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Root system analysis is a complex task, often performed with fully automated image

analysis pipelines. However, the outcome is rarely verified by ground-truth data, which

might lead to underestimated biases. We have used a root model, ArchiSimple, to create

a large and diverse library of ground-truth root system images (10,000). For each image,

three levels of noise were created. This library was used to evaluate the accuracy and

usefulness of several image descriptors classically used in root image analysis softwares.

Our analysis highlighted that the accuracy of the different traits is strongly dependent

on the quality of the images and the type, size, and complexity of the root systems

analyzed. Our study also demonstrated that machine learning algorithms can be trained

on a synthetic library to improve the estimation of several root system traits. Overall,

our analysis is a call to caution when using automatic root image analysis tools. If a

thorough calibration is not performed on the dataset of interest, unexpected errors might

arise, especially for large and complex root images. To facilitate such calibration, both

the image library and the different codes used in the study have been made available to

the community.

Keywords: image analysis, root structural model, benchmarking, image library, machine learning

INTRODUCTION

Roots are of utmost importance in the life of plants and hence selection on root systems
represents great promise for improving crop tolerance to biotic and abiotic stresses (as reviewed
in Koevoets et al., 2016). As such, their quantification is a challenge in many research projects. This
quantification is usually two-fold. The first step consists in acquiring images of the root system,
either using classic imaging techniques (CCD cameras) or more specialized ones (microCT, X-Ray,
fluorescence,...). The next step is to analyse the pictures to extract meaningful descriptors of the
root system.

To paraphrase the famous Belgian surrealist painter, René Magritte: “Figure 1A is not a root
system.” Figure 1A is an image of a root system and that distinction is important. An image
is indeed a two-dimensional representation of an object, which is usually three-dimensional.
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FIGURE 1 | (A) Image of a 2-week old maize root system grown in rhizotron.

(B) Close-up showing overlapping roots. (C) Close-up showing crossing roots.

Nowadays, measurements are generally not performed on the
root systems themselves, but on the images, and this raises some
issues.

Image analysis is the acquisition of traits (or descriptors)
describing the objects contained in a particular image. In a
perfect situation, these descriptors would accurately represent
the biological object of the image with negligible deviation from
the biological truth (or data). However, in many cases, artifacts
might be present in the images so that the representation of
the biological object is not accurate anymore. These artifacts
might be due to the conditions under which the images were
taken or to the object itself. Mature root systems, for instance,
are complex branched structures, composed of thousands of
overlapping (Figure 1B), and crossing segments (Figure 1C).
These features are likely to impede image analysis and create a
gap between the descriptors and the data.

Root image descriptors can be separated into two main
categories: morphological and geometrical descriptors.
Morphological descriptors refer to the shape of the different
root segments forming the root system (Table 1). They include,
among others, the length and diameter of the different roots.
For complex root system images, morphological descriptors are
difficult to obtain and are prone to error as mentioned above.
Geometrical descriptors give the position of the different root
segments in space. They summarize the shape of the root system
as a whole. The simplest geometrical descriptors are the width
and depth of the root system. Since these descriptors are mostly
defined by the external envelope of the root system, crossing and
overlapping segments have little impact on their estimation and
hence they can be considered as relatively errorless. Geometrical
descriptors are expected to be loosely linked to the actual root
system topology, since identical shapes could be obtained from

TABLE 1 | Root system parameters used as ground-truth data.

Name Description Unit

tot_root_length The cumulative length of all roots mm

tot_1_order_length The cumulative length of all root axes mm

tot_2+_order_length The cumulative length of all lateral roots mm

mean_1_order_length The mean first-order roots length mm

mean_2+_order_length The mean lateral root length mm

n_1_orders The total number of first order roots –

n_2+_orders The total number of lateral roots –

mean_2+_order_density The mean lateral root density: for each

first-order root, the number of lateral roots

divided by the axis length (total length).

mm-1

mean_1_order_diam The mean diameter of the first-order roots mm

mean_2+_order_diam The mean diameter of the lateral roots mm

mean_2+_order_angle The mean insertion angle of the lateral roots ◦

different root systems (the opposite is true as well). They are
usually used in genetic studies, to identify genetic bases of root
system shape and soil exploration.

