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Elemental silicon (Si), after oxygen, is the second most abundant element in the earth’s
crust, which is mainly composed of silicates. Si is not considered essential for plant
growth and development, however, increasing evidence in the literature shows that this
metalloid is beneficial to plants, especially under stress conditions. Indeed Si alleviates
the toxic effects caused by abiotic stresses, e.g., salt stress, drought, heavy metals,
to name a few. Biogenic silica is also a deterrent against herbivores. Additionally, Si
ameliorates the vigor of plants and improves their resistance to exogenous stresses.
The protective role of Si was initially attributed to a physical barrier fortifying the cell wall
(e.g., against fungal hyphae penetration), however, several studies have shown that the
action of this element on plants is far more complex, as it involves a cross-talk with
the cell interior and an effect on plant metabolism. In this study the beneficial role of Si
on plants will be discussed, by reviewing the available data in the literature. Emphasis
will be given to the protective role of Si during (a)biotic stresses and in this context
both priming and the effects of Si on endogenous phytohormones will be discussed.
A whole section will be devoted to the use of silica (SiO2) nanoparticles, in the light of the
interest that nanotechnology has for agriculture. The paper also discusses the potential
technological aspects linked to the use of Si in agriculture and to modify/improve the
physical parameters of plant fibers. The study indeed provides perspectives on the use
of Si to increase the yield of fiber crops and to improve the thermal stability and tensile
strength of natural fibers.
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INTRODUCTION

Silicon (Si) is considered non-essential (or quasi-essential, Epstein and Bloom, 2005) for plant
growth and development. Plants develop well in its absence, although in some cases, e.g., the
silicifier horsetail and rice, the absence of Si triggers increased susceptibility to fungal infection
(Datnoff and Rodrigues, 2005; Law and Exley, 2011). When supplied to the growth medium
(as silicic acid, vide infra), plant vigor and resistance to (a)biotic stresses increase (Azeem et al.,
2015; Coskun et al., 2016; Guerriero et al., 2016a). Si is taken up by plants as silicic acid Si(OH)4 via
aquaporin type channels (Nod26-like intrinsic proteins, NIPs) (Ma et al., 2006; Grégoire et al., 2012;
Deshmukh et al., 2013). A specific 108 amino acid spacing between the conserved NPA domains
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determines Si(OH)4 permeability (Deshmukh et al., 2015). Plants
are classified into accumulators, excluders and intermediate
type (Mitani and Ma, 2005), depending on the amount of
biogenic silica found in their tissues. Among the accumulators
are Equisetales, Cyperales and Poales: in Graminae, rice is the
highest silicifier where Si (in the form of biogenic silica, vide infra)
accounts for up to 10% of the shoot dry weight (Ma et al., 2002).
Tomato is among the excluders, while Urtica dioica (i.e., nettle) is
an intermediate type (Trembath-Reichert et al., 2015).

In (some) plants the provision of Si(OH)4 has a latent effect in
the absence of an external stimulus (Fauteux et al., 2005, 2006).
This has been observed in the Arabidopsis-powdery mildew
pathosystem (Fauteux et al., 2006). It should, however, be noted
that in rice, Si(OH)4 supplementation does trigger major changes,
as it induces the upregulation and downregulation of 35 and 121
transcription factors respectively (Van Bockhaven et al., 2012).
This difference may be in part due to the different cell wall types
(Yokoyama and Nishitani, 2004) and to the structural importance
of Si in type II cell walls (i.e., cell walls characterized by the
presence of more phenylpropanoids as compared to type I cell
walls in dicots).

