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Teosinte Branched1/Cycloidea/Proliferating cell factors (TCP) genes are key mediators
of genetic innovations underlying morphological novelties, stress adaptation, and
evolution of immune response in plants. They have a remarkable ability to integrate and
translate diverse endogenous, and environmental signals with high fidelity. Compilation
of studies, aimed at elucidating the mechanism of TCP functions, shows that it takes
an amalgamation and interplay of several different factors, regulatory processes and
pathways, instead of individual components, to achieve the incredible functional diversity
and specificity, demonstrated by TCP proteins. Through this minireview, we provide a
brief description of key structural features and molecular components, known so far,
that operate this conglomerate, and highlight the important conceptual challenges and
lacunae in TCP research.

Keywords: gene regulation, plant development, plant morphology, stress response, TCP domain, transcription
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INTRODUCTION

TCP (Teosinte Branched1/Cycloidea/Proliferating cell factors) is a plant-specific family of
transcription factors (TFs), with the earliest members reported in fresh water charophyte algae
(Cubas et al., 1999a; Navaud et al., 2007). TCP proteins are characterized by a non-canonical
beta helix-loop-helix (bHLH) domain, known as TCP domain. Although, TCP proteins have little
homology with bHLH TFs and bind to DNA elements distinct from those recognized by bHLH
TFs; the DNA contacting residues and mechanism of binding seem to be conserved in both the
families (Kosugi and Ohashi, 1997). Aggarwal et al. (2010) suggested divergent evolution of TCP
domain from the bHLH domain by insertion of a short stretch in the basic region thereby, splitting
the long helix into two.

TCP family comprises six genes each in bryophyte species, Selaginella and Physcomitrella
(Navaud et al., 2007). Whereas, the size of this family in angiosperms ranges from 12 in the orchid,
Orchis italica (De Paolo et al., 2015) to more than 60 in tobacco (Chen et al., 2016) and cotton (Ma
et al., 2016).

Multiple sequence alignment revealed two major classes of the TCP family viz., classes I and
II. The residue composition in the DNA-binding TCP domain and, supplementary motifs confer
specific characteristics to the members of both the classes. Some of the notable differences include a
four-amino-acid deletion in the basic region of the class I TCPs and presence of additional motifs,
such as glutamic acid-cysteine-glutamic acid (ECE) stretch and/or arginine-rich R-domain in a
subset of class II proteins (Cubas et al., 1999a; Navaud et al., 2007). Class II further comprises two
distinct subclasses namely, CINCINNATA (CIN) and CYCLOIDEA/TEOSINTE BRANCHED 1
(CYC/TB1). CIN clade is ubiquitous, whereas, CYC/TB1 is restricted to angiosperms and has
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undergone extensive duplications and diversification giving rise
to three different clades: CYC1, CYC2, and CYC3 (Howarth and
Donoghue, 2006).

TCP GENES ARE KEY MEDIATORS OF
MORPHOLOGICAL INNOVATIONS,
STRESS ADAPTATIONS, AND PLANT
IMMUNITY EVOLUTION

The studies done in experimentally tractable Arabidopsis, and
several non-model plant species revealed that TCPs have played
key role in generating novel morphologies during plant evolution
(Martin-Trillo and Cubas, 2010; Manassero et al., 2013; Li, 2015).
Since structural features play important role in determining
protein functions, distinctive functions have been associated with
members of each class. For example, class I genes (TCP6–9, 11,
14–16, 19–23) mostly act as positive regulators of cell division in
diverse biological processes ranging from seed germination, leaf
and floral organ development, gametophyte development and
senescence (Martin-Trillo and Cubas, 2010; Li, 2015; Nicolas and
Cubas, 2016). A recent study involving expression of a dominant
repressor form of TCP16 demonstrated the ability of class I genes
in modulating meristematic programs and differentiation state of
the plant cells (Uberti-Manassero et al., 2016).

