10.1534/genetics.113.152330
https://doi.org/10.1111/nph.13489
https://doi.org/10.1111/nph.13489
https://doi.org/10.1007/s10681-009-9927-2
https://doi.org/10.1071/AR9830033
https://doi.org/10.1071/AR01049
https://doi.org/10.1007/s00122-005-0065-5
https://doi.org/10.1093/jxb/ert377
https://doi.org/10.1093/jxb/ert377
https://doi.org/10.1007/s10681-009-9935-2
https://doi.org/10.1007/s00122-005-1972-1
https://doi.org/10.1007/s00122-005-1972-1
https://doi.org/10.1073/pnas.1215985110
https://doi.org/10.1105/tpc.111.088492
https://doi.org/10.1105/tpc.111.088492
https://doi.org/10.1093/jexbot/52.357.875
https://doi.org/10.1007/s10681-012-0779-9
https://doi.org/10.1007/s00122-008-0712-8
https://doi.org/10.1007/s00122-003-1208-1
https://doi.org/10.1079/9780851994321.0261
https://doi.org/10.1146/annurev-arplant-042811-105550
https://doi.org/10.1146/annurev-arplant-042811-105550
https://doi.org/10.1007/s00122-016-2743-x
https://doi.org/10.1007/s00122-016-2743-x
https://doi.org/10.1007/s10681-009-9934-3
https://doi.org/10.1007/s10681-012-0705-1
https://doi.org/10.1007/s10681-012-0705-1
https://doi.org/10.1007/s10722-016-0380-5
https://doi.org/10.1007/s10681-010-0137-8
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00401 April 4, 2017 Time: 19:44 # 13

Zhou et al. GWAS for PHS in Wheat

Somyong, S., Ishikawa, G., Munkvold, J. D., Tanaka, J., Benscher, D., Sorrells,
M. E., et al. (2014). Fine mapping of a preharvest sprouting QTL interval
on chromosome 2B in white wheat. Theor. Appl. Genet. 127, 1843–1855.
doi: 10.1007/s00122-014-2345-4

Su, J., Fan, S., Li, L., Wei, H., Wang, C., and Wang, H. (2016). Detection of favorable
QTL alleles and candidate genes for lint percentage by GWAS in Chinese
upland cotton. Front. Plant Sci. 7:1576. doi: 10.3389/fpls.2016.01576

Tan, M. K., Sharp, P. J., Lu, M. Q., and Howes, N. (2006). Genetics of grain
dormancy in a white wheat. Crop Pasture Sci. 57, 1157–1165. doi: 10.1071/
AR06101

Torada, A., and Amano, Y. (2002). Effect of seed coat color on seed dormancy in
different environments. Euphytica 126, 99–105. doi: 10.1023/A:1019603201883

Torada, A., Ikeguchi, S., and Koike, M. (2005). Mapping and validation of PCR-
based markers associated with a major QTL for seed dormancy in wheat.
Euphytica 143, 251–255. doi: 10.1007/s10681-005-7872-2

Torada, A., Koike, M., Ogawa, T., Takenouchi, Y., Tadamura, K., Wu, J., et al.
(2016). A causal gene for seed dormancy on wheat chromosome 4A encodes
a MAP kinase kinase. Curr. Biol. 26, 782–787. doi: 10.1016/j.cub.2016.01.063

Turner, S. D. (2014). qqman: an R package for visualizing GWAS results using Q-Q
and manhattan plots. bioRxiv. doi: 10.1101/005165

Wang, J., Liu, Y., Wang, Y., Chen, Z., Dai, S., Cao, W., et al. (2011). Genetic
variation of Vp1 in Sichuan wheat accessions and its association with pre-
harvest sprouting response. Genes Genomics 33, 139–146. doi: 10.1007/s13258-
010-0125-3

Wang, W. Y., Barratt, B. J., Clayton, D. G., and Todd, J. A. (2005). Genome-
wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6,
109–118. doi: 10.1038/nrg1522

Wang, Y., Wang, X. L., Meng, J. Y., Zhang, Y. J., He, Z. H., and Yang, Y. (2016).
Characterization of Tamyb10 allelic variants and development of STS marker
for pre-harvest sprouting resistance in Chinese bread wheat. Mol. Breed. 36:148.
doi: 10.1007/s11032-016-0573-9

Warner, R. L., Kudrna, D. A., Spaeth, S. C., and Jones, S. S. (2000). Dormancy in
white-grain mutants of Chinese Spring wheat (Triticum aestivum L.). Seed Sci.
Res. 10, 51–60.

Weisstein, E. W. (2004). Bonferroni Correction. Available at: http://mathworld.
wolfram.com/BonferroniCorrection.html.