By precipitating as SiO2 and being incorporated into
biological structures (e.g., the cell wall, vide infra), Si exerts its
protective action via the formation of a physical barrier. However,
this passive role is too simplistic and does not explain why plants
supplemented with Si are better suited to face exogenous stresses.
Compelling evidence in the literature shows that specific cell wall
components trigger SiO2 precipitation (reviewed by Guerriero
et al., 2016a). In rice cell suspension culture, a hemicellulose-
bound form of Si has been identified (He et al., 2015), in
horsetail mixed-linkage glucans (MLGs) have been proposed to
participate in SiO2 formation (Fry et al., 2008) and this has been
recently confirmed in rice where overexpression of a hydrolase
acting on MLGs was shown to affect silicification (Kido et al.,
2015). In horsetail, callose was shown to template biosilicification
(Law and Exley, 2011). Very recently, the role of callose in
templating biosilicification has been additionally proven by using
Arabidopsis plants either overexpressing or lacking the callose
synthase gene PMR4 (Brugiére and Exley, 2017): while the wild-
type plants and overexpressors responded to a pathogen-like
challenge by accumulating both callose and silica, the mutants
did not produce callose and, consequently, deposited significantly
less silica.

Si PRIMING

Several papers demonstrated that Si(OH)4 (hereafter referred to
as Si for simplicity) acts as a “tonic” by priming plants, i.e., by
preparing the defense responses which are then fully deployed
at the onset of the stress, as will be discussed in detail in the
next sections. The effects of Si under normal conditions are
indeed latent, since, for the majority of the studies available, no
major modifications, e.g., in gene expression, are observed. Under
control conditions Si probably activates the metabolic status of
the plant, by making it more efficient in responding to exogenous
stimuli.

In rice, a Si-accumulator, Si causes alterations of C/N balance
in the source-sink relationship under unstressed conditions, by
favoring a remobilization of amino acids to support the increased
N demand during grain development (Detmann et al., 2012,
2013). These data support the hypothesis that Si has a signaling
role in plant cells. Si was indeed suggested to have a role as second
messenger by binding to the hydroxyl groups of proteins involved
in cell signaling, thereby partaking in the signal transduction
(Fauteux et al., 2005).

It is important to mention that Si primes defense responses
also in Si non-accumulators, i.e., tomato (Ghareeb et al., 2011):
tomato is protected against Ralstonia solanacearum by Si which
causes an upregulation, upon infection, of genes involved in
ethylene and jasmonic acid signaling, i.e., JERF3, TRSF1, ACCO,
as well as genes involved in stress response, i.e., trehalose
phosphatase, late embryogenesis abundant protein, ferritin. In
this study, the authors also observed an increased expression
of a negative regulator of the jasmonic acid signal, JAZ1,
together with a ubiquitin protein-ligase: the authors propose
that JAZ1 helps in preventing the eventual damage caused
by the stimulation of defense-related compounds and that the
ubiquitin protein-ligase may degrade JAZ1. In tomato challenged
by R. solanacearum, Si also upregulates a MAPK (MAPK19), a
WRKY transcription factor and linker histones (H1 and H5).
These findings corroborate the role of Si in intracellular signaling
and suggest its involvement in transcription too (Ghareeb et al.,
2011).

Silicon was shown to upregulate the expression of a leucine-
rich repeat receptor-like kinase (LRR-RLK) in rice (Fleck
et al., 2011), which is a protein involved in intracellular signal
transduction. High-throughput technologies relying on –omics
will help shed light on the missing genes/proteins involved in the
signal transduction underlying Si priming (the so-called “prime-
omics”; Balmer et al., 2015).

Si AND ABIOTIC STRESS ALLEVIATION

Si assumes key functions in the plant response to numerous
environmental constraints. Two major processes contributing
to stress resistance are commonly considered (i) a physical
and mechanical protection afforded by SiO2 deposits and (ii) a
biochemical response triggering metabolic changes. The precise
distribution/speciation of accumulated Si in plant tissue allows us
to gain additional information regarding its modalities of action
and requires the use of biophysical tools, such as laser ablation
(LA), extended X-ray fine structure (EXAFS), X-ray absorption
near edge structure (XANES) and micro particle-induced X-ray
emission (micro-PIXE).

According to Liang et al. (2013), Si improves lodging
resistance by strengthening the stem basis in rice. It also enhances
UV tolerance due to the protective effect of Si deposition bodies
on the leaf epidermis (Goto et al., 2003) or by reducing UVB-
induced membrane damages (Shen et al., 2010).