Several automated analysis tools were designed in the last
few years to extract both types of descriptors from root images
(Armengaud et al., 2009; Galkovskyi et al., 2012; Pierret et al.,
2013; Bucksch et al., 2014). However, the validation of such tools
is often incomplete and/or error prone. For technical reasons, the
validation is usually performed on a small number of ground-
truth images of young root systems. In agreement, most analysis
tools are specifically designed for this kind of root systems. In the
few cases where validation is performed on large and complex
root systems, it is usually not on ground-truth images, but in
comparison with previously published tools (measurement of X
with tool A compared with the same measurement with tool B).
This might seem a reasonable approach, regarding the scarcity of
ground-truth images of large root systems. However, the inherent
limitations of these tools, such as scale or root system type
(fibrous- vs. tap-roots) are often not known. Users might not
even be aware that such limitations exist and apply the provided
algorithm without further validation on their own images. This
can lead to unexpected errors in the final measurements.

One strategy to address the lack of in-depth validation of
image analysis pipelines would be to use synthetic images
generated by structural root models (models designed to recreate
the physical structure and shape of root systems).Many structural
root models have been developed, either to model specific plant
species (Pagès et al., 1989), or to be generic (Pagès et al., 2004,
2013). These models have been repeatedly shown to faithfully
represent the root system structure (Pagès and Pellerin, 1996).
In addition, they can provide the ground-truth data for each
synthetic root system generated, independently of its complexity.
However, they have not been used for validation of image analysis
tools (Rellán-Álvarez et al., 2015), with one exception performed
on young seedling unbranched roots (Benoit et al., 2014).

Here we (i) illustrate the use of a structural root model,
Archisimple, to systematically analyse and evaluate an image
analysis pipeline and (ii) use the model-generated images to
improve the estimation of root traits.
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MATERIALS AND METHODS

Nomenclature Used in the Paper
Ground-truth data: The real (geometrical and
morphometrical) properties of the root system as a biological
object. They are determined by either manual tracking of
roots or by using the output of simulated root systems.
(Image) Descriptor: Property of the root image. It does not
necessarily have a biological meaning.
Root axes: First order roots, directly attached to the shoot.
Lateral roots: Second- (or lower) order roots, attached to
another root.

Creation of a Root System Library
We used the model ArchiSimple, which was shown to allow the
generation of a large diversity of root systems with a minimal
amount of parameters (Pagès et al., 2013). To produce a large
library of root systems, we ran the model 10,000 times, each
time with a random set of parameters (Figure 2A). For each
simulation, the growth and development of the root system were
constrained in two dimensions.

The simulations were divided into two main groups: fibrous
and tap-rooted. For the fibrous simulations, the model generated
a random number of root axes and secondary (radial) growth
was disabled. For tap-root simulations, only one root axis was
produced and secondary growth was enabled (the extent of which
was determined by a random parameter).

The root system created in each simulation was stored in a
Root System Markup Language (RSML) file. Each RSML file was
then read by the RSML Reader plugin from ImageJ to extract
ground-truth data for the library (Lobet et al., 2015). These
ground-truth data included geometrical and morphological
parameters (Table 1). For each RSML data file, the RSML Reader
plugin also created three JPEG images (at a resolution of 300DPI)
for each root system. To simulate one type of image degradation,
we added different levels of noise to the images (using the Salt
and Pepper Filter in ImageJ) (Figure 2D). For each root system,
we computed overlapping index as the number of root segments
having an overlap with other root segments over the total number
of root segments.

Root Image Analysis
Each generated image was analyzed using a custom-made ImageJ
plugin, Root Image Analysis-J (or RIA-J). For each image, we
extracted a set of classical root image descriptors, such as the
total root length, the projected area, and the number of visible
root tips (Figure 2E). In addition, we included shape descriptors
such as the convex-hull area or the exploration ratio (see
Supplemental File 1 for details of RIA-J). The list of traits and
algorithms used by our pipeline is listed in Table 2. Distribution
of the different descriptors is given in the Supplemental Figure 2.

Data Analysis
Data analysis was performed in R (R Core Team)1. Plots were
created using ggplot2 (Wickham, 2009) and lattice (Sarkar, 2008).

1R Core Team R: A Language and Environment for Statistical Computing.

The Mean Relative Errors (MRE) were estimated using the
equation:

MRE =

∑n
1
|yi − yi|

yi

n

where n is the number of observations, yi is the ground-truth and
yi is the estimated ground-truth.