Class I TCP genes of rice have been mainly implicated
in stress adaptation. PCF2 of rice affects salinity tolerance by
positively regulating expression of a Na+/H+ antiporter gene,
OsNHX1 (Almeida et al., 2017). Whereas, PCF5 and 6 are
involved in drought plus salinity, and cold stress tolerance,
respectively (Luo et al., 2012; Wang et al., 2014). OsTCP19, on
the other hand, influences both development and abiotic stress
tolerance by manipulating abscisic acid (ABA) signaling network
(Mukhopadhyay and Tyagi, 2015). Also, mesocotyl elongation in
response to darkness in rice has been associated with expression
of OsTCP15 (Hu et al., 2014).

Members of the CYC/TB1 clade of class II (TCP1, 12, and
18) are mainly involved in regulating shoot branching, floral
transition, organ identity, and development. A mutation in TB1
locus is responsible for the domestication of maize from its
wild ancestor, teosinte (Doebley et al., 1995, 1997). Expression
of another maize TCP gene BRANCHED ANGLE DEFECTIVE
1 in a grass-specific structure (pulvinus), between main stem
and lateral branches of inflorescence, influences lateral branch
angle and inflorescence architecture (Bai et al., 2012). The recent
studies in non-model systems, cucumber and melon, revealed
the role of CYC/TB1 genes in determining tendril identity, as
well (Mizuno et al., 2015; Wang C. et al., 2015). A rare single
nucleotide polymorphism in a TCP gene TEN is responsible for
the tendril-less phenotype in cucumber (Wang S. et al., 2015).

Among the three subgroups of CYC clade, CYC1 genes have
retained TB1-like functions across different taxa in regulating
branching. Characterization of TB1 orthologs from monocots,
such as rice (Fine culm1/OsTB1), barley (INTERMEDIUM-C),
Sorghum (SbTB1), and switchgrass (PvTB1) and dicots, such
as Arabidopsis (BRC1 and BRC2), pea (PsBRC1), and tomato

(SlBRC1) indicate conserved role of this gene in negatively
regulating axillary bud outgrowth across both the lineages of
angiosperms (Takeda et al., 2003; Kebrom et al., 2006; Aguilar-
Martínez et al., 2007; Ramsay et al., 2011; Braun et al., 2012;
Nicolas et al., 2015; Xu et al., 2016). Duplication and differential
expression of CYC2 genes have played a key role in the evolution
of symmetry across different lineages of the angiosperms (Luo
et al., 1996; Reeves and Olmstead, 2003; Specht and Howarth,
2015; Yang et al., 2015).CYC ortholog of rice, RETARDEDPALEA
1 (REP1), also played a key role in regulating floral zygomorphy
(Yuan et al., 2009). Whereas, CYC3 genes in Arabidopsis have
been reported to play a minor role in branching in both vegetative
and floral organs (Finlayson, 2007).

Genes belonging to CIN clade (TCP2–5, 10, 13, 17, and 24) of
class II have been mainly implicated in regulating flowering time,
floral organ development, leaf development and senescence, and
morphogenesis of lateral organs (Nath et al., 2003; Palatnik et al.,
2003; Koyama et al., 2007; Schommer et al., 2008; Ballester et al.,
2015; Yang et al., 2015). Some of the more recent roles reported
include regulation of secondary cell wall thickening in roots and
floral organs of Arabidopsis (Wang H. et al., 2015) and ovule
development in Phalaenopsis equestris (Lin et al., 2016). Although
in angiosperms, only CYC/TB1 genes have been implicating in
branching, a recent study in Physcomitrella patens revealed a
role of CIN gene PpTCP5 in determining sporangia architecture
by negatively regulating branching (Ortiz-Ramírez et al., 2016).
These results indicate regulation of branching as an ancient role
of class II TCPs.