Silicon influences water relations in drought-treated plants:
it induces the formation of a silica cuticle double layer under
the leaf epidermis which reduces water losses through cuticular
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transpiration (Gong et al., 2003). Si also reduces stomatal
conductance in relation to turgor loss of guard cells resulting
from Si deposition and modified cell wall properties (Zhu and
Gong, 2014). Si improvement of drought resistance may also be
ascribed to strong abilities to extract water from the soil as a
consequence of Si-related promotion of root elongation (Hattori
et al., 2005) and up-regulation of aquaporin genes (Liu et al.,
2015).

Silicon contributes to salt stress alleviation through inhibition
of Na+ (Zhu and Gong, 2014) and Cl− (Shi et al., 2013) uptake.
Translocation of toxic ions from root to shoot is also reduced
by Si supply (Savvas and Ntatsi, 2015). In rice, Si alleviates
NaCl toxicity by blocking the transpirational bypass flow through
precipitation as SiO2 in exodermis and endodermis (Yeo et al.,
1999). Potassium uptake allowing the maintenance of K/Na is
improved by Si nutrition which has a direct stabilizing effect on
proton pump activity in salt-treated root tips (Xu et al., 2015).

In metal-polluted soil, Si may influence the bioavailability
of toxic elements. The presence of soil sodium metasilicate
or alkaline Si-containing material may induce a rise in the
rhizospheric pH leading to a decrease in available heavy metal
concentration in the soil (Wu et al., 2013). Soluble silicate
hydrolyzes to generate gelatinous metasilicic acid (H2SiO3)
retaining heavy metals (Gu et al., 2011). According to Kidd
et al. (2001), Si-treated plants may also exude phenolics such
as catechin and quercetin having strong Al-chelating abilities.
The formation of hydroxyl-aluminum silicate in the apoplast also
contributes to Al detoxification (Wang et al., 2004).

Compartmentation of toxic ions is an important process in
heavy metal tolerance. Si improves heavy metal retention by
roots, with an obvious accumulation in the endodermis (Keller
et al., 2015). At the shoot level, accumulation of Mn was mainly
observed in epidermis in response to Si treatment (Doncheva
et al., 2009). Iwasaki and Matsumura (1999) reported that Si
increases Mn accumulation in the leaf trichomes. Controversial
data are available in the literature regarding co-precipitation of
Si with heavy metals. Keller et al. (2015) did not detect Cu and
Cd in phytoliths and the absence of Cu-Si coprecipitation was
also noticed in maize by Collin et al. (2014). He et al. (2013),
however, identified a mechanisms of co-deposition of Si and Cd
in the rice cell walls via a [Si-wall matrix] Cd complexation,
which may explain a Si-induced decrease in the Cd influx in
cells. Ma et al. (2015) considered that a hemicellulose bound
form of Si with a net negative charge is responsible for inhibition
of Cd uptake leading to a downregulation of Nramp5 coding
for a transporter involved in Cd transport. Kim et al. (2014)
also reported a downregulation of other heavy metals transporter
(OsHMA2 and OsHMA3) when Cu/Cd-treated rice was supplied
by Si.

Numerous studies reported that Si induces an improved
behavior of heavy metal-treated plants in relation to regulation
of antioxidant enzymes (Adrees et al., 2015), oversynthesis of
endogenous antioxidants leading to mitigation of oxidative stress
(Imtiaz et al., 2016), maintenance of net photosynthesis relying
on the stabilization of chloroplast structures, PSII integrity and
increased pigment concentration (Nwugo and Huerta, 2008;
Tripathi et al., 2015a). Si may thus be of paramount importance

for triggering adapted plant response, but the precise molecular
cues involved in the adaptative processes still need to be clearly
identified.

Si AND BIOTIC STRESS

Si was reported to improve defense against biotic constraints
occurring in the form of plant pathogens (fungi, bacteria, and
viruses) or animals (vertebrates and arthropod herbivores).

