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Salt stress is a complex trait that poses a grand challenge in developing new
crops better adapted to saline environments. Some plants, called recretohalophytes,
that have naturally evolved to secrete excess salts through salt glands, offer an
underexplored genetic resource for examining how plant development, anatomy, and
physiology integrate to prevent excess salt from building up to toxic levels in plant
tissue. In this review we examine the structure and evolution of salt glands, salt
gland-specific gene expression, and the possibility that all salt glands have originated
via evolutionary modifications of trichomes. Salt secretion via salt glands is found
in more than 50 species in 14 angiosperm families distributed in caryophyllales,
asterids, rosids, and grasses. The salt glands of these distantly related clades can be
grouped into four structural classes. Although salt glands appear to have originated
independently at least 12 times, they share convergently evolved features that facilitate
salt compartmentalization and excretion. We review the structural diversity and evolution
of salt glands, major transporters and proteins associated with salt transport and
secretion in halophytes, salt gland relevant gene expression regulation, and the prospect
for using new genomic and transcriptomic tools in combination with information from
model organisms to better understand how salt glands contribute to salt tolerance.
Finally, we consider the prospects for using this knowledge to engineer salt glands to
increase salt tolerance in model species, and ultimately in crops.

Keywords: salt glands, halophytes, trichomes, salt secretion, convergent evolution

INTRODUCTION

Plants face many challenges from the abiotic world, and among the most significant of these is
salt stress. Salt water intrusion due to rising sea levels in coastal regions, extensive irrigation in
arid regions, and widespread erosion contribute to increasing soil salinity, limiting agricultural
productivity and preventing the use of much needed marginal lands (IPCC, 2014). Indeed,
it is no exaggeration to say that breeding crops with increased salt tolerance is among the
most significant challenges facing 21st century agriculture. Virtually all major crops, with a few
exceptions (e.g., Chenopodium quinoa and Gossypium hirsutum), are naturally sensitive to salt
stress. Only about 0.25% of all flowering plants are reportedly able to complete their lifecycle in
saline soils (Flowers et al., 2010) and are hence considered to be halophytes. Although halophytes
have evolved independently in a variety of taxonomically diverse lineages, they exhibit many
examples of convergently evolved adaptations to salt stress (Flowers et al., 2010; Bromham, 2015).
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The capacity to generate high-throughput genomic and
transcriptomic data from non-model plant species has catalyzed
the growth of comparative, functional and evolutionary
genomics, and this new knowledge base provides opportunities
for understanding the mechanisms underpinning the halophytic
lifestyle and also provides opportunities for adapting these
lessons to improving the salt tolerance of agricultural crops.

A significant proportion of halophytes have evolved
specialized epidermal structures called salt glands to store
and exclude salt (Flowers and Colmer, 2015; Santos et al.,
2016). The epidermis is the surface through which a plant
interacts with its environment, and thus the epidermis has a
wide variety of functional specializations at the cellular level.
Some of these, including stomates for gas exchange and cuticle-
covered pavement cells that prevent dehydration and pathogen
attack, are shared by most land plants and all angiosperms.
In addition, plants have developed a myriad of epidermal
structural adaptations to defend themselves from or to exploit
their environments, such as trichomes, nectaries, prickles, and
hydathodes, which range in complexity from specialized single
cells to multicellular structures consisting of several cell types
(Esau, 1965). Although all salt glands function to increase salt
tolerance, they differ in structural complexity and mechanism
of salt exclusion, suggesting that salt glands have multiple
evolutionary origins (Flowers et al., 2010).

Salt uptake, signaling, transport, detoxification, and storage
mechanisms are among the integral biological processes we
need to understand in solving the puzzle of salt adaptation (see
reviews Hasegawa et al., 2000; Deinlein et al., 2014). The use of
halophytes to study these processes is rare (see reviews Flowers
et al., 2010; Shabala et al., 2015; Volkov, 2015), and the targeted
use of specialized structures such as salt glands to study salt
exclusion in a molecular genetic framework is even less common.
The scarcity of genetic, cellular, or biochemical research on salt
glands could be due to their occurrence on diverse taxa in plant
families that are ecologically important, but not economically
valued as crops. Limited research focusing on salt glands also
may have arisen from the difficulty in studying salt glands as an
isolated system consisting of just a few cells in the leaf epidermis.
The magnitude of such barriers is, however, declining as new
molecular genetic tools become available that make non-model
organisms and rare cell types more tractable to study (Schwab
and Ossowski, 2006; Deal and Henikoff, 2011; Olofsson et al.,
2012; Etalo et al., 2015). Salt glands are found mostly on leaves
of plants that grow on dry saline soils, on salt marsh grasses, and
in a variety of mangroves, which are woody plants that inhabit
tropical and subtropical intertidal zones (Flowers et al., 1986;
Tomlinson, 1986). Therefore, most of the salt gland baring plants
are also considered as halophytes, but a few exceptions are found
throughout land plants (Mooney et al., 1980; Chen and Chen,
2005; Maricle et al., 2009; Peng et al., 2016). Although plant
models such as Arabidopsis and rice are devoid of salt glands,
they still have the analogous cell structures and the orthologous
gene families that are likely key effectors in sensing, transporting,
and compartmentalizing salt in halophytes that carry salt glands.
We are now at a point where a comparison between the extensive
information available from models such as Arabidopsis and new

genomic resources from halophytes naturally selected for salt
stress adaptation can illuminate key aspects of this important
adaptation (Oh et al., 2012). Therefore, in this review, we attempt
to evaluate the structure and development of salt glands, as
well as the existing genetic resources that have been largely
underexplored in plants equipped with salt glands, and we also
assess the practicality of using model systems to effectively
study them. Finally, we consider the feasibility of improving salt
tolerance by engineering existing trichomes on Arabidopsis to
function as salt glands and challenges associated with the gap
in our knowledge to develop engineered salt glands in candidate
crops.

SALT GLANDS ARE STRUCTURALLY
DIVERSE

The term “salt gland” is quite broad, and has been applied to
a wide variety of structures with different anatomical features
and functional mechanisms. Halophytes with salt glands are
collectively termed salt secretors (Liphschitz et al., 1974) or
recretohalophytes (Breckle, 1990). From a structural perspective,
all salt glands appear to be largely epidermal in origin and thus are
in essence specialized trichomes (Esau, 1965). From a functional
perspective, there are two types of salt glands, those that directly
secrete salts to the surface of the leaf (exo-recretohalophytes),
and those that collect salt in the vacuole of a specialized
bladder cell (endo-recretohalophytes) (Breckle, 1990; Ding et al.,
2010b). Although few species of plants have salt glands, they
are distributed among four major divisions of flowering plants:
Caryophyllales, asterids, rosids, and Poaceae (Santos et al., 2016).
This broad phylogenetic distribution suggests that salt glands
have originated independently multiple times as previously
proposed for halophyte origins (Flowers et al., 2010). Yet the
salt glands of widely divergent species have many phenotypic
similarities, providing some striking examples of convergent
evolution that give insight into the mechanisms through which
salt glands protect plants. The similarities among salt glands
enable categorization into four broad structural groups: (1) salt
bladders consisting of a large vacuolated cell with or without
1 to 2 stalk cells, found only in Aizoaceae and Amaranthaceae
(Figure 1, Type 1), (2) multicellular salt glands varying from
4 to 40 cells, with cells typically differentiated into collecting
and secretory cells in a cuticle lined structure, widely distributed
phylogenetically (Figure 1, Type 2), (3) bicellular secretory hair-
like structures with a basal cell and a cap cell, found in chloridoid
grasses (Figure 1, Type 3), and (4) unicellular highly vacuolated
secretory hairs (found in Porteresia) (Figure 1, Type 4). The first
two structural types are found in eudicots while the third and
fourth types are found in monocots (Figure 2).

