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Floral longevity (FL) determines the balance between pollination success and flower
maintenance. While a longer floral duration enhances the ability of plants to attract
pollinators, it can be detrimental if it negatively affects overall plant fitness. Longer-
lived leaves display a positive correlation with their dry mass per unit area, which
influences leaf construction costs and physiological functions. However, little is known
about the association among FL and floral dry mass per unit area (FMA) and water
maintenance traits. We investigated whether increased FL might incur similar costs. Our
assessment of 11 species of Paphiopedilum (slipper orchids) considered the impact
of FMA and flower water-maintenance characteristics on FL. We found a positive
relationship between FL and FMA. Floral longevity showed significant correlations with
osmotic potential at the turgor loss and bulk modulus of elasticity but not with FA.
Neither the size nor the mass per area was correlated between leaves and flowers,
indicating that flower and leaf economic traits evolved independently. Therefore, our
findings demonstrate a clear relationship between FL and the capacity to maintain water
status in the flower. These economic constraints also indicate that extending the flower
life span can have a high physiological cost in Paphiopedilum.

Keywords: floral longevity, floral dry mass per unit area, floral economic traits, floral water maintenance,
Paphiopedilum

INTRODUCTION

Floral longevity (FL), defined as the length of time that a flower remains open and functional,
influences the processes of pollen removal and pollination (Primack, 1985; Ashman and Schoen,
1994). This functional trait varies greatly among species and is an important contributor to
increased reproductive success because a longer flowering period can allow plants to attract more
pollinators. However, a trade-off may exist between the benefit of increased pollination success and
the cost of floral maintenance (Rathcke, 2003). Researchers have suggest that FL is affected by many
biotic (Rathcke, 2003; Giblin, 2005; Weber and Goodwillie, 2012) and abiotic factors (Vespirini and
Pacini, 2005; Arroyo et al., 2013; Jorgensen and Arathi, 2013). For example, longer flower life spans
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might be associated with less frequent pollination (Giblin, 2005;
Weber and Goodwillie, 2012). Longevity is also improved in
plants growing at higher elevations or lower temperatures, or in
areas where soil moisture is high (Vespirini and Pacini, 2005;
Arroyo et al., 2013; Jorgensen and Arathi, 2013).

Leaf dry mass per unit area (LMA) is a central trait in
ecology (Poorter et al., 2009), which shows strong correlations
with a suite of important leaf functional traits across a diverse
group of species (Small, 1972; Reich et al., 1997; Wright et al.,
2004). Longer lived leaves have higher LMA, which influences
leaf construction cost and physiological functions such as water
transport and use (Fu et al., 2012). A high LMA is typical for stress
tolerant species (Wright et al., 2004; Poorter et al., 2009). A direct
consequence of greater LMA in leaves with higher lifespan is
reduced photosynthetic rate per mass investment. High LMA is
thus typically associated with greater drought tolerance (Wright
et al., 2004; Poorter et al., 2009). Unlike leaves, flowers do
not contribute much to carbon assimilation and are relatively
short lived but still may transpire significant amounts of water
(Roddy and Dawson, 2012; Teixido and Valladares, 2014). On the
contrary, they often experience desiccating conditions that would
lead to wilting and prevent pollen dispersal. Therefore, they must

maintain water balance and turgor during flowering to attract
pollinators. Although longer-lived flowers may increase the
opportunities for pollination and reproductive success, especially
in habitats where pollinators are in shorter supply, however the
attendant costs to those plants are uncertain. This phenomenon
of life span versus construction costs has already been described
for leaves. In fact, the “leaf economic spectrum” occurs across all
major terrestrial plant groups, where a higher (LMA) is invested
in longer-lived leaves (Wright et al., 2004; Sack et al., 2013; John
et al., 2017). The role of water transport traits in flower evolution
is complex, with phylogeny an important determinant of flower
hydraulic characteristics (e.g., vein density) that has evolved
independently of leaves (Roddy et al., 2013). In addition, the
benefits associated with longevity are also very different in flowers
when compared to leaves. Thus, it is important to understand
whether flowers exhibit trait linkages with longevity similar to
those found for leaves.