Silicon deposition increases abrasiveness of plant tissues
and thus reduces palatability and digestibility for herbivores
(Massey and Hartley, 2009). Hartley et al. (2015) demonstrated
by Scanning electron microscopy with energy dispersive X-ray
spectroscopy (SEM-EDX) that phytolith morphology inside the
tissues has more influence on abrasiveness than the actual Si
concentration. Using the same technique, Keeping et al. (2009)
demonstrated that the pattern of Si deposition in sugarcane
is responsible for enhanced resistance to Eldana saccharina.
Physical strength of the leaf resulting from Si accumulation may
afford mechanical protection and thus lower the rate of infection
as reported forRhizoctonia solani (Zhang et al., 2013; Schurt et al.,
2014) or Bipolaris oryzae (Ning et al., 2014).

Biochemical/molecular mechanisms are also induced or re-
inforced by Si allowing the plant to improve resistance to
biotic stress and include defensive compounds such as phenolics,
phytoalexins and momilactones (Remus-Borel et al., 2005), but
also to activation of defensive enzymes such as peroxidase,
polyphenol oxidase, lipoxygenase and phenylalanine ammonia
lyase (Rahman et al., 2015). According to Cai et al. (2008), Si
treatments may increase transcripts levels corresponding to those
defense-related genes.

Reynolds et al. (2016) reported that Si also operates by
attracting predators or parasitoids to plant under herbivore
attack. Indeed, soluble Si contributes to increase herbivore-
induced plant volatiles to promote predator attraction by pest-
infected plants. Moreover, according to James (2003) and
Connick (2011), the phenology of insect’s life cycle is also slowed
down in Si-treated plants, making it more prone to predation.

EFFECTS OF Si ON PHYTOHORMONES

Silicon impacts on endogenous phytohormones are commonly
analyzed in response to stress conditions. In rice plants exposed
to heavy metals, Si reduced endogenous concentration of jamonic
acid (JA) and salicylic acid (SA), while abscisic acid (ABA)
first increased and then decreased after 14 days of treatment
(Kim et al., 2014): the ABA has an antagonist behavior with
JA/SA biosynthesis. The effect of such phytohormonal changes
on the expression of genes involved in heavy metal response still
needs to be elucidated in Si-treated plants. Kim et al. (2011)
also reported that Si reduced JA concentration in response
to wounding, while Lee et al. (2010) reported an increase
in gibberellins concentration in Si-treated plants exposed to
salinity.

Resistance to biotrophic pathogens may be associated with
SA whereas JA and ethylene (ET) are generally associated with
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resistance to necrotrophic pathogens. Fauteux et al. (2006)
showed that Si improved biosynthesis of SA, JA and ET in leaves
exposed to Erysiphe cichoracearum. Similarly, Si-treated tomato
plants exposed to R. solanacearum activated JA and ET signaling
pathways to increase resistance (Ghareeb et al., 2011). Brunings
et al. (2009) also provided evidence that genes controlling
ET signaling pathway may be activated by Si treatment.
Conversely, Si improves resistance to the fungus Cochliobolus
miyabeanus by interfering with the production of fungal ET
(Van Bockhaven et al., 2015). Data regarding the effect of Si on
phytohormone metabolism in the absence of stress are still rare.
Markovich et al. (2017), however, recently demonstrated that
Si increases cytokinin biosynthesis in Sorghum and Arabidopsis
and that such an increase may strongly contribute to delay
senescence. Plant hormones interactions are responsible for
a complex biochemical and physiological network: a deep
understanding of Si influence on hormonal properties thus
requires technical approaches allowing to quantify a wide
range of hormonal compounds simultaneously, including minor
conjugated forms.

SILICA NANOPARTICLES

The use of nanotechnology in agriculture is gaining importance
because it contributes to develop new sustainable strategies.
Nanomaterials can for example be engineered to immobilize
nutrients or to release them in a controlled manner in the soil
(Fraceto et al., 2016).

Some papers in the literature have studied the effects of silica
nanoparticles (SNPs) on plant physiology and we will here review
some of them.