Among eudicots the structurally simplest form of salt glands,
called salt bladders, are found in two families in the order
Caryophyllales (Figure 1). In Mesembryanthemum crystallinum
(Aizoaceae) salt is simply deposited in the large vacuole of
specialized swollen epidermal cells called salt bladders (Steudle
et al., 1975; Lüttge et al., 1978; Adams et al., 1998; Agarie et al.,
2007). Eventually the bladder cells may rupture, depositing salt
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FIGURE 1 | Representative cellular organization of distinct salt gland structures found in angiosperms. Drawings are based on consensus representations
of species specific salt gland structures. References used to create consensus figures for each type are given in Table 1. The cells that constitute the salt gland are
colored while the adjacent cells are kept blank. The continuous cuticle around the salt gland is also colored and changed to blank when the cuticle overlays the
surrounding epidermis. The dynamic intracellular structures such as vacuoles, vesicles, and laminated membranes are not depicted in the representative figures.
Collecting cell (Col), secretory cell (Sec), basal cell (BC), sub-basal cell (SBC), stalk cell (ST).

on the epidermal surface. Several species in the Amaranthaceae,
exemplified by Atriplex lentiformis, Bienertia sinuspersici, and
Chenopodium quinoa (Karimi and Ungar, 1989; Akhani et al.,
2005; Park et al., 2009; Adolf et al., 2013; Shabala et al., 2014), have
a slightly more elaborate structure for salt bladders compared to
that of M. crystallinum, in which the bladder cell is located on top
of a short stalk consisting of one or few cells. The mechanism used
by these plants for sequestering salt in the bladder cell vacuole
resembles the storage of salt in enlarged vacuoles of the mesophyll
cells within succulent leaves in many halophytes as well as non-
halophytes upon salt stress (Longstreth and Nobel, 1979; Park
et al., 2009). A mutant line lacking bladder cells showed high
sensitivity to salt and severely limited growth under salt stress
compared to the wild type M. crystallinum, establishing the
important role of salt compartmentalization and ion homeostasis
achieved through salt bladders (Agarie et al., 2007).

The level of convergence is quite remarkable in the second
type of salt glands spanning the diverse clades of Caryophyllales,
asterids, and rosids (Shi et al., 2005) (Figure 1). These
multicellular glands typically have cell types differentiated into
basal collecting cells and distal secretory cells (Faraday and
Thomson, 1986b; Thomson et al., 1988). The collecting cells
are presumed to create a salt efflux gradient to collect salt
from neighboring mesophyll cells and transport it to secretory
cells (Faraday and Thomson, 1986a,b). The secretory cells are
completely surrounded by a cuticle, with the exception of where
they contact the subtending basal collecting cells, a feature which
appears to channel the flow of salt through the secretory cells
and prevent leakage back into the neighboring tissue via the
apoplast (Thomson and Liu, 1967; Campbell et al., 1974; Tan
et al., 2013). It is not uncommon to see the cuticle layer wrapped
around the basal collecting cell if the collecting cell is partially
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FIGURE 2 | Phylogenetic distribution of angiosperm clades reported to
have salt glands. Families associated with the four types of salt glands
discussed in this review are grouped in the same colors used to distinguish
salt gland types in Figure 1. The asterisk symbols (∗) represent 12 likely
independent introductions of salt glands into a family/clade. Phylogenetic
relationships are based on the APG IV classification system (Byng et al., 2016).

above the epidermal layer (Thomson, 1975; Thomson et al.,
1988). The secretory cells are cytoplasmically dense, possessing
many mitochondria and endomembranes, and have internal
projections of the cell wall (Vassilyev and Stepanova, 1990),
resembling those in phloem transfer cells, which are presumed
to increase surface area (Gunning and Pate, 1969). Although
the outer surface of the secretory cells is covered with cuticle,
this cuticle is either pierced by pores, as observed in Limonium
bicolor salt glands (Feng et al., 2015), or creates a cuticular
chamber on top of the secretory cells that is presumed to store
secreted salts, as observed in salt glands of Avicennia marina
(Campbell and Thomson, 1976; Naidoo, 2016) and Aeluropus
littoralis (Barhoumi et al., 2008) (Figure 1 type 2 and 3).
Contrasting the secretory cells, the collecting cells have numerous

plasmodesmata connections amongst surrounding mesophyll
cells. Thus it appears that salt is actively transported through
the symplast from the collecting cells into the secretory cells,
and then the salt solution is deposited outside the cell via the
pores in the cuticle (Campbell and Stong, 1964; Campbell and
Thomson, 1976). These salt glands are organized into a bulbous
or discoid structure where salt is extruded from the top of
the dome or cup-shaped center. The entire structure is often
sunken into the epidermis, such that the cuticle overlaying the
secretory cells is at or slightly below the level of the ground
epidermal cells. This type of salt gland is represented by plants
in the Tamaricaceae (Campbell and Stong, 1964; Xue and Wang,
2008) (e.g., Tamarix and Reaumuria), Frankeniaceae (Campbell
and Thomson, 1976) (e.g., Frankenia spp.), and Plumbaginaceae
(Faraday and Thomson, 1986b) (e.g., Limonium, Aegialitis, and
Limoniastrum), all of which are closely related families in
Caryophyllales (Byng et al., 2016). The rest of the eudicot salt
glands share the same core structure with slight modifications.

The Type 2 multicellular salt glands of asterids (Figure 1),
which are distributed among five families (Figure 2; Table 1),
tend to have one or two stalk cells connecting the secretory
cells to the basal collecting cells contrasting the structure of the
Tamarix-type salt glands (Shimony et al., 1973; Drennan et al.,
1987; Das, 2002). While maintaining the overall similarity of the
structure with a cuticular envelope covering the salt gland, the
number of secretory cells compared to the number of collecting
cells varies between species in the asterids. For example, Aegiceras
corniculatum and Glaux maritima (Primulaceae) have salt glands
consisting of 8–40 radially arranged secretory cells atop a single
basal cell (Cardale and Field, 1971; Rozema et al., 1977) while
the mangroves, Avicennia and Acanthus spp. (Acanthaceae), have
salt glands consisting of two to four collecting cells connected
by one or two stalk cells to eight to twelve radially arranged
secretory cells (Shimony et al., 1973; Drennan et al., 1987; Das,
2002). Similar to Tamarix, the cuticle of the secretory cells
contains pores through which the saline solution is secreted; the
secretory cells are cytoplasmically dense and rich in mitochondria
and endomembranes, and the basal cell is highly vacuolated.
Plasmodesmata connect the basal cell to the secretory cells and
to the underlying sub-basal cells. The less studied Cressa cretica
(Convolvulaceae) and Phillyrea latifolia (Oleaceae) also produce
multicellular salt glands consisting of multiple secreting cells
connected by a stalk cell to vacuolated basal collecting cells,
similar to the other asterid salt glands (Weiglin and Winter,
1988).

Only a few species reportedly have salt glands in the large rosid
clade. The mangrove Laguncularia racemosa in Combretaceae
has multicellular salt glands located in deep adaxial epidermal
pits of the leaf (Francisco et al., 2009). The pit is likely lined
by a thick cuticle and the secretory cells at the base of the pit
are dense in cytoplasm. Salt is extruded as a chain of crystals
from the narrow mouth of the pit (Stace, 1965; Tomlinson,
1986; Francisco et al., 2009). Although the anatomy of these
glands has not been described in detail, they have been shown
to secrete salt (Sobrado, 2004). Mangrove species in two other
genera in the family Combretaceae, Lumnitzera and Conocarpus,
have similar structures, but there is no direct evidence to confirm
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TABLE 1 | Halophytes reported with salt glands, their salt gland structural organization, and availability of sequence resources.

Clade/Family Species Structure References for publicly available
cDNA/RNAseq data

Asterids

Acanthaceae Acanthus ebracteatus∗, A. ilicifolius∗ Organized into secretory, stalk, and basal cells
(Das, 2002; Ong and Gong, 2013)

ESTs (Nguyen et al., 2006, 2007); RNAseq
(Yang et al., 2015)

Avicennia germinans∗, A. officinalis∗,
A. marina∗

Organized into secretory, stalk, and basal cells
(Shimony et al., 1973; Drennan et al., 1987;
Balsamo and Thomson, 1993; Tan et al., 2013;
Naidoo, 2016)

RNAseq (Huang et al., 2014); ESTs (Mehta
et al., 2004; Jyothi-Prakash et al., 2014)

Convolvulaceae Cressa cretica Multiple secretory cells on top of a single stalk cell
subtended by a basal cell
(Weiglin and Winter, 1988)

N/F

Oleaceae Phillyrea latifolia Several secretory cells, a stalk cell, and a basal cell
formed in an epidermal pit (Gucci et al., 1997)

N/F

Primulaceae Aegiceras corniculatum∗ 24–40 secretory cells connect to a single basal cell
on top of sub-basal cells (Cardale and Field, 1971)

ESTs (Fu et al., 2005)

Glaux maritima A large vacuolated basal cell, a stalk cell, and 4–8
cytoplasm dense secretory cells in an epidermal pit
(Rozema et al., 1977)

N/F

Samolus repens 6–12 unequally sized secretory cells arranged on a
single stalk and basal cell in an epidermal pit (Adam
and Wiecek, 1983)