Random Forest Framework
A random forest is a state-of-the-art machine learning algorithm
typically used for making new predictions (in both classification
and regression tasks). Random Forests can perform non-
linear predictions and, thus, often outperform linear models.
Since its introduction by Breiman (2001), Random Forests
have been widely used in many fields from gene regulatory
network inference to generic image classification (Huynh-
Thu et al., 2013; Marée et al., 2016). Random Forest relies
on growing a multitude of decision trees, a prediction
algorithm that has shown good performances by itself but,
when combined with other decision trees (hence the name
forest), returns predictions that are much more robust to
outliers and noisy data (see bootstrap aggregating, Breiman,
1996).

In a machine learning setting one is given a set D =

{(x1, y1), (x2, y2), ..., (xn, yn)},
where xi = (x1i , x

2
i ..., x

s
i ) is an element of a s−dimensional

feature space X,
and yi = (y1i , y

2
i , ..., y

t
i ) an element of a t−dimensional response

space Y.
The learning task is to find a model

M : X → Y

that predicts the data in a good way, where goodness is measured
with regard to an error function L.

A decision tree TD is a machine learning method that, for a
dataset D, constructs a binary tree with each node representing
a binary question and each leaf a value of the response space.
In other words, a prediction can be made from an input
value by looking at the set of binary questions that leads to
a leaf (e.g., is the first-order root bigger than q1 and if yes
is the number of second-order roots smaller than q2 and if
no, . . . ).

Each decision is based upon exactly one feature and is used for
deciding which branch of the tree a given input value must take.
Hence a decision tree splits successively the set D into smaller
subsets and assigns them a value yi = TD(xi) of the response
space.

The choice of the feature used for splitting depends on a
relevance criterion. In our setting, the default relevance criterion
from the randomForest R package (CRAN randomForest, 2015),
namely the Gini index, has been used.

A Random Forest

FD = (TD,k)k ∈ I where I = {1, 2, ....l} (1)
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A B

C

D E

FIGURE 2 | Overview of the workflow used in this study. (A) Generation of root systems using Archisimple. (B) Creation and analysis of root images. (C) Use of

Random Forest algorithms to better estimate root system ground-truths. (D) Illustration of the different noise levels used in the analysis. (E) Example of descriptors

extracted with RIA-J.

TABLE 2 | Root image descriptors extracted by RIA-J.

Name Description Unit Reference

MORPHOLOGY

area Projected area of the root system mm2 Galkovskyi et al., 2012

length Length of the skeleton of the root system image mm Galkovskyi et al., 2012

tip_count Number of end branches in the root system skeleton –

diam_mean Mean diameter of the root object in the image mm

GEOMETRY

width The maximal width of the root system mm –

depth The maximal depth of the root system mm –

width_depth_ratio Ratio between the width and the depth of the root system – Galkovskyi et al., 2012

com_x–com_y Relative coordinates of the center of mass of the root system – Galkovskyi et al., 2012

convexhull Area of the smallest convex shape encapsulating the root system mm2 Galkovskyi et al., 2012

exploration Ratio between the convex hull area and the projected area – Galkovskyi et al., 2012
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consists of l decision trees TD,k, where several key parameters
such as the feature space, are chosen randomly (hence the
word Random in the algorithm name). While using a random
subspace strongly accelerates the growth of a single tree, it can
also decrease its accuracy. However, the use of large number of
trees counterbalance advantageously those two effects. The final
prediction for each input value xi corresponds to the majority
vote of all the decision trees of the forestTD,k(xi) in a classification
setting while an average of all predicted values is used in a
regression task.

Framework Description
Our method consists of three typical steps:

1. A preprocessing step, where we replace missing values of the
training set.

2. A model generation step where, for each response variable,
we generate different models according to two Random Forest
parameters (number of trees and number of splits).

3. A model selection step, where we choose the best performing
pair of parameters of the previous step for each one of the
response variable.

Preprocessing
Missing values in our dataset might arise due to highly noisy
images, where the measurement of certain descriptors has been
infeasible. To deal with this issue, we first replacedmissing values.

This is done using the imputation function of the
randomForest R package. It replaces all missing values of a
response variable by the median and then a Random Forest is
applied on the completed data to predict a more accurate value.
We favored 10 trees for computing the new value over the default
value of 300 as we found that it offered sufficiently accurate
results for our application while being much faster.