Mesoporous SNPs (MSNPs, 20 nm in size) coupled to FITC
were shown to be taken up by three important crops (lupin,
wheat, maize), as well as Arabidopsis protoplasts and to be
translocated to the aerial parts following the xylematic flow after
entering the roots via symplastic/apoplastic routes (Sun et al.,
2014). Very interestingly, this study also showed that MSNPs
accumulated in the cell walls, therefore highlighting the existence
of an affinity with cell wall components. The monodisperse
nature of the MSNPs and their size, achieved via a fine-tuning of
pH and surfactant concentration, were essential for the efficient
uptake by plants: the entry takes place via the pores in the cell
walls of the roots cells (Sun et al., 2014).

Mesoporous SNPs were shown to boost the growth, total
protein content and photosynthesis of lupin and wheat seedlings
and to induce no changes in the activity of antioxidant enzymes
(Sun et al., 2016). Interestingly in this study, the authors observed
a shift of 14 cm−1 and 10 cm−1 in the Raman peaks of chlorophyll
from wheat and lupin when isolated chloroplasts were incubated
with MSNPs suggesting a change in the molecular structure of
chlorophyll.

Silica nanoparticles were shown to protect wheat seedlings
against UV-B stress by stimulating the antioxidant defense system
(Tripathi et al., 2016). In particular, SNPs reduced the adverse
effects of the UV-B stress, i.e., low fresh weight, reduction in
chlorophyll and tissue damage. Since the levels of nitric oxide

reached a peak after UV-B+SNPs treatment, a protective role via
the modulation of NO levels was proposed by the authors.

Silica nanoparticles also conferred protection via mitigation of
oxidative stress in pea seedlings treated with Cr(VI): the activities
of enzymes such as superoxide dismutase, ascorbate peroxidase
increased significantly in the presence of SNPs, while catalase,
glutathione reductase and dehydroascorbate reductase were less
inhibited by Cr(VI) in the presence of SNPs (Tripathi et al.,
2015b).

Silica nanoparticles (12 nm) were also found to improve
germination in a known Si-excluder, tomato: at a concentration
of 8 g/L, SNPs improved seedling germination, as well as fresh
and dry weight by 116.6 and 117.5% respectively (Siddiqui and
Al-Whaibi, 2014).

Nanostructured SiO2 (TMS) was shown to be valuable in larch
seedling production, because, when applied to the roots of 1-year-
old seedlings via soaking for 6 h, it promoted lateral root growth,
main root length and chlorophyll content (Bao-shan et al., 2004).

The effect of SNPs was, however, shown to be dependent on
the plant species, as in Bt-transgenic cotton they significantly
decreased plant growth (Le et al., 2014). SNPs toxicity may be
linked to pH and nutrient adsorption problems. Indeed, in thale
cress, SNPs phytotoxicity was triggered when the pH of the
medium was not adjusted or silanol groups were not removed
from the surface (Slomberg and Schoenfisch, 2012). The alkaline
pH (pH 8 ca.) makes nutrients less available for uptake, while the
negatively charged SNPs tend to adsorb nutrients.

Si AND FIBER CROPS

Fiber crops like textile hemp (Cannabis sativa L.) are natural
resources which provide long and strong cellulosic fibers (a.k.a.
bast fibers) used in both the textile and biocomposite sectors
(Guerriero et al., 2014; Andre et al., 2016; Guerriero et al.,
2016b). Given the positive effects of Si on plants, its use for
fiber crop growth may provide an enhanced biomass yield and,
therefore, an increased production of bast fibers. The association
of SiO2 with the fiber cell walls may provide new properties,
notably and increased durability. In this respect, it should
be noted that hemp woody fibers, which contain SiO2 and
therefore bind well with lime, are already used to manufacture a
lightweight concrete-like material used in eco-construction and
known as hempcrete. The few studies available on the specific
Si impact on fiber crops confirm protection against abiotic
stresses. In ramie [Boehmeria nivea (L.) Gaud.], the application
of Si ameliorated Cd toxicity via stimulating the activities of
antioxidant enzymes (Tang et al., 2015). Bakry et al. (2015)
and Shedeed et al. (2016) reported that foliar application of Si
improved the nutrient status of flax and increased straw and oil
yield/plant.

