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High-amylose cereal starches provide many health benefits for humans. The inhibition

or mutation of starch branching enzyme (SBE) genes is an effective method to develop

high-amylose cereal crops. This review summarizes the development of high-amylose

cereal crops through the inactivation of one or more SBE isoforms or combination with

other genes. This review also reveals the causes of increase in amylose content in

high-amylose crops. A series of changes, including amylopectin structure, crystalline

structure, thermal properties, and hydrolysis properties, occurs as amylose content

increases. The different morphological starch granules nominated as heterogeneous

starch granules or differently stained starch granules are detected in high-amylose cereal

crops. Detailed studies on four heterogeneous starch granules in high-amylose rice,

which is developed by antisense RNA inhibition of SBEI/IIb, indicate that granules with

different morphologies possess various molecular structures and physicochemical and

functional properties. This variation diversifies their applications in food and non-food

industries. However, current knowledge regarding how these heterogeneous starch

granules form and why they exhibit regional distribution in endosperm remain largely

unknown.

Keywords: high-amylose cereal crop, starch branching enzyme, starch molecular structure, starch property,

heterogeneous starch granule

INTRODUCTION

High-amylose starches, rich in resistant starch (RS), have been extensively investigated because of
their many potential health benefits. RS is a portion of starch that can evade degradation in the
upper gastrointestinal tract and function as a substrate for the bacterial fermentation in the large
intestine (Nugent, 2005). RS-enriched food can decrease glycemic and insulin responses and reduce
the risk of developing type II diabetes mellitus, obesity, and cardiovascular diseases (Granfeldt et al.,
1995; Regina et al., 2006; Zhu et al., 2012). The proportion of amylose is positively related to RS
content (Sang et al., 2008; Cai et al., 2015; Lin et al., 2016b; Zhou et al., 2016). High-amylose starches
exhibit various physicochemical properties, including high gelling strength, excellent film-forming
ability, and ease of retrogradation; with these properties, industrial applications, such as adhesive,
paper, and biodegradable plastic production, have been developed (Avella et al., 2002). Therefore,
considerable research has focused on high-amylose starches.

Starch is composed of approximately 15–25% linear amylose. The remaining portion of
starch consists of highly branched and organized amylopectin (Smith et al., 2002). Amylose in
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the endosperm can only be synthesized by granule bound
starch synthase I (GBSSI), which is tightly bound to starch
granules to extend α-1,4 linkages of glucose polymers (Jeon
et al., 2010). Amylopectin synthesis is mainly attributed to three
biosynthetic enzymes, namely, starch synthases (SSs), starch
branching enzymes (SBEs), and debranching enzymes (DBEs).
SSs and SBEs are responsible for the elongation of glucan
chains and the formation of branch points, respectively (Jeon
et al., 2010; Tetlow and Emes, 2014). The irregular glucan
structure produced by SSs and SBEs is trimmed by DBEs to
derive an ordered amylopectin branched chains (Nakamura,
2002). Plastidial phosphorylase (Pho1) also participates in starch
synthesis; however, its precise role remains unclear (Yu et al.,
2001; Satoh et al., 2008).

The amylose content (AC) in cereal endosperm can be
effectively increased by applying two methods, that is, enhancing
GBSSI expression or eliminating SBEs, SSIIa, or other enzymes
involved in amylopectin synthesis (Umemoto and Terashima,
2002; Itoh et al., 2003; Crofts et al., 2012; Zhou et al., 2016).
Once a certain level is reached, AC no longer increases in
GBSSI-enhanced lines possibly because of the limited non-
reducing ends in amylose and the substrate competition between
amylose and amylopectin (Tsai et al., 1970; Smith et al., 2002;
Sestili et al., 2012). The promotion of AC in SSIIa nulls varies
widely in different species; for instance, the elimination of
SSIIa unlikely change AC in rice alk (Umemoto et al., 2004,
2008), moderately increases AC (40–50%) in maize sugary2
(su2) and wheat sgp-1 (Yamamori et al., 2000; Tziotis et al.,
2004; Zhang et al., 2004), and yields about 50% AC in barley
sex6 (Morell et al., 2003). Compared with the effectiveness of
SBE inactivation for high-amylose cereal crops, which have
remarkable increase in AC (Li et al., 2008; Carciofi et al., 2012;
Zhu et al., 2012; Regina et al., 2015), the enhanced AC in SSIIa
nulls is moderate (Yamamori et al., 2000; Tziotis et al., 2004;
Zhang et al., 2004). Therefore, AC can be promoted effectively by
suppressing or eliminating one or more SBE activities in cereal
crops (Table 1).