Furthermore, members of both the classes are targeted by
pathogens to manipulate host defense. An effector SECRETED
AY-WB PROTEIN 11 (SAP11), produced by aster yellows
phytoplasma, binds and destabilizes TCP4 thereby, leading
to reduced jasmonic acid (JA) synthesis, increased plant
susceptibility and survival rate of the insect vector (Sugio
et al., 2011, 2014). TCP13, 14, and 19 of Arabidopsis are
also directly targeted by pathogen effectors to elicit effector-
triggered susceptibility. Whereas, TCP8, 14, and 15 interact
with Suppressor Of rps4-RLD1 (SRFR1), a negative regulator
of effector-triggered immunity to influence plant susceptibility
(Kim et al., 2014). Recently, Zhang et al. (2016) showed that
infection with viral pathogen, rice ragged stunt virus (RRSV) in
rice leads to increased accumulation of miR319-targeted TCP
genes, decreased JA levels and increased plant susceptibility.
The biotrophic pathogens, however, may be benefited from
the activation of JA-dependent responses. A recent study
showed that Pseudomonas syringae type III effector, HopBB1
interacts with Arabidopsis TCP14 and targets it to proteasome-
mediated degradation. Consequently, TCP14-regulated subset of
JA response genes are de-repressed thereby, promoting pathogen
virulence (Yang et al., 2017).

BINDING SITE AND MECHANISM OF
ACTION

TCP proteins modulate gene expression by directly binding
to the regulatory regions of their target genes. Previous
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studies have reported overlapping but specific binding sites
of classes I and II proteins. Viola et al. (2012) showed that
presence of glycine or aspartic acid at positions 11 and 15 in
classes I and II proteins, respectively, determines their binding
preference. However, changes in residue composition at other
positions can also influence the DNA-binding preferences of
TCP proteins (Viola et al., 2011). For example, class I TCP
protein, TCP11, has distinct DNA binding specificity due to
presence of threonine residue at position 15, occupied by
arginine in most of the other TCP proteins (Viola et al.,
2011). Biochemical studies in Arabidopsis revealed that redox
state of the cell can also influence binding ability of class I
TCP proteins (Viola et al., 2013). Oxidation of a conserved
cysteine residue at position 20 (cys-20) in these proteins leads
to formation of intermolecular disulfide bonds and covalently
linked homodimers that cannot bind target DNA. The effect of
Arabidopsis TCP15 on anthocyanin accumulation is lost after
prolonged exposure to high light intensity due to oxidation of
cys-20 (Viola et al., 2016).

Presence of co-regulators may be imperative for the regulatory
activity of TCPs. For example, a WD repeat-containing protein,
LIGHT-REGULATED WD1 (LWD1) acts as a coactivator of
TCP20 and 22 in regulating expression of morning gene
CIRCADIAN CLOCK ASSOCIATED1 (CCA1) in Arabidopsis
(Wu et al., 2016). Although TCP20 and 22 can bind to
regulatory element in CCA1 promoter, even in the absence of
LWDs, overexpression of TCP20/22 in lwd1lwd2 double mutant
fails to activate CCA1 expression (Wu et al., 2016). Whether
concomitant binding of TCPs and LWDs leads to any shifts in
conformational state of TCPs is yet to be determined.

Several TCPs act as modulators of hormone biosynthesis,
transport and signal transduction (Lopez et al., 2015; Nicolas
and Cubas, 2016). A recent review summarizes crosstalk
between TCPs and, biosynthesis and signaling of hormones
viz., gibberellins, cytokinins, ABA, JA, brassinosteroids,
strigolactones, and auxins (Nicolas and Cubas, 2016).

Cell/tissue-type or developmental stage-specific expression
of members of same/different class seems to assist them in
fine tuning the hormone production and balance. For example,
TCP20 of class I suppresses expression of LIPOXYGENASE2
(LOX2), a key enzyme involved in JA biosynthesis in young
leaves, whereas, TCP4 of class II promotes LOX2 expression
thereby, promoting JA biosynthesis and senescence in mature
leaves (Danisman et al., 2012). The same gene, TCP4, however,
suppresses LOX2 expression in floral tissues (Rubio-Somoza and
Weigel, 2013).