Weng, J., Gu, S., Wan, X., Gao, H., Guo, T., and Su, N. (2008). Isolation and initial
characterization of GW5, a major QTL associated with rice grain width and
weight. Cell Res. 18, 1199–1209. doi: 10.1038/cr.2008.307

Xiao, S. H., Zhang, X. Y., Yan, C. S., and Lin, H. (2002). Germplasm improvement
for preharvest sprouting resistance in Chinese white-grained wheat: an
overview of the current strategy. Euphytica 126, 35–38. doi: 10.1023/A:
1019679924173

Yuan, Y. P., Chen, X., and Xiao, S. H. (2003). Advances in the study on wheat
pre-harvest sprouting. Acta Tritical Crops 3, 31.

Zhang, H. F., and Liu, R. Z. C. (1989). Studies on preharvest sprouting resistance in
winter wheat and its determination. Acta Agron. Sin. 15, 116–122. doi: 10.1007/
s13353-015-0286-5

Zhang, H. P., Chang, C., Xia, G. Y., Zhang, X. Y., Yan, C. S., Xiao, S. H., et al.
(2010). Identification of molecular markers associated with seed dormancy in
micro-core collections of Chinese wheat and landraces. Acta Agron. Sin. 36,
1649–1656. doi: 10.1016/S1875-2780(09)60077-8

Zhang, Y., Miao, X., Xia, X., and He, Z. (2014). Cloning of seed dormancy genes
(TaSdr) associated with tolerance to pre-harvest sprouting in common wheat
and development of a functional marker. Theor. Appl. Genet. 127, 855–866.
doi: 10.1007/s00122-014-2262-6

Zhang, Y., Xia, X., and He, Z. (2017). The seed dormancy allele TaSdr-A1a
associated with pre-harvest sprouting tolerance is mainly present in Chinese
wheat landraces. Theor. Appl. Genet. 130, 81–89. doi: 10.1007/s00122-016-
2793-0

Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., et al.
(2010). Mixed linear model approach adapted for genome-wide association
studies. Nat. Genet. 42, 355–360. doi: 10.1038/ng.546

Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., et al. (2015). Resequencing
302 wild and cultivated accessions identifies genes related to domestication and
improvement in soybean. Nat. Biotechnol. 33, 408–414. doi: 10.1038/nbt.3096

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Zhou, Tang, Cheng, Dankwa, Chen, Li, Gao, Liu, Jiang, Lan, Pu,
Wei, Zheng, Hickey and Wang. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 13 April 2017 | Volume 8 | Article 401

https://doi.org/10.1007/s00122-014-2345-4
https://doi.org/10.3389/fpls.2016.01576
https://doi.org/10.1071/AR06101
https://doi.org/10.1071/AR06101
https://doi.org/10.1023/A:1019603201883
https://doi.org/10.1007/s10681-005-7872-2
https://doi.org/10.1016/j.cub.2016.01.063
https://doi.org/10.1101/005165
https://doi.org/10.1007/s13258-010-0125-3
https://doi.org/10.1007/s13258-010-0125-3
https://doi.org/10.1038/nrg1522
https://doi.org/10.1007/s11032-016-0573-9
http://mathworld.wolfram.com/BonferroniCorrection.html
http://mathworld.wolfram.com/BonferroniCorrection.html
https://doi.org/10.1038/cr.2008.307
https://doi.org/10.1023/A:1019679924173
https://doi.org/10.1023/A:1019679924173
https://doi.org/10.1007/s13353-015-0286-5
https://doi.org/10.1007/s13353-015-0286-5
https://doi.org/10.1016/S1875-2780(09)60077-8
https://doi.org/10.1007/s00122-014-2262-6
https://doi.org/10.1007/s00122-016-2793-0
https://doi.org/10.1007/s00122-016-2793-0
https://doi.org/10.1038/ng.546
https://doi.org/10.1038/nbt.3096
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive

	Genome-Wide Association Study for Pre-harvest Sprouting Resistance in a Large Germplasm Collection of Chinese Wheat Landraces
	Introduction
	Materials And Methods
	Chinese Wheat Landraces
	Phenotyping for PHS Resistance
	Genotyping
	Genome-Wide Association Study (GWAS) for PHS Resistance
	Estimation of Haplotype Effects

	Results
	Variation for PHS Resistance in Chinese Wheat Landraces
	GWAS for PHS in Chinese Wheat Landraces
	Haplotype Analyses for Main QTL Confering PHS Resistance
	Geographic Distribution of Main QTL for PHS Reisitance
	Additional Grain Colour Related QTL (GCR-QTL)

	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