This review summarizes the development of high-amylose
cereal crops through the inactivation of SBE(s) and a series of
starch changes caused by the increased amylose percentage.

DEVELOPMENT OF HIGH-AMYLOSE
CEREAL CROPS THROUGH SBE
INACTIVATION

Cereal crops have three SBE classes, namely, SBEI, SBEIIa,
and SBEIIb. Biochemical observations indicate that SBEI
preferentially branches longer chains, whereas SBEII isoforms
have a higher capacity for transferring of short chains (Guan
and Preiss, 1993; Takeda et al., 1993; Guan et al., 1997;
Nishi et al., 2001; Nakamura, 2002; Nakamura et al., 2010;
Tetlow and Emes, 2014). Among these observations, studies
on eliminating SBEI activity show no effect on the starch
composition and kernel morphology (Blauth et al., 2002; Satoh
et al., 2003b; Regina et al., 2004); however, in rice and
maize, minor changes in the fine structure of amylopectin

have been reported (Fujita et al., 2006; Xia et al., 2011).
However, AC resulting from the inactivation of either one
of two SBEII isoforms and the combination of two or three
SBE isoforms is significantly increased in different species
(Table 1).

AMYLOSE INCREASE THROUGH SBEIIa
OR SBEIIb DEFICIENCY

In maize and rice, SBEIIb inactivation is required to obtain
a high-amylose phenotype, whereas no significant changes
including AC and amylopectin fine structure are observed in
SBEIIa-defective endosperms (Blauth et al., 2001; Nakamura,
2002; Satoh et al., 2003a). Mutations of SBEIIb in maize and
rice are commonly referred to as amylose-extender (ae) mutants.
Normal maize occupies about 25–30% AC, whereas the AC in
H99ae, OH43ae, B89ae, and B84ae inbred ae-lines has been
reported to reach at least 60%, ranging from 61.7 to 67.7% (Li
et al., 2008). In rice containing Wxb, which mutates at the 5′

end of intron one, japonica type contains low GBSSI mRNA and
protein levels, leading to reduced AC in contrast to indica type,
which has a highly expressed Wxa allele (Isshiki et al., 2000).
The ae mutants from these two backgrounds have higher AC
than their wild-type parents. However, AC increase extent is
not more than 15%, which is significantly lower than that in
analogous maize mutants, which show at least 35% promotion
(Nishi et al., 2001; Shannon et al., 2009). Another ae-like mutant
Goami 2 in rice, also known as Suweon 464, which is derived
from high-quality temperate japonica rice variety (Iipumbyeo),
shows about 2-fold increase in AC (to around 34.0%, see
Kang et al., 2003). However, the specific mutation responsible
for high-amylose phenotype of Goami 2 remains to be
proved.

On the contrary, an almost complete SBEIIb inhibition in
wheat and barley causes a minor change in AC, whereas SBEIIa
inhibition can evidently increase AC (Regina et al., 2006, 2010).
By targeting induced local lesions in genomes (TILLING), wheat
SBEIIa mutant increases AC from 23 to 55% (Slade et al.,
2012). In barley transgenic lines, by RNA-mediated silencing
technology, a high-amylose phenotype (>38%) is observed
when SBEIIa expression is reduced by >80% (Regina et al.,
2010).

In summary, SBEIIb in rice and maize plays a distinct
role in starch synthesis. By contrast, SBEIIa in wheat and
barley is more significant than SBEIIb. High-amylose phenotype
generation is determined by the difference in SBEIIa and SBEIIb
expression levels in cereals. In maize, SBEIIb, which is at
least 50 times the abundance of SBEIIa, is the predominant
isoform in endosperm (Gao et al., 1997). On the other hand,
in rice, the ratio of SBEIIb and SBEIIa is closer to 5:1,
which partly elucidates the higher AC promotion in maize
ae mutants. Furthermore, SBEIIa is expressed at much higher
levels than SBEIIb counterpart in both wheat and barley kernels
(Regina et al., 2006, 2010). Therefore, SBEIIa inhibition is
more effective for developing high-amylose species in the two
crops.
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TABLE 1 | The inactivated gene, amylose content in starch, and starch crystallinity of high-amylose cereal crops.