The role of TCPs in regulation of hormone activity may be
indirect by interacting with regulators of hormone biosynthesis
and response as exemplified by interaction of OsTCP19 with
ABA INSENSITIVE4 and of OsTB1 with OsMADS57 (Nicolas
and Cubas, 2016). Alternatively, TCPs may directly bind to
the promoters of key genes involved in hormone biosynthesis
as exemplified by regulation of DWARF4 by TCP1 and,
regulation of LOX2 by TCP4/20 (Nicolas and Cubas, 2016).
A recent study showed that YUCCA5, an enzyme involved
in auxin biosynthesis, is direct target of TCP4 (Challa et al.,
2016).

TCP proteins also regulate transcription of the non-coding
RNAs that in turn target genes involved in hormonal signaling.
For example, TCP4 directly regulates miR167a that targets auxin
response factors, ARF6 and 8, involved in JA biosynthesis (Nagpal
et al., 2005; Wu et al., 2006).

Analysis of cross-family TF interactions showed that TCPs
exhibit high range of connectivity with members of other TF
families (Bemer et al., 2017). Synergistic interactions between
members of different TF families binding to different cis-elements
in the targeted genes imply a combinatorial effect on target gene
expression (Figure 1). TCP21 (CHE) ofArabidopsis interacts with
C2C2/CO-like family component of circadian clock, TIMING
OF CAB EXPRESSION1 (TOC1) during circadian regulation
(Pruneda-Paz et al., 2009). The direct interaction between an
Arabidopsis DOF TF, DOF6, and TCP14 affects seed germination
(Rueda-Romero et al., 2012). CIN-TCPs interact with LBD
domain containing ASYMMETRIC LEAVES 2 (AS2) TF to
suppress KNOX gene expression during leaf development in
Arabidopsis (Li et al., 2012). Similarly, the ternary complex
between TCP, MYB, and bHLH family TFs (TCP3-R2R3MYB-
TT8) is involved in regulating flavonoid biosynthesis and
auxin response (Li and Zachgo, 2013). An interaction between
MADS-box protein OsMADS57 and OsTB1 has been shown
to modulate tillering in rice (Guo et al., 2013). Whereas, the
interaction between TCP14 of Arabidopsis with GRAS domain
containing DELLA proteins in inflorescence apical meristems
determines plant height (Daviere et al., 2014). Interaction
between CUC family TFs, CUC2 and 3 and, TCP4, regulates age-
dependent leaf complexity in Arabidopsis (Rubio-Somoza et al.,
2014).

The choice of interaction partners also contributes to the
functional diversity and specificity. For example, TCP8 may
activate or repress ISOCHORISMATE SYNTHASE 1 (ICS1), a key
gene involved in salicylic acid biosynthesis, by interacting with
the transcriptional activators, WRKY28 and SAR DEFICIENT
1 or the NAC family repressor NAC109, respectively (Wang X.
et al., 2015). Interactions between TCP20 and NIN-like TFs has
been recently demonstrated to regulate nitrate assimilation and
signaling (Guan et al., 2017). Overall, these studies highlight that
TCP proteins are at the center of plant molecular networks and
control diverse range of processes and signaling networks by
recruiting specific interaction partners. Presence of intrinsically
disordered region gives them extra flexibility to interact with
diverse range of partners and make higher order complexes
(Valsecchi et al., 2013).

REGULATION OF TCPS

The ability of TCPs to orchestrate plant response to both
internal cues such as developmental signals and circadian
rhythms; and diverse environmental factors such as light
quality, nutrient availability, oxidative stress, etc., requires
precise spatial and temporal control of their activity. Current
research shows that the regulation of TCPs acts at several steps
including transcription, mRNA stability, and post-translational
modifications.
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FIGURE 1 | Cross-family transcription factor interactions shown by TCP proteins. The cross-family TF interactions exhibited by both classes I and II TCP
proteins, and associated biological pathways are presented.

Regulation of gene expression includes a wide array of
mechanisms. The spatial/temporal expression of TCP genes is
directly associated with specific morphological phenotype or
physiological response. For example, differential expression of
GhCYC2 in Gerbera controls morphological differentiation of
flower types along the radial axis of inflorescence (Broholm et al.,
2008). Changes in the regulatory region of TB1 due to two
transposable element insertions are responsible for its differential
expression and domestication of maize (Zhou et al., 2011).