N/F

Solanaceae Nolana mollis† Structure undefined, but presence of glands
confirmed (Mooney et al., 1980)

N/F

Caryophyllales

Aizoaceae Mesembryanthemum crystallinum†,
M. nodiflorum†

Large highly vacuolar bladder cell (Steudle et al.,
1975; Agarie et al., 2007; Grigore et al., 2014)

cDNA (Roeurn et al., 2016), ESTs
(Cushman et al., 2008); RNAseq (Oh et al.,
2015; Tsukagoshi et al., 2015); miRNAseq
(Chiang et al., 2016)

Aizoon canariense Large bladder cells (Grigore et al., 2014)

Amaranthaceae Atriplex amnicola, A. canescens,
A. lentiformis, A. semilunaris

Stalked bladder cell forms a bicellular gland
(Malcolm et al., 2003; Shabala et al., 2014; Pan
et al., 2016)

ESTs (Li et al., 2014); cDNA (Adair et al.,
1992)

Bienertia sinuspersici‡ Stalked bladder cell forms a bicellular gland (Akhani
et al., 2005; Park et al., 2009)

454 cDNA (Offermann et al., 2015)

Chenopodium quinoa, C. album A highly vacuolated bladder cell is connected to a
cytoplasm dense stalk cell (Reimann and Breckle,
1988; Adolf et al., 2013; Shabala et al., 2014)

ESTs (Coles et al., 2005; Stevens et al.,
2006; Gu et al., 2011); RNAseq (Zhang
et al., 2012); genome (Yasui et al., 2016)

Frankeniaceae Frankenia grandifolia Organized into two highly vacuolar collecting cells
and six largely cytoplasmic secretory cells (Balsamo
and Thomson, 1993)

N/F

Plumbaginaceae Aegialitis annulata∗, A. rotundifolia∗ Organized into three concentric rings. Inner two
rings contain palisade cells with large vacuoles and
outer ring has smaller cells and cytoplasm dense
basal cells (Atkinson et al., 1967; Das, 2002)

N/F

Armeria canescens Organized into 12 gland cells and 4 subsidiary cells
with a structure similar to other salt glands in the
family (Scassellati et al., 2016)

N/F

Limoniastrum guyonianum,
L. monopetalum

Organized as an embedded cup of multiple cells
(Ioannidou-Akoumianaki et al., 2015; Zouhaier
et al., 2015)

N/F

Limonium bicolor, L. delicatulum,
L. furfuraceum, L. gmelinii, L. linifolium,
L. perezii, L. platyphyllum

4 types of cells in a total of 16 cells organized into
secretory, accessory, inner cup, outer cup, and
basal cells (Faraday and Thomson, 1986a;
Vassilyev and Stepanova, 1990; Daraban et al.,
2013; Grigore et al., 2014; Yuan et al., 2015b;
Aymen et al., 2016)

ESTs (Wang et al., 2008), RNAseq (Yuan
et al., 2015b, 2016b)

(Continued)
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TABLE 1 | Continued

Clade/Family Species Structure References for publicly available
cDNA/RNAseq data

Tamaricaceae Reaumuria soongorica, R. trigyna Inner and outer secretory cells arranged in a cuticle
lined cup arranged on top of a basal cell (Weiglin
and Winter, 1991; Wang et al., 2016)

RNAseq (Dang et al., 2013; Shi et al., 2013;
Liu et al., 2014, 2015)

Tamarix androssowii, T. ahylla, T. hispida,
T. minoa, T. pentandra, T. usneoides

Highly vacuolar two basal cells and mostly
cytoplasmic dense six secretory cells (Campbell
and Stong, 1964; Thomson and Liu, 1967; Villar
et al., 2015; Wilson et al., 2016)

cDNA (Gao et al., 2014; Wang L. et al.,
2014; Yang et al., 2014); ESTs (Wang et al.,
2006; Gao et al., 2008); RNAseq (Wang C.
et al., 2014)

Rosids

Combretaceae Laguncularia racemosa∗ Multicellular gland in a pit (Francisco et al., 2009;
Pelozo et al., 2016)

N/F

Malvaceae Gossypium hirsutum The salt gland structure is not described in detail
but resembles a multicellular glandular trichome
(Peng et al., 2016)

Genome (Li et al., 2015); microarray
(Rodriguez-Uribe et al., 2011; Yin et al.,
2012), RNAseq (Peng et al., 2014; Lin
et al., 2015); micro-RNAseq (Xie et al.,
2014) [Only a few selected references are
given for G. hirsutum genetic resources]

Moraceae Ficus formosana Multicellular glandular trichome (Chen and Chen,
2005)

N/F

Poaceae

Chloridoideae Organized as a bicellular gland with a basal
collecting cell and a secretory cap cell

Cynodonteae Aeluropus littoralis‡ (Zouari et al., 2007; Barhoumi et al., 2008) ESTs (Zouari et al., 2007)

Buchloe dactyloides‡ (Liphschitz and Waisel, 1974; Marcum, 2006, 2008) RNAseq (Wachholtz et al., 2013), cDNA
(Budak et al., 2005, 2006)

Bouteloua spp.‡ Céccoli et al., 2015 Wachholtz et al., 2013; Amaradasa and
Amundsen, 2016

Chloris gayana‡ Amarasinghe and Watson, 1988; Takao et al., 2012 N/F

Cynodon dactylon‡ Oross and Thomson, 1982; Amarasinghe and
Watson, 1988; Marcum, 2006, 2008

RNAseq (Hu et al., 2015), cDNA
(Peña-Castro et al., 2006; Kim et al., 2008)

Dactyloctenium aegyptium‡ Liphschitz and Waisel, 1974 N/F

Diplachne fusca‡ Céccoli et al., 2015 N/F

Distichlis spicata‡ Liphschitz and Waisel, 1974; Oross and Thomson,
1982; Marcum, 2006; Semenova et al., 2010;
Céccoli et al., 2015

cDNA (Zhao et al., 1989)

Eleusine indica‡ Liphschitz and Waisel, 1974 N/F

Leptochloa digitata‡, L. fusca‡ Wieneke et al., 1987; Amarasinghe and Watson,
1988

N/F

Odyssea paucinervis‡ Somaru et al., 2002 N/F

Pappophorum philippianum‡ Taleisnik and Anton, 1988; Céccoli et al., 2015 N/F

Munroa argentina‡ Céccoli et al., 2015 N/F

Zoysieae Spartina spp.‡ Levering and Thomson, 1971; Liphschitz and
Waisel, 1974

RNAseq (Baisakh et al., 2008; Ferreira de
Carvalho et al., 2013; Bedre et al., 2016;
Nah et al., 2016), miRNA (Qin et al., 2015;
Zandkarimi et al., 2015)

Sporobolus virginicus‡ Amarasinghe and Watson, 1988; Marcum, 2006,
2008

RNAseq (Yamamoto et al., 2015)

Zoysia spp.‡ Amarasinghe and Watson, 1988; Marcum et al.,
1998; Marcum and Murdoch, 1990

Genomes (Tanaka et al., 2016), RNAseq
(Ahn et al., 2015; Wei et al., 2015; Xie et al.,
2015), cDNA (Chen et al., 2015), ESTs
(Cheng et al., 2009; Ko et al., 2010)

Oryzoideae Porteresia coarctata Unicellular finger shaped or peg shaped hairs
(Flowers et al., 1990; Sengupta and Majumder,
2010)

RNAseq (Garg et al., 2013); miRNAseq
(Mondal et al., 2015)

∗mangroves; †CAM species; ‡C4 species; N/F none found.
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that these glands function as salt glands (Tomlinson, 1986;
Parida and Jha, 2010). Despite their diverse phylogenetic origins,
all mangrove salt glands appear to have a similar structural
organization spanning asterids and rosids. Additionally, two non-
halophytic species in the rosids, Gossypium hirsutum (Malvaceae)
and Ficus formosana (Moraceae), develop salt secreting glandular
trichomes. Going by the broad definition of salt glands, these
species show the capacity to extrude salt through salt glands on
leaves and the structures described are similar to multicellular
glandular trichomes described for salt glands in halophytes (Chen
and Chen, 2005; Peng et al., 2016). In Gossypium hirsutum the
ability to exclude NaCl under salt stress via leaf salt glands is
thought to be an adaptation shared with ancestral genotypes
from coastal regions (Peng et al., 2016). Excretion of salt through
salt glands in non-halophytes may represent a facultative trait in
response to salt stress derived from halophytic ancestral traits.