Species The original

AC in starch

The inactivated genes Name of high AC line AC in starchb Starch

crystallinity

References

Mutation Down regulationa

Maize 25–30% SBEIIb H99ae,OH43ae,

B89ae, B84ae

61.7–67.7% (I) B Li et al., 2008

SBEIIb (HAM) GEMS-0067 88.2% (G) B Jiang et al., 2010b

Rice Japonica

15.4–19.6%

SBEIIb EM10 26.5% (I) B Nishi et al., 2001

SBEIIb (∼80%) ami-BEIIb 41.2% (I) B Butardo et al., 2011

SBEIIb (∼50%) hp-BEIIb 34% (I) A or C Butardo et al., 2011

unknown Goami 2(G2) 33.96% (I) B Kang et al., 2003

SSIIIa ss3a 24.8% (G) A Fujita et al., 2007

SBEIIb, SSIIIa ss3a/be2b 45% (G) B Asai et al., 2014

Indica about

25%

SSIIIa b10 ∼34% (I) A Zhou et al., 2016

SBEI (∼100%), SBEIIb

(>90%)

TRS 64.8% (I) C Zhu et al., 2012

Wheat 22.9–32.3% SBEIIa (Tilling) SBEIIa Mutant 55.7% (K) – Slade et al., 2012

SBEIIa (most), SBEIIb (most) hp-SBEIIa 74.4% (G) – Regina et al., 2006

SBEIIa, SBEIIb CS2-F11 86.6% (G) – Regina et al., 2015

Barley 29.9–31.6% SBEIIa (>80%) SBEIIa− 38% (G) – Regina et al., 2010

SBEIIa (>90%), SBEIIb

(>80%)

SBEIIa−/ SBE IIb↓ 67.2% (G) – Regina et al., 2010

SBEIIa (>90%), SBEIIb

(>95%)

SBEIIa−/ SBEIIb− 76.2% (G) – Regina et al., 2010

SBEI (87%), SBEIIa (73%),

SBEIIb (74%)

SBE RNAi4.1 99.1% (G) B Carciofi et al., 2012

aThe content of parenthesis means the reduced expression of targeted genes.
bThe AC determined by iodine colorimetry, GPC, and K-AMYL kit method is labeled as (I), (G), and (K), respectively.

HIGHER AMYLOSE INCREASE THROUGH
INACTIVATION OF TWO OR MORE SBEs

Combining reduced SBE isoforms with the base of single SBEIIa
or SBEIIb inactivation is an efficient way to acquire high-amylose
crops, especially for wheat and barley (Table 1). A transgenic
resistant starch rice line (TRS) with 60% AC is developed by
simultaneously declining the expressions of SBEIIb and SBEI
in an indica rice variety (Te-qing, TQ). The AC of TRS is
significantly higher than that of TQ-derived rice line by declining
the expression of SBEIIb alone (Wei et al., 2010c; Zhu et al., 2012).
In wheat, transformation with a hairpin construct targeting
SBEIIa alone not only reduces transcription to <10%, but also
leads to an almost complete loss of SBEIIb in the protein
levels, which yields an AC of ∼75% in transgenic wheat (Regina
et al., 2006). Furthermore, a genetic strategy to combine deletion
and single nucleotide polymorphism (SNP) generates wheat
genotypes with the complete absence of SBEIIa from all three
genomes and the absence of SBEIIb from one of the genomes,
which elevates the AC to an unprecedented ∼85% (Regina et al.,
2015). In barley, a combination of SBEIIa and SBEIIb inhibition
leads to an amylose increase up to 76.2% at maximum, which is
much higher than the suppression by SBEIIa alone (Regina et al.,

2010, 2012). In addition, an “amylose-only barley” is derived
through concerted repression of SBEI, SBEIIa, and SBEIIb using
a chimeric RNAi hairpin (Carciofi et al., 2012). Through this
method, the highest known AC-contained lines in rice, wheat,
and barley are derived (Table 1).

HIGHER AMYLOSE INCREASE THROUGH
SBEII ISOFORM DEFICIENCY WITH
OTHER GENES

By introducing a modifier gene or by coupling with isozyme
deficiencies related to starch biosynthesis on the base of
inactivation of SBEII, additive effects show a more profound
meaning on AC in cereal crops (Wu et al., 2009; Jiang et al.,
2010b; Asai et al., 2014).

When an unknown number of high-amylose modifier (HAM)
gene is introduced into a homozygous ae-mutant background in
maize, AC is further increased (Wu et al., 2009). The commercial
maize GEMS-0067, which is the highest known AC-contained
line (>85%), is derived from the predigree of [GUAT209:S13
× (OH43ae × H99ae)] (Li et al., 2008; Wu et al., 2009).
GUAT209:S13 is a cross-breed serving as HAM gene. Jiang et al.
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(2010b) found that HAM gene dosage has an additive effect
on AC; amylose percentage ranges from 68.9 to 88.2%, when
the HAM gene-dosage levels are 0, 16.7, 33.3, 50, 66.7, 83.3,
and 100%.