Silicon accumulation in fiber crops is genetically controlled,
as demonstrated for bamboos by Collin et al. (2012). Exogenous
Si did not reduce Cu absorption by bamboos growing on
contaminated solution, but reduced toxicity symptoms (Collin
et al., 2013, 2014). Si also improved the growth of cotton
exposed to Cd but, in this case, Si reduced Cd uptake and
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FIGURE 1 | Global overview of Si impact on hemp (Cannabis sativa L.), here depicted as a model plant in light of its economic importance as a
source of bast fibers. Speciation of Si in soil and application of SiO2 nanoparticles are indicated in brown boxes and possible sites of Si deposit in the plant are
indicated in green boxes. Resulting consequences of Si accumulation in terms of stress resistance and underlying physiological processes are indicated in blue
boxes. For further details, please refer to the text. A deep understanding of processes involved in Si absorption, translocation and physiological consequences
require holistic -omics approaches including transcriptomics, proteomics and metabolomics tools. The precise Si distribution may be assessed by laser ablation (LA),
extended X-ray fine structure (EXAFS), X-ray absorption near edge structure (XANES) and micro particle-induced X ray emission (micro-PIXE).

mitigated the adverse effect of this heavy metal by improving
plant growth, biomass and photosynthetic parameters in stressed
plants (Farooq et al., 2013).

Data concerning the direct influence of Si on fiber
development itself are crucially lacking. Some old studies,
however, provided indirect evidences that Si may assume
important functions in this respect. Khan and Roy (1964)
reported that soil application of silicate improved the size of the
commercial fiber jute by increasing cell elongation and fineness.
According to Boylston (1988), the Si concentration is high during
the elongation phase of cotton fiber development but decreases
as the fiber matures. The ratio of the amount of Si per mass of
fiber peaks at the time when secondary wall initiation occurs
(Boylston et al., 1990). Si is known to interact with cell walls (see
Introduction), although the mechanisms underlying the final
incorporation of polymerized Si into the cell wall remain elusive.
Kido et al. (2015) recently demonstrated that the interaction of

mixed linkage glucan (1;3, 1;4)-β-D-glucan with Si may have
obvious mechanical consequences.

Si beneficial influence on natural fiber properties is confirmed
by the use of Si-containing compounds during industrial
processing of harvested fibers. Natural fibers are gaining attention
in engineering composite industry. However, cell wall polymers
often bear hydrophilic hydroxyl groups able to form new
hydrogen bonds with water molecules, which hinder hydroxyl
group to react with the polar matrix of the composites
(Mwaikambo and Ansell, 2002). Silane is an inorganic compound
(SiH4) commonly used to improve tensile strength and thermal
stability of natural fibers (Abdelmouleh et al., 2004) which may be
due to the emergence of Si-O-C and Si-O-Si links on the cellulose
surface (Lu et al., 2013). Other Si treatment, including siloxane
and nano Si dioxide are also used for similar purposes (Kabir
et al., 2012; Siengchin and Dangtungee, 2014; Orue et al., 2016).
It may thus be hypothesized that Si treatment in vivo during
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fiber development (and not only in vitro on harvested mature
fibers) may lead to several promising application. This exciting
goal, however, requires a multidisciplinary approach to gain a
better understanding of Si influence on the modalities of fiber
development (Figure 1).

CONCLUSION AND FUTURE
PERSPECTIVES

Silicon is an abundant element on Earth and its positive effects
on plants make it important in agriculture. The study of the Si-
plant binomium has still much to teach us and this is particularly
the case for e.g., the cell wall-related mechanisms underlying
its prophylactic role under stress. The plant cell wall takes
active part in the response to (a)biotic stresses by establishing a
signaling cascade toward the cell interior (Hamann, 2015) and
by undergoing a remodeling (Tenhaken, 2014). It is therefore

clear that part of the beneficial effects of Si on plants is linked
to direct/indirect effects on the cell wall.

In the future, research activities centered on specific aspects of
the interaction Si-plants will be important to devise agricultural
strategies aimed at improving crop yield.
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