The last two types of salt glands are found in Chloridoideae
and Oryzoideae subfamilies in Poaceae (Amarasinghe and
Watson, 1988; Flowers et al., 1990). A recent review by Céccoli
et al. (2015) provides a detailed report of chloridoid type salt
gland structures and their physiological features (Type 3 in
Figure 1). Although somewhat similar to the salt-secreting glands
of eudicots, the salt glands of grasses differ in three important
ways. First, they are simpler in structure, consisting of only one or
two cells. Second, they lack the cuticular boundary surrounding
the secretory and basal cells that appears to channel the flow
of salt in the eudicot salt glands. Finally, the basal cell is not
vacuolated, contrasting the vacuolated basal collecting cells of
eudicots. The Chloridoideae salt glands are two-celled trichomes
differentiated into a basal and a cap cell. Both the basal cell and
the cap cell are cytoplasmically dense and rich in mitochondria,
plastids, and vesicles. Wall protrusions and the associated plasma
membrane extend from the cap cell deep into the basal cell,
increasing surface area. These are often found in epidermal
depressions, within the folds of the leaf laminar structure, sunken
in the epidermis, or placed above the epidermis (Liphschitz and
Waisel, 1974; Céccoli et al., 2015). The continuous cuticle on the
epidermis in some species thickens on top of the cap cell and
forms a cuticular chamber that stores secreted salts as seen for
some eudicot salt glands (Amarasinghe and Watson, 1988). The
thick cuticle extends from the top of the cap cell to the side walls
of the basal cell where adjacent epidermal cells connect and where
the side walls of the basal cell are often lignified (Liphschitz and
Waisel, 1974).

The fourth type of salt glands is found in the wild rice
species Porteresia coarctata, closely related to the cultivated rice
in Oryzoideae. These salt glands are unicellular hairs (Type 4
in Figure 1). The finger-shaped adaxial salt hairs in P. coarctata
continue to secrete salt even at high soil NaCl levels, but the
peg-shaped shorter salt hairs on the abaxial surface rupture
as intracellular NaCl accumulates, and regrow when soil salt
levels decline (Sengupta and Majumder, 2010). It appears that
P. coarctata can modulate the type and number of salt hairs,
adjusting to external salt levels. These unicellular hairs seem to
lack organelles and appear to be completely filled with vacuoles
in contrast to the bladder cells in eudicot glands (Flowers et al.,
1990; Oh et al., 2015).

SALT GLANDS HAVE EVOLVED
INDEPENDENTLY MANY TIMES

It is more than likely that glandular adaptations to salt
have developed multiple times in the angiosperms, using
distinct mechanisms involving either sequestration of salt in
vacuoles or secretion. A conservative estimation of multiple
independent origins proposed by Flowers et al. (2010) and
Flowers and Colmer (2015) suggests a minimum of three origins
for salt glands among the angiosperms, one in monocots,
one in rosids, and one in the joint clade of asterids and
Caryophyllales. However, given that only a fraction of a percent
of flowering plants are halophytes, and only a small percentage
of halophytes have salt-secreting glands, it seems exceedingly
unlikely that the common ancestor of the Caryophyllales
and the asterids had salt glands that were subsequently lost
in the vast majority of the species in the relevant clade.
Although the asterids are one of the largest flowering plant
groups, encompassing nearly one-third of all angiosperm
species classified in 144 families (Soltis et al., 2005), salt
glands are only reported in five families distributed among
the three orders Ericales, Lamiales, and Solanales. It is likely
that salt glands were independently acquired within each of
the individual asterid families containing salt gland-bearing
species: Acanthaceae, Convolvulaceae, Oleaceae, Primulaceae,
and Solanaceae (indicated by an asterisk in Figure 2 for each
independent introduction). Similarly, rosids include more than
a quarter of angiosperm species classified into about 140 families
(Soltis et al., 2005). Yet, salt glands are recorded for only three
families (Combretaceae, Malvaceae, and Moraceae) in the three
diverse orders of Myrtales, Malvales, and Rosales. Thus, rosid
salt glands likely represent three additional events of salt gland
evolution in angiosperms.

Closer inspection of salt gland structure and function
supports the hypothesis of many independent origins for salt
glands. Within the Caryophyllales there are two structurally
and functionally distinct types of salt glands. It is likely
that the sister groups of Aizoaceae and Amaranthaceae had
a shared ancestor with salt bladders (Figure 1, Type 1).
These families are in a monophyletic clade known as the
core Caryophyllales, and their salt glands are all of the
salt bladder type (Figure 1). In contrast the Tamaricaceae,
Frankeniaceae, and Plumbaginaceae families, which are in a
clade termed the non-core Caryophyllales, sister to the core
Caryophyllales, all have type 2 multicellular salt-secreting glands
that are structurally similar to each other, with a number of
cytoplasmically dense secretory cells overlying several vacuolated
collecting basal cells (Figure 1, Type 2). These cells are
very different from the bladder cells of the Aizoaceae and
Amaranthaceae, and in fact are structurally more similar to the
multicellular salt glands found among the asterids. Similarly,
the two salt gland types in grasses likely present two additional
events of acquiring salt glands independently. Thus it would
be reasonable to assume that salt glands have originated
independently 12 times or more in angiosperms. Even if it is
assumed that the most closely related pairs of asterid families
(Acanthaceae-Oleaceae and Convolvulaceae-Solanaceae) each
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share a single origin, salt glands can have arisen no less than 10
times.

These different evolutionary origins present compelling
examples of convergent evolution in the structure of salt glands.
Species located in a wide range of clades have cytoplasmically
dense secretory cells overlying vacuolate collecting cells, a
pattern seen in all asterid salt glands and in the salt glands
of non-core Caryophyllales (Plumbaginaceae, Tamaricaceae, and
Frankeniaceae), although the numbers of secretory and collecting
cells vary (Table 1). In a number of cases, cuticular material
extends down the sides of the secretory and/or the basal collecting
cells. While these parallels are striking, glands of similar structure
that secrete volatile secondary metabolites, nectar, mucilage, and
digestive enzymes are widespread throughout the asterids and
Caryophyllales. Indeed, the salt glands of various families tend
to greatly resemble the structure of secretory glands of related
plants that lack salt glands. For example, both Acanthus and
Avicennia have a short stalk composed of 1–2 cells bearing
a globular head consisting of secretory cells (Shimony et al.,
1973), while similar short stalked gland functions are ubiquitous
in Acanthaceae (Immelman, 1990; Tripp and Fekadu, 2014;
Bhogaonkar and Lande, 2015). The Acanthaceae (Lamiales) salt
glands also bear a strong resemblance to the glandular trichomes
that secrete essential oils in the closely related Lamiaceae. These
trichomes have a basal cell embedded in the epidermis, a one
or two celled stalk, and a globular head of secretory cells with
a sub-cuticular space where oils containing volatile secondary
metabolites accumulate. This structural feature is redolent to the
cuticular chambers with salt on top of salt glands (Werker et al.,
1993; Ascensão et al., 1995; Serrato-Valenti et al., 1997; Giuliani
and Bini, 2008). Glandular trichomes are common among the
other clades in asterids as well. For example, Solanaceae short
stalked globular trichomes (Type VI) that secrete defensive
proteins (Shepherd et al., 2005) and other secondary metabolites
are also structurally similar to the asterid salt glands with respect
to the cellular organization of a basal cell, 1–2 stalk cells, and a few
secretory cells on top (Reis et al., 2002; Glas et al., 2012; Munien
et al., 2015).

The non-core Caryophyllales families, Plumbaginaceae,
Tamaricaceae and Frankeniaceae, are sister to a clade of mostly
carnivorous plants consisting of the families Droseraceae,
Drosophyllaceae, Nepanthaceae, Dioncophyllaceae, and
Ancistrocladaceae, which have glands that secrete digestive
enzymes and mucilage. Although the carnivorous plants have a
variety of elaborate glandular morphologies that show secretory
as well as absorption functions, these are thought to be derived
from an ancestral character state for glands that are very similar
to the salt glands of Tamarix and Frankinia (Cameron et al.,
2002; Heubl et al., 2006; Renner and Specht, 2013). The digestive
glands of Dionaea muscipula (Venus fly-trap), which consist of
two layers of secretory cells above a pair of stalk cells and several
basal cells that are embedded in the epidermis, may be taken as
an example close to the ancestral state (Scala et al., 1968; Robins
and Juniper, 1980). Like the salt gland secretory cells of Tamarix,
these secretory cells have projections of cell wall material that
increase the surface area of the secretory cell plasma membrane.
The pattern of convergent evolution of the secretory-type salt

glands (Figure 1, Type 2) described here, combined with the
resemblance of these salt glands to other types of glands on
closely related plants, and in conjunction with the overall low
frequency of plants bearing salt glands, suggests that these Type
2 salt glands have evolved independently multiple times from
a common type of multicellular secretory gland found widely
throughout eudicots.