Single SBEII mutation coupled with other high-amylose
mutation is an effective method in producing high-amylose
starches. SSIIIa deficiency in rice produces 30.7% AC phenotype.
However, when this mutation is introduced into SBEIIb-defective
background, the AC is further promoted into 45% in ss3a/sbe2b
double mutant (Asai et al., 2014).

FACTORS AFFECTING AMYLOSE
INCREASE IN HIGH-AMYLOSE CEREAL
CROPS

Three factors are proposed to be responsible for amylose
enrichment caused by SBE isoform lesions in endosperm starch.
First, amylopectin synthesis reduction emphasizes the amylose
percentage in these high-amylose lines compared with the
normal ones. Second, the increase protein amount of GBSSI or
higher GBSSI activity results in an elevated amylose synthesis.
Third, the extra-long chains (ELCs) resulting from amylopectin,
which can bind iodine to develop a dark-blue color, significantly
enriches AC value in high-amylose varieties, (Jane et al., 1999).
Factors responsible for the amylose increase are different across
various species.

In rice, different researchers have various opinions on amylose
enrichment. An increase in amylose is attributed to the first two
factors. In rice ss3a/be2b mutant, a significantly higher AGPase
activity resulting from SSIIIa and SBEIIb deficiency leads to a
high concentration of ADP-glucose. GBSSI yields a higher Km
for ADP-glucose than other soluble SS isozymes. Coupled with
the fact that the GBSSI amounts in ss3a/sbe2b and sbe2b are
significantly higher than those in wild type varieties; these results
strongly explain why amylose synthesis is remarkably enriched
in the endosperm of sbe2b and ss3a/sbe2b compared with wild-
type varieties (Nishi et al., 2001; Asai et al., 2014). In addition,
amylopectin synthesis stops at later starch development stage
when dehydration begins in sbe2b-related mutants, emphasizing
the AC in sbe2b and ss3a/sbe2b (Asai et al., 2014).

For other researchers, the third factor is the main one
responsible for amylose increase in rice. The waxy ae double
mutant, which eliminates SBEIIb in an amylose-free background,
still contains amylose, and AC increase extent is almost similar
to that in its counterpart in ae single mutant (Nishi et al., 2001).
Thus, amylose increase in the doublemutant is not due to the true
amylose increase but to modified amylopectin. The maximum
wavelength of the absorbance of the starch-iodine complex
(λmax) of starch fromwaxy ae is 32 nm higher than that from the
waxy mutant. Although ELC is not observed directly, this result
strongly suggests that the AC increase is caused predominantly by
the abnormal structure of amylopectin. Except genetic evidence,
structural analyses on debranched starch from two SBEIIb down-
regulated lines, amiRNA and hpRNA demonstrate directly that
AC doubling in these two transgenic lines is not due to an
increase in the relative proportion of amylose but to the elevated

proportion of ELC, which ranges from degree of polymerization
(DP) 120–1,000 (Butardo et al., 2011).

For maize, the amylose increase mainly results from ELC.
Although starch contains no amylose, similar to the waxy ae
double mutant of rice, the waxy ae mutant of maize displays
an apparent AC of 34.5% (Jane et al., 1999). On the other
hand, detailed structural analyses have demonstrated that those
long chains do not originate from the real amylopectin of high-
amylose starches, but from intermediate components (IC), which
is a fraction consisting of branched molecules with molecular
weights smaller than amylopectin but similar to amylose (Wang
et al., 1993; Kasemsuwan et al., 1995) and is capable of escaping
1-butanol precipitation with amylopectin (Jane and Chen, 1992;
Li et al., 2008; Peymanpour et al., 2016). When removing
amylose from high-amylose starches, a mixture containing both
IC and amylopectin is further separated using gel permeation
chromatography (GPC) (Li et al., 2008). Peymanpour et al.
(2016) divided this mixture according to their distribution of
molecular structure into high molecular weight fraction (HMF)
and low molecular weight fraction (LMF). HMF is the typical
amylopectin, whereas LMF corresponds to the IC fraction, which
increases with AC and appears to have substantially more of long
chains than HMF. Li et al. (2008) further divided IC fraction
according to the blue-values into large-Mw IC and low-Mw

IC. Chain-length distribution results indicate that large-Mw IC
has a similar branch structure to amylopectin but with smaller
molecular-weight. On the other hand, low-Mw IC, which is the
main source of fluctuating apparent AC in starch, has longer
chains compared with amylopectin and large-Mw IC (Li et al.,
2008).