Alternative splicing also plays significant role in regulating
gene expression. In potato, quality of light (R:FR) determines
the ratio of two isoforms of a TCP gene BRC1a, only one of
which is localized to nucleus and acts as a transcriptional activator
(Nicolas et al., 2015). Transcriptional regulation by epigenetic
mechanisms has also been demonstrated in TCPs. Differential
methylation pattern in CYC orthologs resulted in differential
expression of the gene causing dorsoventral asymmetry in flowers
of Linaria vulgaris (Cubas et al., 1999b).

Role of non-coding microRNAs in post-transcriptional
regulation of TCPs involved in flowering time and leaf
morphogenesis is well-documented (Palatnik et al., 2003;
Schommer et al., 2012; Spanudakis and Jackson, 2014). Both

PCF5 and 6 of rice, involved in abiotic stress tolerance, are
direct targets of miR319 (Luo et al., 2012; Wang et al., 2014).
Downregulation of miR319-targeted TCP4, in response to sulfur
dioxide exposure in Arabidopsis, reinforce the role of miRNAs in
environmental regulation of TCPs (Li et al., 2016).

The final control comes at the level of post-translational
modifications. These affect the activity and stability of the
protein. Steiner et al. (2016) reported that regulation of TCP14
by SPINDLY, a Ser and Thr O-linked N-acetylglucosamine (O-
GlcNAc) transferase (OGT), prevents its proteolysis. Similarly,
ubiquitin receptor proteins, DA1 and DA1-related proteins
(DAR1 and DAR2), physically interact with TCP14 and 15,
and affect their ubiquitination and stability (Peng et al., 2015).
Ubiquitination sites have also been found on class I TCPs, TCP8
and 22, whereas, Ser-211 in TCP8 is phosphorylated (Valsecchi
et al., 2013; Walton et al., 2016).

KEY CHALLENGES AND OUTLOOK

TCP genes appear to play central role in the biological
signaling networks by interacting with many molecular and
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TABLE 1 | Teosinte Branched1/Cycloidea/Proliferating cell factors (TCP) proteins characterized from non-model systems and their roles.

Species Gene Function Reference

Dicots Brassica rapa BrpTCP4 miR319a-regulated, regulates transition from round
to cylindrical head shape

Mao et al., 2014

BrTCP24 Suppresses growth of plant cells in Chinese
cabbage

Gao et al., 2016

Cucumis melon CmTCP1 Involved in development of tendrils from lateral
shoots

Mizuno et al., 2015

Cucumis sativus TEN Causal gene for rare variation of tendril-less
phenotype

Wang S. et al., 2015

Gerbera hybrida GhCYC2 A gradient of GhCYC2 expression correlates with
flower type specification along inflorescence axis

Broholm et al., 2008

Gossypium hirsutum GhTCP14 Regulates auxin-mediated development of cotton
fiber cells

Wang et al., 2013

Ipomoea nil InTCP4 miR319-regulated, affect floral initiation, flower
development and cotyledon senescence

Glazińska et al., 2014

Pisum sativum PsBRC1 Regulates shoot branching putatively in response to
cytokinin and strigolactone signaling

Braun et al., 2012

Solanum lycopersicon LA (LANCEOLATE) miR319-regulated, involved in leaf margin
development and compound leaf formation

Ori et al., 2007

SlBRC1b Suppresses shoot branching Martín-Trillo et al., 2011

SlTCP14-2 Target of pathogen effector CRN12_997 of
Phytophthora capsici and prevents plant defense

Stam et al., 2013

Solanum tuberosum BRC1a Involved in controlling lateral branching Nicolas et al., 2015

Monocots Hordeum vulgare INTERMEDIUM-C Regulate tillering and fertility of lateral spikelets Ramsay et al., 2011

Oryza sativa FC1 (FINE CULM1) Ortholog of maize TB1 and mutants exhibit reduced
plant height and increased tillering

Takeda et al., 2003

REP1 (RETARDED PALEA1) Controls palea development and floral zygomorphy Yuan et al., 2009