A similar trend is observed for salt glands in monocots.
Liphschitz and Waisel (1974) previously have suggested a
common halophytic ancestor for the Chloridoideae species with
salt glands. The Chloridoideae-type bicellular glands that secrete
salts are found in a number of species in Cynodonteae and
Zoysieae, but not all grasses in these subclades are halophytes. For
example, the bicellular glands in Eleusine indica and Sporobolus
elongatus in Cynodonteae and Zoysieae, respectively, do not
secrete salts and are not known as halophytes even if they carry
glands with the same ultrastructure shared with Cynodonteae
and Zoysieae halophytes (Amarasinghe and Watson, 1989).
Interestingly, the glandular organization consisting of a basal
and cap cell is not limited to the Chloridoideae species, but
it is also observed in more than 5000 species in the sister
clade of panicoid grasses (includes sorghum and corn). However,
these lack the plasma membrane invaginations in the basal cell
characteristic of the halophytes in Chloridoideae (Amarasinghe
and Watson, 1988). Some of these non-halophytes that do not
develop “salt glands” retain the capacity to secrete NaCl to some
extent and also induce the rate of microhair formation under
salt stress (Ramadan and Flowers, 2004). Although salt glands
are generally associated with halophytes, several Spartina spp.
from freshwater habitats also carry salt glands at a level similar
to their relatives from saltmarshes (Maricle et al., 2009). This
could be a derived trait from an ancestral halophytic lifestyle
of Spartina from saltmarshes and also coincides with the view
presented by Bennett et al. (2013) wherein it is inferred that the
salt tolerance trait evolved more than 70 times independently in
diverse grass lineages with multiple events of loss of trait in some
genera. Collectively, we see that the ubiquitous bicellular glands
in grasses can differentiate to salt secreting glands, microhairs
without secretions, or glands that secrete other substances. The
salt secretory unicellular hairs reported for Porteresia coarctata
show close resemblance to microhairs found in cultivated rice
(both in Oryzoideae), but rice microhairs do not show salt
secretory functions detectable at significant levels (Flowers et al.,
1990).

Some convergent trends occur multiple times in subsets
of eudicot and monocot recretohalophytes separated by large
evolutionary distances, indicative of the selective pressures
driving salt gland evolution. For example, cell wall projections
resulting in an increase in plasma membrane surface area
are seen in both the Poaceae (Levering and Thomson, 1971;
Amarasinghe and Watson, 1989) and in the Tamaricaceae-
Frankeniaceae-Plumbaginaceae clade (Campbell and Thomson,
1976; Faraday and Thomson, 1986b), although in Poaceae these
projections protrude into the basal cell, while in Caryophyllales
the protrusions occur into the secreting cell. Such wall
protrusions are characteristic of a wide variety of transfer
cells that are involved in the intercellular transport of solutes
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(Gunning and Pate, 1969). In another common trend, secretory-
type salt glands are often located in pits or depressions on
the leaf surface (Tamaricaceae, Frankeniaceae, Plumbaginaceae,
Primulaceae, Acanthaceae, Combretaceae, and Poaceae). Perhaps
these depressions collect dew into which salts can be efficiently
secreted. This trait may have been further developed in
Nolana mollis (Solanaceae) salt glands that primarily secreted
NaCl, where excreted salts were used to condense water from
unsaturated atmospheres as an adaptation to retrieve water for
survival in the Atacama Desert (Mooney et al., 1980). This
may suggest a trait highlighting adaptations to extreme drought
tolerance from a preadapted halophytic trait.

The density of salt glands is highly species specific. For
example, salt gland density generally ranges from 20 to 50 salt
glands mm−2 in leaves of Limonium and Zoysia species (Ding
et al., 2010a; Yamamoto et al., 2016). The structural integrity of
the salt glands may also depend on soil salinity and leaf age. For
instance, the abaxial peg-like salt hairs on Porteresia coarctata
tend to burst with increasing soil salinity where the adaxial more
elongated salt hairs increase in density (Sengupta and Majumder,
2009). In Ficus formosana the salt glands near hydathodes get
dropped as the leaf ages removing compartmentalized excess salts
more efficiently (Chen and Chen, 2005).

The functional significance provided by salt glands also
changes with leaf development. NaCl sequestration capacity may
be the most critical function of salt bladders in young leaves of
Aizoaceae and Amaranthaceae halophytes (Agarie et al., 2007;
Bonales-Alatorre et al., 2013; Barkla et al., 2016), but as the leaf
matures and the salt bladders reach their maximum volume, salt
sequestration rate needs to be paused (Adams et al., 1998; Jou
et al., 2007; Barkla and Vera-Estrella, 2015; Oh et al., 2015). Other
functions including providing a secondary epidermal layer to
protect against water loss, UV stress, and also serving as reserves
for ROS scavenging metabolites and organic osmoprotectants
may contribute more to plant survival under abiotic stress as the
leaf matures (Adolf et al., 2013; Barkla and Vera-Estrella, 2015;
Ismail et al., 2015; Oh et al., 2015). The corresponding increased
rate of salt secretion as a response to increasing concentrations
of soil NaCl is also observed for salt glands in other plant clades
(Marcum et al., 1998; Mishra and Das, 2003). The maximum
rate of salt secretion, however, is dependent on the species. For
example, Spartina anglica has been reported to secrete up to 60%
of absorbed salts while Limonium vulgare and Glaux maritima
showed 33 to 20%, respectively, in a comparative study (Rozema
et al., 1981).

NEW GENETIC RESOURCES AND
TOOLS PROVIDE INSIGHTS INTO THE
MOLECULAR COMPONENTS INVOLVED
IN SALT GLAND FUNCTION

Model Species Studies
Because salt glands represent only a small proportion of the cells
on the leaves of salt gland-bearing plants, studies regarding the
cellular physiology and molecular genetics of salt glands have

been limited in the past. However, new methods are increasing
our ability to study the detailed function of salt glands at the
cellular level. The most accessible salt glands for study until
recently have been bladder cells. The salt tolerant extremophiles
Mesembryanthemum crystallinum (ice plant) has been the focus
of the greatest number of biochemical, physiological, and
genetic studies among halophytes with salt glands. Steudle
et al. (1975) first measured bladder cell membrane potential
(between −10 and −40 mV), hydraulic conductivity (LP of the
bladder cell membrane was on average 2 × 10−6 cm s−1bar−1)
and demonstrated high bladder membrane salt permeability,
consistent with their role in compartmentalizing excess NaCl in
the vacuoles (Steudle et al., 1975; Lüttge et al., 1978). The critical
role played by salt bladders in M. crystallinum for development
and survival under high NaCl was further confirmed by the
creation of growth impaired mutant plants without bladder
cells (Agarie et al., 2007). The remarkable salt and drought
tolerance capacity exhibited by M. crystallinum has also led
to its use as a model halophyte in multiple gene expression
studies using ESTs and RNAseq from bulk tissues to discover
gene regulatory mechanisms related to salt tolerance (Bohnert
and Cushman, 2000; Cushman et al., 2008; Tsukagoshi et al.,
2015; Chiang et al., 2016). Additionally, the recent cell specific
targeted transcriptome, proteome, and metabolome analyses
have reported the type of genes, proteins, and metabolites
expressed specifically in salt glands in M. crystallinum (Barkla
et al., 2012; Barkla and Vera-Estrella, 2015; Oh et al., 2015).
These studies have helped to establish the importance of salt
glands and their distinct functions from other leaf cells in a
model halophyte. With the recent cell type specific experiments,
we know that epidermal bladder cells of M. crystallinum are
not just passive storage organs for salts as perceived before,
but they also carry out active metabolism related to energy
generation, UV protection, organic osmolyte accumulation, and
stress signaling. A significant number of lineage-specific genes
of unknown function in response to salt stress were detected
in these bladder cells. Some of the lineage specific transcripts
are easily detected in the epidermal bladder cell transcriptomes
at high expression levels, but appear to be expressed at low
levels or are undetected in whole shoot transcriptomes, indicating
the importance of studies of individual salt gland cell types
(Oh et al., 2015). Genes specific to bladder cell function
and development that were identified using a suppression
subtractive hybridization library construction between wild type
M. crystallinum and mutant plants without bladder cells also
revealed a significant number of lineage specific genes with
unknown functions (Roeurn et al., 2016). One such gene
of unknown function detected via the comparison between
wildtype and mutant plants was subsequently overexpressed
in Arabidopsis, resulting in a phenotype with an increased
number of trichomes on leaves, and this gene was inferred
to regulate trichome initiation via regulating GL2 in the
trichome development pathway (Roeurn et al., 2016). The
availability of a reference genome for M. crystallinum will
facilitate new comprehensive investigations of the critical role
of salt glands in the survival of the whole plant under salt
stress.
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Chenopodium quinoa (Amaranthaceae), is an emerging model
halophyte and a seed crop with several salt tolerant cultivars
adapted to salt levels that are as high as that of sea water
(Adolf et al., 2012; Ruiz et al., 2016). Its genomic complexity
and polyploid nature have made molecular genetic analyses
of the genetic mechanisms underlying its salt tolerance traits
challenging. However, the draft genome of C. quinoa that was
recently made available will be an excellent resource opening
new paths to explore its stress adapted biology (Yasui et al.,
2016). Also, the genome of the closely related non-halophyte Beta
vulgaris (Amaranthaceae) and additional transcriptomes of the
halophytic but non-salt gland subspecies B. vulgaris ssp. maritima
(Dohm et al., 2014; Skorupa et al., 2016) should further facilitate
comparative genomic analyses of the role of salt glands in salt
tolerance in the Amaranthaceae.