STRUCTURE CHANGES OF
AMYLOPECTIN IN HIGH-AMYLOSE
CEREAL CROPS

In those high-amylose lines, reduced or completely lost SBEs
actually does not only result in a simple promotion of AC
within the granules, but also complicates the starch structure,
specifically the amylopectin structure. Amylopectin is mainly
composed of short- to mediated-length chains in normal and
waxy cultivars. However, starch from SBEs-deficient lines has
an abnormal amylopectin structure, which is enriched with long
branch-chains but depleted of short ones (Nishi et al., 2001; Yao
et al., 2004). For example, in rice ae mutants with the DP ≤

17, chains with DP 8–12 are remarkably reduced. On the other
hand, the long branch-chains with DP > 24, which connect the
clusters of amylopectin, are more abundant compared with those
in the wild type varieties (Nishi et al., 2001; Asai et al., 2014).
Furthermore, through GPC analyses of a series of different AC-
contained starches, Lin et al. (2016c) found that the ratio of long
amylopectin branch-chains in high-amylose species is positively
correlated with the AC.

Effect of different SBEIIb dosages on the amylopectin in rice
is widely researched. First, due to the triploid characteristic
of endosperm, Nishi et al. (2001) performed reciprocal crosses
between null ae mutant (aeaeae) and wild type (AeAeAe) to
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generate F1 seeds with two different doses of the SBEIIb allele,
duplex (AeAeae) and simplex (Aeaeae), which shows 74 and 26%
protein levels relative to the wild type, respectively. This result
implies that the protein level of SBEIIb appears to increase almost
linearly with the increase in the number of dominant Ae alleles; a
similar trend is observed in gene dosage effect on SBEIIb activity.
The proportion of short branch-chains with DP ≤ 17 is 74% in
duplex (AeAeae), 72% in simplex (Aeaeae), and 66% in nulliplex
(aeaeae), indicating that DP ≤ 17 increases with the increasing
number of Ae allele; however, the increase is not linear. Second,
when SBEIIb gene is introduced into SBEIIb-defective mutant,
resulting transgenic rice plants show a wide range of SBEIIb
activities (Tanaka et al., 2004). As the SBEIIb activity increases,
short branch-chains with DP ≤ 13 become more frequent,
whereas the number of long branch-chains with DP = 15–30
and DP ≥ 40 decline. Although structural and physicochemical
properties caused by different SBEIIb dosages are not remarkably
increased with the increase of Ae allele or SBEIIb expression level,
the above results reveal that starch composition and molecular
structure are entirely dependent on the level of SBEIIb activity.
In addition, SBEIIb overexpression results in a severely shrunken
phenotype of the kernel, which is caused by the accumulation
of excessive branched, water-soluble polysaccharides instead of
amylose and amylopectin (Tanaka et al., 2004).

STARCH PROPERTIES OF HIGH-AMYLOSE
CEREAL CROPS

Increased amylose, especially the enriched percentage of
amylopectin long branch-chains dramatically affected starch
properties including crystalline structure (Cheetham and Tao,
1998; Nishi et al., 2001; Li et al., 2008; Jiang et al., 2010b; Wei
et al., 2010b,d; Butardo et al., 2011; Man et al., 2013a; Asai et al.,
2014; Cai et al., 2014c; Lin et al., 2016c), thermal properties (Jiang
et al., 2010c; Regina et al., 2010; Wei et al., 2011; Man et al., 2014;
Pan et al., 2017), and hydrolysis properties (Jiang et al., 2010d;
Qin et al., 2011; Man et al., 2012a,b, 2013b,c; Cai J. et al., 2014;
Huang et al., 2015; Lin et al., 2016a). These properties determine
the quality of starch and the application of high-amylose crops.

CRYSTALLINE STRUCTURE OF
HIGH-AMYLOSE STARCH

Starch is stored as granules with alternating semi-crystalline and
amorphous growth rings. The semicrystalline ring consists of
the lamellar structure of alternating crystalline and amorphous
regions. Amylopectin branch-chains form double helices and are
laterally packed to form crystalline regions (Blazek and Gilbert,
2011). Starch crystallinity has types A and B according to X-ray
diffraction pattern. A-type crystallinity is formed by amylopectin
with short branch-chains and closed branching points, whereas
B-type crystallinity is formed by amylopectin with long branch-
chains and distant branching points. Usually, waxy and normal
cereal crops contain A-type starch (A-type crystallinity), tuberous
crops consist of B-type starch (B-type crystallinity), and some
legumes and rhizomes possess C-type starch, which is a mixture

of both A- and B-type crystallinities (Cheetham and Tao, 1998;
Blazek and Gilbert, 2011).