An adequate water supply is needed during all periods of
floral display, including bud expansion, flower opening, nectar
production, and the maintenance of turgor in floral organs
(Mohan Ram and Rao, 1984; Patino and Grace, 2002; Tsukaguchi
et al., 2003; van Doorn and van Meeteren, 2003; Galen, 2005).

FIGURE 1 | Typical floral structure of Paphiopedilum (here depicted by P. micranthum).
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Flower maintenance may require a considerable amount of
water (Roddy and Dawson, 2012) and, under dry conditions,
those plants can lose more water from their flowers than
from the leaves (Lambrecht, 2013). Therefore, understanding
the physiological mechanisms of floral water transport and
water relations may provide new insights into the evolution of
flowers (Galen, 2000; Chapotin et al., 2003; Feild et al., 2009a,b;
Roddy et al., 2016). Even though water has an essential role
throughout the floral lifespan, few studies have focused on water
relations in flowers (Feild et al., 2009b; Lambrecht et al., 2011;
Roddy et al., 2016). Contrasting results in different species have
indicated that some flowers are phloem-hydrated (Trolinder
et al., 1993; Chapotin et al., 2003). Other studies, such as that
involving Magnolia grandiflora, has shown that the giant flowers
of that species are hydrated by the xylem (Feild et al., 2009a,b).
However, quantitative investigations have been lacking about
water relations in flowers from different species, even though they
can vary greatly in floral characteristics such as longevity, size,
color, and shape.

Orchids, an important group of plants both economically and
ecologically, are well-known for their ornamental flowers. In
addition, many species show enhanced drought tolerance due
to their epiphytic growth habit (Zhang et al., 2012). The genus
Paphiopedilum exhibits wide variations in floral life span (from
15 to 60 days) as well as high diversity in morphology and
physiology (Karasawa and Saito, 1982; Guan et al., 2011; Zhang
et al., 2011). This makes it an ideal system for studying potential
functional associations between FL and flower physiology.
Moreover, this genus has a well-studied phylogeny that can
facilitate phylogenetically based data analyses (Cox et al., 1997)
and the interpretation of patterns of functional trait evolution.

Here, we examined FL, floral dry mass per unit area
(FMA), and pressure–volume traits using the flowers from 11
Paphiopedilum species growing in southwestern China. Our aim
was to identify important functional associations between flower
life span and water relations. Specifically, we hypothesized that,
similar to leaves, flowers exhibit a positive correlation between
cost (in terms of mass per unit area) and longevity, such that
flowers from species with greater FL would also have higher FMA
values. We also examined whether floral traits are correlated with
leaf traits or they are independent of each other due to different
selective pressures they experienced.

MATERIALS AND METHODS

Study Site and Plant Materials
This year-long examination was conducted in 2013 at the
Kunming Institute of Botany – Chinese Academy of Sciences
(25◦08′ N, 102◦44′ E, elevation 1912 m), in southwestern China.
11 studied species Paphiopedilum were collected in the wild and
then cultivated in the greenhouse under conditions that included
30–40% full sunlight (controlled by shade nets) and ambient
temperatures of 20–25◦C, the Paphiopedilum species grown well
under such optimal conditions. The broken bark medium was
used to grow the collected plants, and they were watered as
needed (1–2 times per week). These plants were growing in

FIGURE 2 | The typical pressure–volume curve of Paphiopedilum (here
depicted by P. malipoense). Low values of both water potential and RWC
were obtained from the very start of the experiment because water potential
was measured with a WP4 Dewpoint Potentiometer, which determines the
relative humidity of the air above a flower sample in a closed chamber. Thus,
species flower turgor loss points are likely more negative than if flower water
potential had been measured with a pressure chamber.

the same greenhouse for 5 years and differences due to varying
ambient environment factors experienced in the wild are thus
minimized.