A number of electrophysiological studies performed on
quinoa leaf cells and salt bladders suggest that a polar
organization of Na+ transporters and anion channels mediates
NaCl net influx into the bladder cell vacuoles, while the small
stalk cell serves as an intracellular ion transport controller
between the epidermal and bladder cells (reviewed in Adolf
et al., 2013; Shabala et al., 2014). The entry of Na+ and
Cl− into the bladder cell vacuole are likely dependent on
the NHX1 transporter, CLC-type chloride channels, and the
electrochemical proton gradient provided by the vacuolar H+-
ATPases and vacuolar H+-pyrophosphatases, while plasma
membrane Na+/K+ transporters like HKT1 may play a major
role in getting Na+ into the bladder cell cytoplasm. The
importance of the vacuolar proton pumps in sequestering Na+
in the vacuolar lumen is supported by transcriptomic, proteomic,
and biochemical studies done on ice plant and quinoa bladder cell
systems (Barkla et al., 2012; Adolf et al., 2013; Oh et al., 2015).

Recently, Limonium bicolor has been developed as a
model for the study of secretory multicellular salt glands.
Transcriptomic analysis of developing Limonium bicolor leaves
while monitoring salt gland developmental stages suggests that
salt gland development might be regulated by transcription
factors homologous to those regulating trichome development in
Arabidopsis thaliana, however, this suggestion is based solely on
correlated expression patterns and weakly documented evidence
for orthology (Yuan et al., 2015b, 2016b). Yuan et al. (2014) have
further developed a transformation system for L. bicolor to enable
validation of predicted gene functions within the native genome.
Additionally, the same group has optimized gamma radiation
mutagenesis to create large mutant populations of L. bicolor
(Yuan et al., 2015a) and has developed an autofluorescence-based
screen to identify mutants in salt gland function (Yuan et al.,
2013). The efforts to create a molecular toolbox for forward and
reverse genetics in order to study the multicellular salt gland
functions in Limonium bicolor are exemplary, given its status as a
non-model organism in plant genetics.

Transport of Na+ through a multicellular gland that ultimately
excretes salt outside the leaf is a far more complex process than
understanding valuolar compartmentalization in salt bladders. In
a salt gland, when certain cells take up the role of absorbing salt
from neighboring cells and intercellular spaces (main function
proposed for collecting cells, basal cells, an sub-basal cells found

in Type 2 and 3 salt glands in Figure 1), other cells in the
gland would need to export salts (secretory and cap cells in Type
2 and 3 glands from Figure 1). Given that there are several
channels and transporters that can transport Na+ exclusively or
together with other organic and inorganic ions in plant cells
(reviewed in Maathuis, 2014; Maathuis et al., 2014), this process
needs to be coordinated between multiple membrane systems
to avoid futile cycling of Na+ and other ions including K+ or
toxic accumulation of NaCl. Salt tolerance is also tightly linked
to K+ homeostasis in plant tissues. Halophytes are known to
accumulate high K+ levels or prevent loss of K+ when treated
with high Na+ (Flowers et al., 2015). For example, Limonium salt
glands increase K+ retention upon high Na+ treatments (Feng
et al., 2015). Additionally, there are a number of aquaporins that
transport water and other molecules that need to be integrated
into the Na+ transport systems when we attempt to understand
salt transport management in plant tissues (reviewied in Maurel
et al., 2015). A plasma membrane aquaporin was among the
highest membrane transporters/channels in the cell specific salt
bladder transcriptome of M. crystallinum (Oh et al., 2015), further
supporting the idea that suites of transporters, including water
channels and K+ transporters, need to be considered in addition
to Na+ transporters and membrane proton pumps to accurately
model salt secretion.

Salt from collecting basal cells can also be bulk transported
via vesicles that fuse to the plasma membranes of collecting
and secretory cells (or cap cells in grasses), releasing salt to
the extracellular space. A few studies have looked into the
significance of vesicle transport in delivery of NaCl to secretory
cells or extracellular spaces (cuticle lined chamber in most
multicellular salt glands and bicellular glands in grasses). These
studies have reported the formation of extra vesicles and fusion
with the plasma membrane between basal cells and mesophyll
cells and also basal and secretory cells upon salt treatment
(Thomson and Liu, 1967; Shimony et al., 1973; Barhoumi et al.,
2008). Faraday and Thomson (1986a) reported ion efflux rates
in Limonium perezii salt glands that were significantly higher
than rates possible exclusively via transmembrane transport.
Congruently, Yuan et al. (2016b) have reported genes associated
with vesicle function enriched in Limonium bicolor leaves upon
NaCl treatment. Vesicle-mediated NaCl transport may provide
the energy efficiency required for transporting salts through
the salt glands that may not be feasible via transmembrane
ion channels alone. Physiological and molecular studies have
attempted to model the unidirectional flux of Na+ and Cl− in
multicellular salt glands of Limonium and Avicennia (Tan et al.,
2013; Yuan et al., 2016b), but the details of the cell-specific roles
in any multicellular salt gland remain largely unknown.

The fiber crop Gossypium hirsutum (Malvaceae), although is
not considered a halophyte, is among the crop species most
adapted to salt stress, and some cultivars also develop functional
salt glands (Gossett et al., 1994; Du et al., 2016; Peng et al.,
2016). The availability of a reference genome, multiple large
scale transcriptome datasets, genetic transformation techniques,
and genetic diversity estimates for a large group of cultivars
make G. hirsutum an attractive candidate for studying salt gland
functions between salt adapted and sensitive cultivars (Shen et al.,
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2006; Khan et al., 2010; TianZi et al., 2010; Rodriguez-Uribe et al.,
2011; Rahman et al., 2012; Xie et al., 2014; Li et al., 2015; Lin
et al., 2015). However, the role of salt glands in adapting to salt
stress in cotton has not been explored much until recent work
published by Peng et al. (2016). High levels of activity inferred for
the plasma membrane H+-ATPase and the Na+/H+ antiporter
to compartmentalize more Na+ into the apoplast or the vacuole
were suggested as key transporters in extruding excess salt from
the young cotton leaves.

Among the monocot recretohalophytes, studies on Spartina
spp. offer multiple snapshots into the leaf transcriptomics that
investigate how salt glands contribute to salt tolerance (Baisakh
et al., 2008; Ferreira de Carvalho et al., 2013; Bedre et al.,
2016). Spartina is among the few recretohalophytes where both
RNASeq and microRNASeq profiles are available (Qin et al.,
2015; Zandkarimi et al., 2015). In addition, the genus Spartina
offers an interesting evolutionary context where one can study
the relaxed selection on genes important in salt gland functions
when salt glands do not provide a fitness advantage to species
that occupy freshwater habitats. Freshwater species including
S. cynosuroide, S. gracilis, and S. pectinata show no difference in
their salt gland distribution compared to the closely related salt
marsh species S. alterniflora, S. anglica, and S. densiflora (Maricle
et al., 2009). The development of salt glands in the freshwater
species may be a result of a recent speciation event from ancestral
salt marsh species. This provides an excellent set of plants with
natural replicates for comparative genomics in search of salt
gland associated genes and their recruitment driven by salt stress
(or loss of recruitment in the absence of the selection pressure).