For high-amylose crops with SBEs inactivation, their
amylopectin branch-chain length increases and branching
degree decreases with increasing AC, leading to the change of
starch crystallinity (Table 1). Most high-amylose crop starches
display B-type crystallinity (Nishi et al., 2001; Li et al., 2008;
Jiang et al., 2010b; Butardo et al., 2011; Asai et al., 2014; Lin
et al., 2016c), which is easily understood through the change in
amylopectin structure. However, some high-amylose crops have
C-type starch (Cheetham and Tao, 1998; Wei et al., 2010a,d;
Butardo et al., 2011; Cai et al., 2014c; Huang et al., 2015; Lin
et al., 2016c). Cheetham and Tao (1998) proposed that starch
changes from A-type to B-type via C-type as AC increases in
maize. The transition occurs at approximately 40% AC, a value
capable of maintaining C-type starch. Starch with AC lower than
40% has A-type crystallinity, whereas AC higher than 40% has
B-type crystallinity. Cai et al. (2014c) thought that high-amylose
maize starch with AC 35.6% and apparent AC 56% contain
differently sized granules and large and small granules exhibit A-
and B-type crystallinities, respectively. However, how and where
these different-sized starch granules are synthesized in maize
endosperm remains unclear. High-amylose rice TRS with 60%
AC is composed of polygonal, aggregate, elongated, and hollow
granules distributed in specific endosperm regions (Wei et al.,
2010c; Cai et al., 2014b). Polygonal and elongated granule has
A- and B-type crystallinity, respectively. However, the aggregate
granule contains both A- and B-type crystallinities within the
same granule (Wei et al., 2010a,b; Man et al., 2014). TRS is a good
material to investigate the synthesis of different crystallinities in
the future.

THERMAL PROPERTIES OF
HIGH-AMYLOSE STARCH

For the applications of starch in food industry, heating starch in
water is necessary. During heating, starch granules absorb water
and swell, crystalline structure is destroyed, and birefringence
is lost. This process is defined as starch gelatinization and can
be detected by hot-stage microscopy and differential scanning
calorimetry (Cai et al., 2014a). AC and amylopectin structure
in starch granule significantly affect starch gelatinization (Kaur
et al., 2007; Wei et al., 2011; Qin et al., 2012; Cai et al.,
2014d). Amylose can maintain the integrity of swollen granule
and restrain its swelling (Tester and Morrison, 1992). Granule
swelling is positively correlated to amylopectin short branch-
chains, whereas negatively to amylopectin long branch-chains
(Salman et al., 2009; Lin et al., 2016a). In addition, lipid content
in starch granule is positively correlated with AC, and lipid-
complexed amylose chains also restrict granular swelling (Tester
and Morrison, 1992). Therefore, high-amylose starches have
lower granule swelling.

For gelatinization temperature, normal starches usually show
a clear gelatinization transition peak due to the dissociation of
short-chain double-helical crystallites of amylopectin molecules
(Jiang et al., 2010c). However, high-amylose starches yield two
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thermal transition peaks that correspond to the melting of
amylopectin double-helical crystallite and amylose-lipid complex
(Jiang et al., 2010c; Qin et al., 2012; Man et al., 2014).
In high-amylose starch with relatively low AC increase, the
amylopectin has longer branch-chains and its double-helical
crystallite requires a higher gelatinization temperature than
normal starch does; on the other hand, high AC causes the
simultaneous formation of an amylose-lipid complex resulting
in the second thermal transition peak appearance (Jiang et al.,
2010c; Qin et al., 2012; Man et al., 2014). As AC continually
increases, the molecular structure of amylopectin is severely
disordered; thus, intensity of the first peak gradually becomes
weak, whereas the second peak becomes strong (Regina et al.,
2010; Man et al., 2014). When AC becomes the dominant
component in the starch granules, the first peak disappears and
only the second one is preserved (Jiang et al., 2010c; Regina et al.,
2010; Man et al., 2014).