Model Generation
In the model generation step, for each of the response variables,
several forests with different number of trees and different
number of splits (ti,mj) are tested. In practice, the training set

Dtrain is divided into mj disjunct subsets D
mj

train and on each of
those, a Random Forest F

D
mj
train

is trained on a growing number of

ti random trees.

Model Selection
Given a new data point x, each model predicts a response variable
y by averaging the predicted values FDm

train
(x), i.e.,

ŷ=Mt,m
Dtrain

(x) =
1

m

m
∑

k = 1

FDk
train

(x)

Then in a final step an estimate of the root-mean-square (RMSE)
generalized error on the test set Dtest is computed, where RSME
is defined as

RMSE=

n
∑

i = 1

√

(yi−yi)
2

for Dtest={(x1,y1),(x2,y2),...,(xn,yn)}.

Finally, the model with the parameter pair (t,m) having the
minimal error (on the separate test set) is chosen in order tomake
the predictions.

Data Availability
All data used in this paper (including the image and RSML
libraries) are available at the address http://doi.org/10.5281/
zenodo.208214

An archived version of the codes used in this paper is available
at the address http://doi.org/10.5281/zenodo.208499

An archived version of the machine learning framework is
available at the address https://github.com/FaustFrankenstein/
RandomForestFramework/releases/tag/v1.0

RESULTS AND DISCUSSIONS

Production of a Large Library of
Ground-Truth Root System Images
We combined existing tools into a single pipeline to produce a
large library of ground-truth root system images. The pipeline
combines a root model (ArchiSimple, Pagès et al., 2013), the
Root System Markup Language (RSML) and the RSML Reader
plugin from ImageJ (Lobet et al., 2015). In short, ArchiSimple was
used to create a large number of root systems, based on random
input parameter sets. Each output was stored as an RSML file
(Figure 2A), which was then used by the RSML Reader plugin
to create a graphical representation of the root system (as a.
jpeg file) and a ground-truth dataset (Figure 2B). Details about
the different steps are presented in the Materials and Methods
section.

We used the pipeline to create a library of 10,000 root system
images, separated into fibrous (multiple first order roots and no
secondary growth) and tap-root systems (one first order root
and secondary growth). The ranges of the different ground-truth
data are shown in Table 3 and their distribution is shown in the
Supplemental Figure 1.

We started by evaluating whether fibrous and tap-root
systems should be separated during the analysis. We performed
a Principal Component Analysis on the ground-truth dataset
to reduce its dimensionality and assess if the type grouping
influenced the overall dataset structure (Figure 3A). Fibrous
and tap-root systems formed distinct groups (MANOVA p <

0.001), with limited overlap. The first principal component,
which represented 30.9% of the variation within the dataset, was
mostly influenced by the number of first-order axes. The second
principal component (19.1% of the variation) was influenced, in
part, by the root diameters. These two effects were consistent
with the clear root system type grouping, since they expressed
the main difference between the two groups of root-system types.
Therefore, since the type grouping had such a strong effect on the
overall structure, we decided to separate them for the following
analyses.

To demonstrate the utility of a synthetic library of
ground-truth root systems, we analyzed every image of
the library using a custom-built root image analysis tool,
RIA-J. We decided to do so since our purpose was to
test the usefulness of the synthetic analysis and not to
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TABLE 3 | Ranges of the different ground-truth data from the root systems

generated using ArchiSimple.

Variable Minimum value Maximum value Unit

FIBROUS

tot_root_length 110 73971 mm

width 0.76 302 mm

depth 50 505 mm

n_1_order 1 20 –

tot_1_order_length 79 5409 mm

mean_1_order_length 27 470 mm

mean_1_order_diameter 0.2 0.4 mm

mean_2+_order_density 0 5 root/mm

n_2+_orders 0 4448 –

tot_2+_order_length 0 71556 mm

mean_2+_order_length 0 50 mm

mean_2+_order_diameter 0 0.3 mm

mean_2+_order_angle 0 88 ◦

TAP ROOTED

tot_root_length 78 41870 mm

width 0.1 173 mm

depth 55 505 mm

n_1_order 1 1 –

tot_1_order_length 59 509 mm

mean_1_order_length 59 509 mm

mean_1_order_diameter 0.2 16 mm

mean_2+_order_density 0 2.3 root/mm

n_2+_orders 0 3353 –

tot_2+_order_length 0 40225 mm

mean_2+_order_length 0 51 mm

mean_2+_order_diameter 0 2.2 mm

mean_2+_order_angle 0 97 ◦

assess the accuracy of existing tools. Nonetheless, RIA-J was
designed using known and published algorithms, often used
in root system quantification. A detailed description of RIA-
J can be found in the Materials and Methods section and
Supplemental File 1.