Genome Wide Data and Tools for Salt
Gland Specific Expression
Salt gland specific transcriptomic, proteomic, or metabolic
datasets as genetic resources are challenging to obtain, often
due to the tight integration of salt glands in leaf or other
photosynthetic tissue. Table 1 lists all genome wide molecular
studies reporting datasets from plants with salt glands available at
present (October 2016). Several of these studies provide RNAseq-
based experiments that target tissues enriched in salt glands.
A few studies have focused on enrichment of salt gland cell
types or isolation of exclusive salt gland populations. Due to
the structural diversity of these species, a method optimized
for one species is difficult to implement in others. Barkla et al.
(2012) accomplished this task for ice plant epidermal bladder
cells by vacuum aspiration of the cell sap using a fine needle
attached to a collecting tube. This technique is able to provide
clean cell specific sap, but is impractical for multicellular salt
glands. Techniques developed using pressure probes and picoliter
osmometers to measure water potential and osmotic potential in
single plant cells (reviewed in Fricke, 2013) often used in crop
plants (Malone et al., 1989; Fricke, 1997; Fricke and Peters, 2002;
Volkov et al., 2006) offer additional tools to test salt gland cell
specific traits. The use of epidermal peels enriched in salt glands
is an alternative solution, although this technique introduces
molecular signatures of regular epidermal cells to the sample,
as contaminants are difficult to avoid (Tan et al., 2015). Use
of enzymatic digestion and subsequent grinding of epidermal

peels has also been shown to be effective in isolating mangrove
salt glands devoid of neighboring epidermal cells (Tan et al.,
2010). However, enzymatic digestion adds a significant amount
of time that may lower the feasibility of using salt glands isolated
through such techniques to detect transcript profiles dependent
on plant treatments and conditions. Treating epidermal peels
with clearing solutions and detecting salt glands based on
their autofluorescence has been successfully demonstrated for
Limonium and Avicennia in identifying the salt gland structure
and organization, but this method too would not allow time-
sensitive assessments of salt gland-specific transcripts or proteins
(Tan et al., 2010; Yuan et al., 2013).

Effective methods shown successful in capturing multicellular
gland-specific transcripts do not exist for halophytes at present.
However, this can be attempted using current molecular
techniques. For example, fluorescent tags labeling entire cells,
nuclei, or polysomes allow capture of cell-type specific transcripts
in model plants (Mustroph et al., 2009; Deal and Henikoff,
2011; Rogers et al., 2012). Creating targeted transgenic lines
for non-model halophytes could be a greater challenge than
optimizing methods for cell-type specific tagging. One may
need to explore Agrobacterium-independent transformation
techniques if certain recretohalophytes prove to be recalcitrant
to widely used transformation protocols (Altpeter et al.,
2016). Furthermore, such methods require the identification of
salt gland-specific promoter sequences. Candidate promoters
might be deduced from promoters functioning in glandular
trichome gene expression of related plants (Choi et al., 2012;
Spyropoulou et al., 2014), given the evidence presented above
that multicellular salt glands in eudicots are likely derived
from multicellular secretory trichomes. Alternatively, physically
isolating multicellular glandular structures before extracting
the cell sap for RNA, protein, or metabolite profiling has
been established using laser capture microdissection methods
(Olofsson et al., 2012; Soetaert et al., 2013).

COULD WE ENGINEER WORKING SALT
GLANDS IN A MODEL SYSTEM?

Is Arabidopsis trichome development a suitable model for
engineering bladder cell-like salt glands? Salt glands provide
an end destination for excess salts, and understanding the
function of these specialized structures may ultimately play a
role in producing salt-tolerant crops. Although the engineered
expression of individual genes involved in salt tolerance has
had some success in increasing salt tolerance in artificial
situations, this has not translated to increased salt tolerance
under field conditions (Flowers and Colmer, 2015; Mickelbart
et al., 2015; Polle and Chen, 2015). Salt tolerance under
real-world conditions is likely to require careful attention to
cell and tissue-type specific expression of multiple proteins
involved in salt tolerance. As noted above, virtually all salt
glands are similar in structure, and likely homologous, to the
trichomes of closely related plants. The trichomes of Arabidopsis
thaliana are one of the most well-studied models for plant
development at the cellular level, and it was recently suggested
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that knowledge from Arabidopsis trichome development could
be used to guide the engineering of bladder cell-type salt
glands in crop plants (Shabala et al., 2014). This is a striking
proposal that deserves serious consideration. A first step would
be attempting to engineer Arabidopsis trichomes to function as
bladder cells.

The trichomes of Arabidopsis thaliana are unicellular and
branched, and like bladder cells, they have a large cell
volume in comparison with other epidermal cells, most of it
being occupied by a large vacuole (Hülskamp et al., 1994;
Mathur et al., 2003). Trichome development is initiated by
a transcription factor complex containing the R2–R3 MYB
protein GLABRA1 (GL1), the bHLH protein GLABRA3 (GL3),
and the WD-repeat protein TRANSPARENT TESTA GLABRA
(TTG), and is restrained by several inhibitory single-repeat
R3 MYBs, typified by TRIPTYCHON (TRY) (Larkin et al.,
2003). Many direct downstream targets of this transcription
factor complex have been identified, and mutations and gene-
expression manipulations are established that alter the density
of trichomes on leaves, trichome cell shape, and cell wall
properties. A number of direct downstream target genes of the
trichome development transcription complex are known, and
several relatively trichome-specific promoters are noted, e.g., for
GLABRA2 (GL2), GL3, TRY and NOEK (NOK) (Schnittger et al.,
1998; Szymanski et al., 1998; Jakoby et al., 2008). The putative
transcription factor identified in wild type M. crystallinum
compared to the mutant without bladder cells expressed in
Arabidopsis was proposed to act upstream of the GL1-GL3
complex via positively regulating GL2 (Roeurn et al., 2016).
A functional homolog of GL1 in cotton, GaMYB2, was shown to
have trichome specific expression in Arabidopsis, but in cotton
both fiber cells and trichomes showed GaMYB2 promoter driven
GUS expression. Interestingly, the GaMYB2 promoter directed
GUS expression exclusively in glandular cells of glandular
secreting trichomes in tobacco where different types of trichomes
exist (Shangguan et al., 2008). This suggests that complex tissue
specific signals may exist for trichome specific expression in
different halophytes even when the genetic components are well
described in the model species.

This detailed knowledge of Arabidopsis trichome
development, in combination with new large-scale gene
assembly tools that aid in transferring whole pathways to plant
genomes such as BioBrick, Golden Gate, and Gibson assembly
methods (reviewed in Patron, 2014), suggest that attempting
to modify Arabidopsis trichomes to function as salt glands
may be feasible. As a start, one might engineer expression
of the plasma membrane/vacuolar H+-ATPase and/or the
vacuolar H+-pyrophosphatase, the tonoplast Na+/H+ antiporter
NHX1 in trichomes, along with the P5CS and P5CR, proline
biosynthesis genes to increase the proline concentration to act
as an organic osmolyte, myo-inositol-1-phosphate synthase
(INPS), and myoinositol O-methyltransferase 1 (IMT1) that
are key enzymes in polyol synthesis pathways important in
ROS scavenging. It should be noted that some of the key
target proteins involved in the salt response may include
multiple subunits from different polypeptides and therefore,
multiple genes need to be coordinately expressed to get the

desired level of expression of the holoenzyme. The vacuolar
H+-ATPase is encoded by multiple genes coding for distinct
essential subunits while the vacuolar H+-pyrophosphatase
can be generated by a single gene. Additionally, both of these
may have variable gene copy numbers for each subunit or
protein in different species (Silva and Gerós, 2009; Fuglsang
et al., 2011; Volkov, 2015). For example, salt gland bladder
cells in Mesembryanthemum crystallinum in response to salt
stress showed significantly higher expression for 10 transcripts
coding for different subunits of the vacuolar H+-ATPase, while
two transcripts likely encoding two copies for the vacuolar
H+-pyrophosphatase showed downregulation (Oh et al., 2015).
The coordinated regulation of the vacuolar H+-ATPase and
the vacuolar H+-pyrophosphatase can be complex and recent
research suggests that the combined activity of these proton
pumps is required for vacuolar acidification (Kriegel et al., 2015).
If salt excretion to the leaf surface as opposed to salt sequestration
in a vacuole of bladder cells is envisioned, plasma membrane
transporters and proton pumps that govern Na+ influx into and
efflux out of the salt gland should be carefully orchestrated. For
example, Na+ transporters, including SOS1, would need to be
regulated together with plasma membrane proton ATPases to
excrete salt to the surface against an electrochemical gradient
while Na+/K+ membrane transporters like HKT1 would be
useful for the influx of Na+ into the secretory bladder cell from
neighboring cells. Additional membrane transporters associated
with Na+ and Cl− transport that may play an important role
in developing functional salt glands are reviewed in Shabala
et al. (2015) and Yuan et al. (2016a). Further refinements
could be made by taking advantage of the knowledge that
increased GL3 expression increases trichome density on leaves
(Payne et al., 2000; Morohashi et al., 2007). Thus, introducing
a copy of GL3 under the control of an ABA-inducible, salt-
responsive promoter would be expected to increase the number
of bladder cell-modified trichomes on the leaf in response to salt
stress.