OsTCP5 Controls mesocotyl elongation in rice Hu et al., 2014

OsTCP19 Involved in salinity and drought tolerance Mukhopadhyay and Tyagi, 2015

OsTCP21 Involved in cold stress tolerance and plant defense
response against rice ragged stunt virus (RRSV)

Wang et al., 2014; Zhang et al., 2016

PCF2 Involved in salt stress tolerance Almeida et al., 2017

PCF5 Involved in drought and salinity stress tolerance Luo et al., 2012

PCF6 Involved in cold tolerance Wang et al., 2014

Petunia hybrida PhTCP3 Regulates branching through strigolactone signaling Revel et al., 2015

Phalaenopsis equestris PePCF10 Involved in leaf and ovule development Lin et al., 2016

PeCIN8 Regulates ovule, leaf and petal development Lin et al., 2016

Sorghum bicolor SbTB1 Negatively regulates tillering by suppressing bud
outgrowth

Kebrom et al., 2006

Switchgrass PvTB1 Negatively regulates tillering Xu et al., 2016

Zea mays BAD1 Regulates inflorescence architecture by affecting
lateral branch angle

Bai et al., 2012

TB1 Negatively regulates tillering and promotes
formation of female inflorescence

Doebley et al., 1997

Bryophytes Physcomitrella patens PpTCP5 Negatively regulates sporophyte branching Ortiz-Ramírez et al., 2016

signaling components. These features not only make them ideal
candidates to investigate the mechanism of combinatorial gene
expression and hormonal crosstalk in plants, but also suggest
them as promising targets for engineering crop plants. For
this, a thorough understanding of their mechanism of action is
imperative. Most of the functional genomic studies with TCPs
are impeded by lack of three-dimensional structure, high level
of genetic redundancy and lack of sufficient in vivo studies
to identify in planta interaction partners and other regulatory
components.

The theoretical predictions based on bHLH structure can
be misleading. Deciphering three-dimensional structures of
representative TCP proteins is of fundamental importance to
gain mechanistic understanding of their functions. To cope with
redundancy in TF genes, Hiratsu et al. (2003) developed a novel
approach using a chimeric repressor gene-silencing technology
(CRES-T), in which a TF is fused to the EAR-motif repression
domain (SRDX) that dominantly represses the transcription of
its target genes even in the presence of functionally redundant
TFs (Mitsuda et al., 2011). Several authors have successfully
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used this technology to gain insights into TCP gene functions
in Arabidopsis (Koyama et al., 2007; Guo et al., 2010;
Aguilar-Martinez and Sinha, 2013). However, this technology
cannot be used to decipher functions of essential genes.
Danisman et al. (2012) used a bioinformatics approach
to integrate data generated using pair-wise protein-protein
interactions, phylogeny and expression profiling to predict
functionally redundant TCP genes in Arabidopsis. Authors
also validated one of the novel pairs, TCP19-TCP20, that
functions redundantly in the leaf development. However,
the interactions reported in their study are not immune to
limitation of yeast two-hybrid technology. Due to high auto-
activation capacity of class I TCP proteins, most of the
connections were reported among class II TCP proteins. In
planta studies during temporal stages of development and in
response to pathogen infection or abiotic stresses would be
required to precisely determine the interaction dynamics of TCP
proteins.

Another interesting aspect of TCP genes is the predominant
presence of introns in their UTRs (Francis et al., 2016). How these
intron sequences influence gene expression, mRNA stability, or
translational efficiency in TCPs remains unexplored.

Furthermore, although miR319-mediated regulation of CIN
genes in both dicot and monocot species is well-documented,
none of the TCP genes in Physocmitrella, Selaginella, and
Marchantia polymorpha have a recognizable miR319 binding

site (Axtell and Bowman, 2008; Schommer et al., 2012; Flores-
Sandoval et al., 2016). Future studies will clarify if gain of miR319
targeting site has any role in the functional evolution of CIN
genes in higher plants.

Furthermore, most of the earlier studies aimed at
characterizing TCP gene functions focused on the model system,
Arabidopsis. Although the TCP gene functions are now beginning
to be elucidated in non-model systems as well (Table 1), this area
of TCP research still needs momentum.