HYDROLYSIS OF HIGH-AMYLOSE STARCH

Starch hydrolysis by amylase is involved in many biological
and industrial processes (Tawil et al., 2011). Usually, amylase
hydrolyzes starch in two ways as follows: Amyloglucosidase
erodes the outer surface of the granule (exocorrosion), and
α-amylase creates channels leading to the granule center and
consequently leads to its breakdown from the inside out
(endocorrosion) (Li et al., 2004). The susceptibility of starch
to amylase is influenced by many factors, such as granule
morphology, size, integrity and porosity, AC, and crystalline
structure (Blazek and Gilbert, 2010). Generally, large starch
granule with low relative surface area is slowly hydrolyzed
compared with a small granule (Kim et al., 2008). Surface
pores and internal channels of starch granule can increase
enzyme diffusion into the interior of granule (Naguleswaran
et al., 2011, 2012). B-type starch has higher resistance to
amylase than A-type starch; amylose inhibits starch hydrolysis
(Jiang et al., 2010d; Man et al., 2013b,c; Lin et al., 2016a,b).
Proportion of the elongated and aggregate starch granules
in high-amylose maize and rice increases with the increase
in AC. Elongated and aggregate granules, consisting of two
or many fused sub-granules, have larger size than normal
starch, show smooth surface without porosity and internal
channel, and exhibit high amylose in the outer layer of the
granule (Jiang et al., 2010a,d; Wei et al., 2010c; Cai et al.,
2014d). Therefore, B-type crystallinity, large size, and smooth
surface increase the resistance of high-amylose starches to
amylase hydrolysis, and the outer region of the granule is
highly resistant to hydrolysis (Jiang et al., 2010d; Man et al.,
2013b,c).

HETEROGENEITY OF STARCH GRANULES
IN HIGH-AMYLOSE CEREAL CROPS

Recently, a highly diverse population of differently stained and
different morphological starch granules are detected in the
endosperm of high-amylose cereal crop (Jiang et al., 2010a;

Wei et al., 2010c; Butardo et al., 2011; Wellner et al., 2011;
Carciofi et al., 2012; Liu et al., 2013; Cai et al., 2014d;
Man et al., 2014). More interestingly, different morphological
granules have an obviously regional distribution in mature
kernels (Wellner et al., 2011; Liu et al., 2013; Cai et al.,
2014b).

OCCURRENCE OF DIFFERENTLY STAINED
STARCH GRANULES

Isolated starch granules from high-amylose maize and rice
grains show different colors under normal and polarized light
when being stained with iodine (Cai et al., 2014b,d). More
interesting, in the kernel of maize ae mutants, a narrow band
of sub-aleurone is occupied by blue-staining granules, whereas
the central endosperm region is dominated by pink-staining
granules. Between the differently stained regions, a transition
region with a range of biphasic granules containing blue- and
pink-stained colors simultaneously are detected (Liu et al., 2013).
This observation indicates that the three differently stained starch
granules exhibit a spatial distribution and that the heterogeneity
of starch granules increases slightly from the inner to outer
layer. Raman microscopy reveals that the pink regions contain
starch molecules with reduced levels of branching compared
with those blue-stained regions, which are ordered (crystalline)
but not radially oriented (Wellner et al., 2011). Thus far, the
physicochemical and functional properties of the three differently
stained granules have yet to be extensively investigated.

OCCURRENCE OF DIFFERENT
MORPHOLOGICAL STARCH GRANULES

Recently, several reports state that high-amylose crops have
different morphological starch granule distinguished from the
normal ones. Normal maize contains angular or spherical
granules, whereas in the single mutant ae, a small percentage
(∼1.7%) of elongated granules is observed. Furthermore, this
kind of granules has a positive relationship with AC. The
percentage of elongated granules is increased to 32% in GEMS-
0067 endosperm with 85% AC (Jiang et al., 2010a). Some
aggregate starch granules are also reported in high-amylose
maize (Cai et al., 2014d). Wheat and barley grains have large
lenticular starch granules and small spherical ones; however,
the large granules from their high-amylose counterparts become
sickle-shaped (Regina et al., 2006, 2010). In barley amylose-
only line, multi-lobed starch granules with elongated, rough, and
globular morphology dominates the whole kernel (Carciofi et al.,
2012). Rice grain is filled with homogeneous compound granules,
which can be easily separated to individual polygonal ones with
various angles during starch isolation process. In different source
of high-amylose rice, including ae and Goami 2 mutants and
SBEIIb-inhibited lines, polygonal granule is mixed with large
voluminous, nonangular rounded bodies (Nishi et al., 2001; Kang
et al., 2003; Butardo et al., 2011). In high-amylose rice TRS,
mature kernel has four types of different morphological starches
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including polygonal, aggregate, elongated, and hollow granules
(Wei et al., 2010c; Cai et al., 2014b).