Although the prospect of engineering trichomes of a non-
halophyte into functional bladder cells is exciting, there are
naturally some serious caveats. First, salt glands of any sort
are only one line of defense against salt, and this is achieved
via the sequestration of salt that has reached photosynthetic
shoot tissues to ameliorate the effects. Truly salt-tolerant plants
are likely to require engineering of gene expression in multiple
tissues. Much evidence indicates that for plants, the initial line
of defense is to prevent the accumulation of salt in the roots in
the first place (reviewed in Flowers and Colmer, 2015). Thus,
for example, it would likely be necessary to engineer increased
SOS1 expression in root hairs to pump Na+ out from the root
epidermis, limiting salt intake, as well to increase expression
of SOS1 in the endodermis to feed Na+ that does enter the
plant into the transpiration stream for transport to the shoot.
Fortunately, well-characterized promoters are now available for
engineering cell type-specific expression in Arabidopsis roots.
A second caveat is that this approach has ignored the roles of
signaling by Ca2+ and reactive oxygen species in salt tolerance.
The incorporation of tissue-specificity through the use of tissue-
specific promoters is still ultimately too simplistic and likely will

Frontiers in Plant Science | www.frontiersin.org 12 March 2017 | Volume 8 | Article 406

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00406 March 25, 2017 Time: 12:55 # 13

Dassanayake and Larkin Plant Salt Glands

fail to capture the dynamic nature of true halophyte responses to
saline conditions.

The final caveat to this approach is that the engineering of
bladder cell-type salt glands based on Arabidopsis trichomes
as a model is likely to be limited phylogenetically to plants
sharing the same trichome initiation regulatory network. While
the transcription complex that regulates Arabidopsis trichome
development is clearly homologous to the transcription factors
that regulate anthocyanin biosynthesis in plants as distantly
related as the grasses, it appears that asterids regulate trichome
development via the MIXTA-like MYB proteins, which lack the
ability to bind GL3-like bHLH proteins (Payne et al., 1999; Serna
and Martin, 2006). Furthermore, expression of Antirrhinum
MIXTA does not affect Arabidopsis trichome development, and
expression of Arabidopsis trichome regulators in Nicotiana also
does not affect trichome formation. Thus, trichome development
appears to be regulated independently in the rosids and
the asterids. In this light, it is interesting to note that in
Mesembryanthemum crystallinum, a putative ortholog of the
trichome development gene GL2, exhibits increased expression
in bladder cells in response to salt (Oh et al., 2015), and that in
Limonium bicolor, the expression of putative orthologs of several
trichome development transcription factors is correlated with
the development of salt glands. Both of these plants are in the
Caryophyllales. Thus, among dicotyledonous crops, approaches
to salt gland engineering based on Arabidopsis trichomes may be
limited to crops in the rosids, such as Brassica spp. and legumes,
and perhaps to crops in the Caryophyllales.

More significant to the engineering of crop plants, the limited
evidence to date on trichomes in the grasses gives no support
for the involvement of any MYB, basic-helix-loop-helix, or WD-
repeat proteins in trichome development. In maize, the mutant
macrohairless1 lacks the large single-celled trichomes known as
macrohairs, but the gene product is not known (Moose et al.,
2004). In rice, mutants of glabrous leaf and hull1 (gl1) lack both
macrohairs and microhairs, two classes of unicellular trichomes,
but do not affect the development of the glandular trichomes. The
mutations defining this locus are in the 5′ untranslated region
of a gene of unknown function, Os05g0118900 (Li et al., 2010).
Thus what we learn from manipulating Arabidopsis trichomes to
function as salt glands may not be readily applied to some of our
most important crops, although crops in the rosids include not
only the Brassica spp. (e.g., canola), which are very closely related
to Arabidopsis, but the legumes, which include soybeans.

If engineering multicellular salt glands into a crop prior
to establishing a proof of concept protocol in Arabidopsis is
envisioned, Solanaceae crops provide alternative candidates. For
example, engineering potato or tomato could take advantage
of substantial molecular resources that are already available.
These crops have reference genomes available for both the main
commercial cultivars and also for more stress tolerant wild
relatives (Xu et al., 2011; Bolger et al., 2014; Aversano et al.,
2015). Solanaceae crops also have cultivars more tolerant to
moderate salt levels (Shahbaz et al., 2012; Watanabe, 2015), have
naturally developed secretory trichomes with structural features
shared with recretohalophytes, have well-developed protocols
to study gene expression exclusive to glandular trichomes, and

have established transformation protocols (Butler et al., 2015;
Čermák et al., 2015; Kortbeek et al., 2016). The idea of converting
a glandular trichome to a salt secreting trichome bypasses the
need to engineer cellular structural features needed for liquid
excretion. Still, this endeavor requires the knowledge of coupling
stress signaling and coordination of salt transport from roots
to shoots and finally to the modified glandular trichomes at a
metabolic energy cost (or yield penalty) applicable or tolerable
for a crop species.

If a cereal crop model is chosen for engineering salt glands, rice
would naturally be a top candidate, given the genetic resources
available for rice as the prominent monocot model. This essential
crop that feeds more than 3 billion people is being increasingly
threatened by salinity stress caused by climate induced salt
water intrusion, thus endangering the nutrition of the billions
that consume rice. However, more targeted functional genomic
studies have to be conducted to identify its trichome development
pathway as discussed above. Comparative transcriptome-based
studies on Porteresia coarctata salt hairs can further facilitate
identification of the candidate orthologous genes one would need
to introduce to selected rice cultivars. Alternatively, given the
availability of genetic resources, including a reference genome, for
sorghum, its relatively high capacity for abiotic stress tolerance as
a C4 grass, and its phylogenetic proximity to almost all the grass
species that are known to secrete salt through salt glands makes
sorghum another attractive model for salt gland engineering in
cereals (Paterson et al., 2009). It should be noted that all reported
salt-secreting grasses also happen to be C4 grasses, with the
exception of Porteresia (Table 1). The bicellular microhairs in
Zea mays that are not considered to be salt glands show an
increase in microhair density on leaves in response to increasing
soil salinity (Ramadan and Flowers, 2004). This suggests the
possibility of shared regulatory pathways in microhair initiation
between salt secreting grasses and non-secretors. Notably,
Zea mays has a significant amount of genomic resources,
optimized genetic engineering tools, diverse germplasm from
wild relatives, and cell type specific metabolic data (Liang et al.,
2014; Nannas and Dawe, 2015; Dwivedi et al., 2016; Wen et al.,
2016). Such factors, in conjunction with the importance as a
major food and as a biofuel crop, make it another candidate for
engineering salt hairs with significant secretion capacity upon
problematic soil salt levels. Inarguably, a significant amount of
functional, evolutionary, and comparative genomics studies need
to be initiated to understand the organization and coordination
of molecular networks that could transform a non-salt secreting
species to a salt secreting plant. If we succeed with a non-crop
model, success in the exercise would be a substantial test of
our skills in combining – omics data, cell biology, and classical
whole plant physiology to understand and manipulate a plant’s
response to environmental stress, a seemingly worthy objective
in itself.

CONCLUDING REMARKS

Salt-stress is a substantial challenge for agriculture in the 21st
century. One mechanism used by a wide variety of plants to deal
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with saline conditions is the use of epidermal salt glands that
sequester or excrete salt. Salt glands have independently evolved
likely twelve or more times and exist in at least four distinct
morphological types. Despite these diverse origins, significant
shared features due to convergent evolution give insight into the
selective forces that have shaped their evolution and function.
Although salt glands are challenging to study at the cellular
and molecular level, new resources and tools have begun to
elucidate the mechanisms by which salt glands alleviate salt
stress. The time is now ripe to begin applying lessons from salt
gland physiology to improving the salt tolerance of agricultural
crops.
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