AUTHOR CONTRIBUTIONS

ND and RS conceptualized, prepared the framework and drafted
the review. VB collected the data from the literature and helped
in drafting the manuscript. MS contributed in preparing the
framework and revising the article. All authors read and approved
the article.

FUNDING

We acknowledge the financial assistance in the form of
Ramalingaswami fellowship and project grant by Department of
Biotechnology, Government of India, and Start-Up grant from
UGC through UGC-FRP scheme.

REFERENCES
Aggarwal, P., Das Gupta, M., Joseph, A. P., Chatterjee, N., Srinivasan, N.,

and Nath, U. (2010). Identification of specific DNA binding residues in the
TCP family of transcription factors in Arabidopsis. Plant Cell 22, 1174–1189.
doi: 10.1105/tpc.109.066647

Aguilar-Martínez, J. A., Poza-Carrión, C., and Cubas, P. (2007). Arabidopsis
BRANCHED1 acts as an integrator of branching signals within axillary buds.
Plant Cell 19, 458–472. doi: 10.1105/tpc.106.048934

Aguilar-Martinez, J. A., and Sinha, N. (2013). Analysis of the role of Arabidopsis
class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf
development. Front. Plant Sci. 4:406. doi: 10.3389/fpls.2013.00406

Almeida, D. M., Gregorio, G. B., Oliveira, M. M., and Saibo, N. J. (2017). Five novel
transcription factors as potential regulators of OsNHX1 gene expression in a
salt tolerant rice genotype. Plant Mol. Biol. 93, 61–77. doi: 10.1007/s11103-016-
0547-7

Axtell, M. J., and Bowman, J. L. (2008). Evolution of plant microRNAs and their
targets. Trends Plant Sci. 13, 343–349. doi: 10.1016/j.tplants.2008.03.009

Bai, F., Reinheimer, R., Durantini, D., Kellogg, E. A., and Schmidt, R. J. (2012). TCP
transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for
normal tassel branch angle formation in maize. Proc. Natl. Acad. Sci. U.S.A. 109,
12225–12230. doi: 10.1073/pnas.1202439109

Ballester, P., Navarrete-Gomez, M., Carbonero, P., Onate-Sanchez, L., and
Ferrandiz, C. (2015). Leaf expansion in Arabidopsis is controlled by a TCP-
NGA regulatory module likely conserved in distantly related species. Physiol.
Plant. 155, 21–32. doi: 10.1111/ppl.12327

Bemer, M., Van Dijk, A. D., Immink, R. G., and Angenent, G. C. (2017). Cross-
family transcription factor interactions: an additional layer of gene regulation.
Trends Plant Sci. 22, 66–80. doi: 10.1016/j.tplants.2016.10.007

Braun, N., De Saint Germain, A., Pillot, J.-P., Boutet-Mercey, S., Dalmais, M.,
Antoniadi, I., et al. (2012). The pea TCP transcription factor PsBRC1 acts
downstream of strigolactones to control shoot branching. Plant Physiol. 158,
225–238. doi: 10.1104/pp.111.182725

Broholm, S. K., Tähtiharju, S., Laitinen, R. A., Albert, V. A., Teeri, T. H., and
Elomaa, P. (2008). A TCP domain transcription factor controls flower type

specification along the radial axis of the Gerbera (Asteraceae) inflorescence.
Proc. Natl. Acad. Sci. U.S.A. 105, 9117–9122. doi: 10.1073/pnas.0801359105

Challa, K. R., Aggarwal, P., and Nath, U. (2016). Activation of YUCCA5 by the
transcription factor TCP4 integrates developmental and environmental signals
to promote hypocotyl elongation in Arabidopsis. Plant Cell 28, 2117–2130.
doi: 10.1105/tpc.16.00360

Chen, L., Chen, Y., Ding, A., Chen, H., Xia, F., Wang, W., et al. (2016). Genome-
wide analysis of TCP family in tobacco. Genet. Mol. Res. 15, 1–14. doi: 10.4238/
gmr.15027728

Cubas, P., Lauter, N., Doebley, J., and Coen, E. (1999a). The TCP domain: a
motif found in proteins regulating plant growth and development. Plant J. 18,
215–222.