We extracted 10 descriptors from each root system image
(Table 2) and compared them with the ground-truth data. For
each pair of descriptor-data, we performed a linear regression and
computed its r-squared value. Different types of information are
highlighted in Figure 4. First, using a ground-truth image library
allows for a quick and systematic analysis of all the descriptors
extracted by the image analysis pipeline. Second, it allows
researchers to identify which traits can be accurately evaluated
(or not) and by which descriptors. Third, for some ground-
truth data, such as the mean length of second order roots or the
number of first order roots, it shows that none of the classical
descriptors gave a good estimation (Figure 4, highlighted with
arrows). Finally, the figure highlights that some correlations
were different for fibrous- and tap-root systems. As an example,
the correlation found between the mean_2+_order_diameter
and diam_mean estimators was better for fibrous roots than
within the tap-root dataset. Consequently, validation of the

FIGURE 3 | (A) Principal Component Analysis of the root ground-truth

dataset. Images of the selected root systems have been added for illustration.

(B) Loadings of the Principal Component Analysis.

different image analysis algorithms should be performed, at
least, for each group. An algorithm giving good results for
a fibrous root system might fail when applied to tap-rooted
ones.
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FIGURE 4 | Heatmap of the r-squared values between the different

image descriptors and the ground-truth values, for the images without

any noise. Black represents an r-squared value of 1; white represents a value

of 0. Upper panel: fibrous root dataset. Lower panel: tap-root dataset. Arrows

highlight the ground-truth data that cannot be accurately described with the

different descriptors. The arrows were doubled when it was the case for both

fibrous and tap-rooted root systems.

Errors from Image Descriptors Are Likely
to Be Non-linear across Root System Sizes
and Image Qualities
In addition to being related to the species of study, estimation
errors are likely to increase with the root system size. As
the root system grows and develops, the number of crossing
and overlapping segments increases (Figure 5A), making the
subsequent image analysis potentially more difficult and prone
to error. However, a systematic analysis of such error is seldom
performed.

Estimation errors are also likely to increase as the image
quality decreases. Here we artificially added one type of noise
(random “salt and pepper” particles) to the images, with two
intensity levels. It should be noted that virtually any type of
image degradation could be added to the original images using
custom image filters (e.g., using ImageJ). Different types of
degradation are expected to generate different levels of estimation
errors.

Figure 5 shows the relationship between the ground-truth
and descriptor values for three parameters: the total root length
(Figure 5B), the number of roots (Figure 5C), and the root
system depth (Figure 5D). For each of these variables, we
quantified the Mean Relative Error (see Materials and Methods
for details) as a function of the overlap index. This was done for
three levels of noise added to the images (“null,” “medium,” and
“high”). We can observe that for the estimation of both the total
root length and the number of lateral roots, the Mean Relative
Error increased with the size of the root system (Figures 5B–C).
As stated above, such increase of the error was somehow expected
with increasing complexity. Moreover, depending on the metric
of interest, such as the number of root tips, low image quality
can result in high level of error. For other traits, such as the root
system depth, no errors were expected (depth is supposedly an
error-less variable) and the Mean Relative Error was close to 0
whatever the size of the root system and image quality.

The results presented here are tightly dependent on the
specific algorithms used for image analysis and hence might
be different for other published tools. However, they are a call
for caution when analyzing root images: unexpected errors in
ground-truth estimation can arise. Our image library can be used
to better identify the errors generated by other analysis tools,
current or future.

Roadmap for Root Image Analysis Tools
Calibration
To improve the calibration and validation of future root image
analysis tools, we propose the following procedure:

1. Develop the new root image analysis pipeline;
2. Use it to analyse the images from the synthetic root library

described here;
3. Compare the results from the new analysis with the

corresponding ground-truth;
4. Identify, and clearly state, the type of root systems for which

the pipeline works accurately;
5. When releasing the new pipeline, inform the users about the

possible errors identified.