Even though different morphological starch granules
are popularly detected in high-amylose cereals, their
physicochemical properties still remain unknown due to
the fact that they are always studied as a mixture with the
normal ones. Therefore, all the results from high-amylose
starch are averaged values. Actually, not only do starch granules
with different morphologies have the different structures, but
also they contain different physicochemical properties across
identical and different species. For example, in wheat and barley,
the large granule has higher AC, gelatinization enthalpy and
pasting viscosity, and lower amylopectin short branch-chains
and swelling power than its small counterpart, which results
in different end uses (Salman et al., 2009; Naguleswaran et al.,
2011; Li et al., 2013). Small starches are predominantly applied
as fat substitute, paper coating, and as carrier material in
cosmetics, whereas large starches are used to manufacture
biodegradable plastic film, carbonless copy paper, and brewing
beer (Lindeboom et al., 2004). Thus, separation and purification
of different morphological starch granules are essential for
further applications in food and non-food industries.

RESEARCH ON PURIFIED
HETEROGENEOUS STARCH GRANULES
FROM HIGH-AMYLOSE RICE TRS

Contrary to the distribution of different morphological starch
granules in the grain of ae maize mutants (Liu et al., 2013),
the heterogeneous starch granules with polygonal, aggregate,
elongated, and hollow shapes in high-amylose rice TRS grain
have obvious regional distribution from the inner region to the
outer region. The polygonal starch is located in the innermost
region, the aggregate, and elongated starches exist in the center
region, and the hollow starch is distributed in the outmost
region (Cai et al., 2014b). To investigate their individual structure
and physicochemical properties, the four granule types are
separated and purified on the basis of their regionally distributed
characteristics (Man et al., 2014). GPC analysis shows that from
the polygonal to hollow starch granules, their AC displays a
gradually elevated trend, from 35.9 to 75.8%. The four granule
types are essentially different in relative crystallinity, short-
range ordered structure, relative proportions of single helix,
double helix, and amorphous conformation; these differences
imply that their structures are completely divergent (Man et al.,
2014). The different structures of TRS heterogeneous starch
granules yield significantly different XRD patterns, thermal
properties, and digestion properties. Polygonal starch exhibits
A-type crystallinity, aggregate and elongated starches show C-
type crystallinity, whereas hollow starch has no crystallinity
(Man et al., 2014). Cai et al. (2014b) found that polygonal and
elongated starches have the lowest and highest gelatinization
temperatures, respectively, while the gelatinization temperature
of hollow starch is undetected due to its extremely weak or
no birefringence. The in vitro digestion properties of native
starches from the four granule types are investigated, and results

reveal that polygonal and aggregate starches possess monophasic
digestograms, whereas elongated and hollow starches exhibit
biphasic digestograms from 0 to 8 h mainly because of their
different structural compositions (Huang et al., 2016).

CONCLUSIONS AND FUTURE
PERSPECTIVES

In maize and rice, mutating or suppressing SBEIIb is necessary
to obtain high-amylose lines. However, the efficiency for an
AC increase in rice is much lower than that in maize. When
HAM genes are introduced to maize ae mutants and SBEI and
SBEIIb are simultaneously inhibited in indica rice, AC is further
increased and thus reaches 88.2 and 60%, respectively. In wheat
and barley, high-amylose lines with AC (>85%) are derived by
simultaneously suppressing SBEIIb and SBEIIa. The enhanced
amylose synthesis and the suppressed amylopectin synthesis and
the ELC from amylopectin/IC are responsible for AC increase in
high-amylose species. Along with the AC increase, fewer longer
branch-chains are detected in amylopectin. The significantly
altered structure of high-amylose starches causes a series of other
important changes, such as crystallinity, thermal properties, and
hydrolysis properties.

Different morphological starches and differently stained
granules are detected in high-amylose rice and maize. They
are also regularly distributed in the grains from the inner
to outer regions and occupy different molecular structures.
Four heterogeneous granules in high-amylose rice TRS possess
different physicochemical and digestion properties, which
can be used for further applications in food and non-food
industries. Future biochemical experiments should be performed
to elucidate how heterogeneous starch granules are formed
in one kernel. The different morphological starches are also
detected in other high-amylose cereal crops, but whether these
heterogeneous starches exhibit regional distribution in kernels
and have different physicochemical properties are unknown.

Studies have also yet to identify the causes of regional
distribution of heterogeneous starches in kernels. Grain filling
originally begins in the core and then spreads to the outer
region during endosperm development in rice and maize.
Combined with regionally distributed phenotypes in high-
amylose grains, various regulated mechanisms may be observed
in different regions of grains. For example, white-core mutants,
such as flo4, flo5, and rsr1 (Kang et al., 2005; Ryoo et al.,
2007; Fu and Xue, 2010), and aberrant-periphery mutants,
including flo7 (Zhang et al., 2016), play essential roles in
the early stage and late stages of endosperm development
in rice, respectively. However, we have yet to reveal how
starch synthesis-related enzymes are regulated in grain during
endosperm development from the inner parts to the outer
parts.
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