Cubas, P., Vincent, C., and Coen, E. (1999b). An epigenetic mutation responsible
for natural variation in floral symmetry. Nature 401, 157–161.

Danisman, S., Van Der Wal, F., Dhondt, S., Waites, R., De Folter, S., Bimbo, A.,
et al. (2012). Arabidopsis class I and class II TCP transcription factors regulate
jasmonic acid metabolism and leaf development antagonistically. Plant Physiol.
159, 1511–1523. doi: 10.1104/pp.112.200303

Daviere, J. M., Wild, M., Regnault, T., Baumberger, N., Eisler, H., Genschik, P., et al.
(2014). Class I TCP-DELLA interactions in inflorescence shoot apex determine
plant height. Curr. Biol. 24, 1923–1928. doi: 10.1016/j.cub.2014.07.012

De Paolo, S., Gaudio, L., and Aceto, S. (2015). Analysis of the TCP genes expressed
in the inflorescence of the orchid Orchis italica. Sci. Rep. 5:16265. doi: 10.1038/
srep16265

Doebley, J., Stec, A., and Gustus, C. (1995). Teosinte branched1 and the origin
of maize: evidence for epistasis and the evolution of dominance. Genetics 141,
333–346.

Doebley, J., Stec, A., and Hubbard, L. (1997). The evolution of apical dominance in
maize. Nature 386, 485–488. doi: 10.1038/386485a0

Finlayson, S. A. (2007). Arabidopsis TEOSINTE BRANCHED1-LIKE 1
regulates axillary bud outgrowth and is homologous to monocot TEOSINTE
BRANCHED1. Plant Cell Physiol. 48, 667–677. doi: 10.1093/pcp/pcm044

Flores-Sandoval, E., Dierschke, T., Fisher, T. J., and Bowman, J. L. (2016). Efficient
and inducible use of artificial MicroRNAs in Marchantia polymorpha. Plant Cell
Physiol. 57, 281–290. doi: 10.1093/pcp/pcv068

Frontiers in Plant Science | www.frontiersin.org 6 April 2017 | Volume 8 | Article 479

https://doi.org/10.1105/tpc.109.066647
https://doi.org/10.1105/tpc.106.048934
https://doi.org/10.3389/fpls.2013.00406
https://doi.org/10.1007/s11103-016-0547-7
https://doi.org/10.1007/s11103-016-0547-7
https://doi.org/10.1016/j.tplants.2008.03.009
https://doi.org/10.1073/pnas.1202439109
https://doi.org/10.1111/ppl.12327
https://doi.org/10.1016/j.tplants.2016.10.007
https://doi.org/10.1104/pp.111.182725
https://doi.org/10.1073/pnas.0801359105
https://doi.org/10.1105/tpc.16.00360
https://doi.org/10.4238/gmr.15027728
https://doi.org/10.4238/gmr.15027728
https://doi.org/10.1104/pp.112.200303
https://doi.org/10.1016/j.cub.2014.07.012
https://doi.org/10.1038/srep16265
https://doi.org/10.1038/srep16265
https://doi.org/10.1038/386485a0
https://doi.org/10.1093/pcp/pcm044
https://doi.org/10.1093/pcp/pcv068
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00479 March 31, 2017 Time: 16:5 # 7

Dhaka et al. Evolving Tale of TCPs

Francis, A., Dhaka, N., Bakshi, M., Jung, K. H., Sharma, M. K., and Sharma, R.
(2016). Comparative phylogenomic analysis provides insights into TCP gene
functions in Sorghum. Sci. Rep. 6:38488. doi: 10.1038/srep38488

Gao, J., Wang, F., Zhang, Y., Lifeng, L., Li, H., Li, L., et al. (2016). BrTCP24
Gene Useful for Controlling Growth of Cabbage and Application Thereof. US
9353380 B2.
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