Using the Synthetic Library to Train
Machine Learning Algorithms
The main advantage of creating a synthetic library is to generate
paired datasets of image descriptors and their corresponding
ground-truth values. Having information on both can, in theory,
be used to either calibrate the image analysis pipeline or to
identify the best descriptors for the ground-truth traits of interest.
Here, we explored the second approach and used a Random
Forest algorithm to find which combination of descriptors would
best describe each ground-truth data (see Material and Methods
for details). In short, we randomly divided the whole dataset into
training (3/4) and testing subsets (1/4). The training set was used
to create a Random Forest model for each ground-truth data,
which was then we applied to the test set. The accuracy of these
new predictions was then compared to the accuracy of the direct
method (single descriptors) (Figure 2C).
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FIGURE 5 | Error estimation for three ground-truth parameters. (A) Evolution of the overlap index (proportion of root overlapping) with the root system size.

(B–D) Left panel shows the relationship between the descriptors and the corresponding ground-truth variables. Right panels show the evolution of the Mean Relative

Error (MRE) as a function of the overlap index. For the MRE calculations, the continuous variables were discretized in groups. (B) Number of lateral roots. (C) Total root

length. (D) Root system depth. In the left panels, the gray line indicates the diagonal (1:1 relation).
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Figure 6 shows the comparison of the accuracy (both the r-
squared values from linear regressions and the Mean Relative
Error, MRE) of bothmethods for each ground-truth data.We can
clearly see that the Random Forest approach performed always
better (sometimes substantially) than the direct approach, even
for images with high level of noise. In addition, for most traits,
the r-squared and MRE values were above 0.9 and below 0.1
respectively, which is very good, especially for such a wide range
of images. In addition, the Random Forest approach allowed the
correct estimation of traits that were difficult to estimate with the
direct approach (such as the number of first-order axes or the
mean second-order root density).

Figure 7 shows the detailed comparison of both methods
for the estimation of the total root length. Again, a clear
improvement was visible with the Random Forest method,
leading to small errors, even with large root systems and noisy
images.

Here we presented how machine learning algorithms
(Random Forest), could be used in combination with a

synthetic image library to improve the estimation of root system
traits. Although both the training and test datasets used were
made of synthetic images, we believe this approach presents
an interesting perspective for the analysis of experimental
images.

Indeed, a root architectural model can be used to
build a custom library of synthetic images from a set
of parameters evaluated on a small number of plants
from the experimental dataset. Such library could then
be used to train the machine learning model which, in
turn, will enable the automatic evaluation of root traits
from the remaining experimental images. Alternatively,
the algorithm could be directly trained on a subset of
experimental data obtained by manual or semi-automatic
analyses to be then automatically applied to the rest of the
dataset. One must keep in mind that the output of the
machine learning strongly depends upon the quality of the
dataset used for its training and hence must be analyzed
carefully.

FIGURE 6 | Comparison between the direct trait and the Random Forest approach, for the different root system types and the different levels of noise.

For each metric, we computed both the r-squared value from the linear regression between the estimation and the ground-truth (left panels), as well as the Mean

Relative Error (right panel). The gray points represent the values obtained with the direct estimation (best descriptor, no noise). Color points represent the values

obtained with the Random Forest approach, for different levels of noise. The dotted lines show the 0.9 (r-squared) and 0.1(MRE) thresholds.
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FIGURE 7 | Comparison between the direct trait estimation and the

Random Forest approach, for the different root system types and the

different levels of noise. (A) Comparison, for the total root length, of the

accuracy of both approaches. The dotted line represents the diagonal. The

plain line represents the linear regression. (B) Same, for the number of roots.

CONCLUSIONS

The automated analysis of root system images is routinely
performed in many research projects. Here we used a library of
10,000 synthetic images to estimate the accuracy and usefulness

of different image descriptors extracted with a homemade root
image analysis pipeline. Our study highlighted some limitations
and biases of the image analysis process.

We found that the type of root system (fibrous vs. tap-rooted),
its size and complexity, as well as the quality of the images had a
strong influence on the accuracy of some commonly used image
descriptors and their meaning and relevance for ground-truth
extraction. So far, a large proportion of the root research has been
focused on seedlings with small root systems and has de facto
avoided such errors.

However, as the research questions are likely to focus more
on mature root systems in the future, these limitations will
become critical. We showed that synthetic datasets can be
used for calibration or modeling (machine learning) steps that
allow ground-truth extraction from comparable images. We
then hope that our library will be helpful for the root research
community to evaluate and improve other image analysis
pipelines.
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