Measurements of Floral and Leaf
Functional Traits
Floral and leaf functional traits were evaluated at the peak
flowering time for each species. A flower was regarded as
“opening” when the dorsal sepal rose, and remained functional.
Six leaves and flowers per species were excised in the morning,
and then sealed in plastic bags and immediately transported to
our nearby laboratory. The floral area (FA) of all organs in a
flower, i.e., dorsal sepal, petal, and lip (Figure 1), and leaf area
(LA) were determined with a Li-Cor 3000A area meter (Li-Cor,
Inc., Lincoln, NE, USA). Afterward, these flowers and leaves were
oven-dried at 70◦C for 48 h to obtain their dry weights (DW).
FMA (g m−2) was calculated as DW/FA and LMA (g m−2) was
calculated as DW/LA.

Flower Pressure–Volume Curve
Mature flowers were quickly sampled from five or six plants
per species early in the morning, sealed in plastic bags, and
immediately transported to the laboratory. After the scapes were
re-cut under water, these flowers were soaked in deionized water
for 12 h to achieve full hydration, and they were weighed
to obtain their saturated fresh weights (FWs). The samples
were then cut into segments in a plastic bag with damp
paper towel to prevent dehydration by transpiration in air
and rapidly placed in individual chambers (diameter 3.7 cm)
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for the WP4 Dewpoint Potentiometer (Decagon Devices, Inc.,
Pullman, WA, USA). After equilibration for approximately 30 s,
the flower water potentials were recorded before FWs were
measured to the nearest 0.0001 g on a digital balance. Water
potentials and FW were determined periodically until those
values stabilized. The samples were then oven-dried at 70◦C
for 24 h to obtain DW, and relative water content (RWC) was
calculated as (FW-DW)/(FWs-DW). Pressure–volume curves
(Figure 2) were obtained by plotting the inverse of water
potential against RWC. The WP4 Dewpoint Potentiometer
measures water potential by determining the relative humidity
of the air above a sample in a closed chamber, thus the
inability to get more hydrated values, so that the first point
has low water potential and RWC (Figure 2). Turgor loss
point was determined as the point of transition between linear
and non-linear portions of the curve. Osmotic potential at the
turgor loss point (π tlp) and relative water content at this point
(RWCtlp) were also recorded accordingly (Tyree and Hammel,
1972). Osmotic potential at full turgor (π ft) was estimated by
extrapolating the linear portion of the curve to 100% RWC, and

relative water content at full turgor (RWCft) was estimated by
extrapolating the line to zero osmotic potential. Then the bulk
modulus of elasticity (ε) was calculated as (π ft-π tlp) × (RWCft –
RWCtlp)/RWCft.

Floral Longevity
To investigate the FL of a single flower from each species
of Paphiopedilum, we sampled 10–20 plants and randomly
marked 10–20 newly emerged floral buds per species. Their
individual opening and wilting dates were recorded throughout
the flowering season. Each floral bud was sampled from a separate
plant. A flower was identified as “opening” when the dorsal sepal
rose and any visiting pollinator could enter the pouched labellum.
The flower was regarded as “wilting” when the labellum began to
droop, thereby ending its role in the pollination process.

Data Analysis
All analyses were performed using the R software program
(version 2.15.0; R Development Core Team, 2012). Relationships
among traits were examined by Pearson’s correlations (cor.

TABLE 1 | Quantification of floral and leaf functional traits for selected Paphiopedilum species.

Species LMA (g m−2) LA (cm2) FMA (g m−2) FA (cm2) FL (Days) π tlp (MPa) ε (MPa)

P. appletonianum 69.24 ± 2.25 42.94 ± 6.12 42.69 ± 1.02 46.72 ± 2.10 53.47 ± 1.31 −2.34 ± 0.11 0.90 ± 0.12

P. armeniacum 112.80 ± 5.15 16.63 ± 0.65 28.83 ± 0.91 84.22 ± 3.51 34.00 ± 0.63 −2.25 ± 0.04 0.56 ± 0.05

P. charlesworthii 78.07 ± 4.22 13.99 ± 0.95 25.64 ± 1.15 49.94 ± 3.59 26.00 ± 0.74 −1.90 ± 0.09 0.56 ± 0.08

P. dianthum 166.45 ± 5.30 92.99 ± 8.35 62.61 ± 1.47 59.77 ± 3.29 62.13 ± 1.10 −2.45 ± 0.05 1.02 ± 0.06

P. henryanum 92.84 ± 5.21 22.37 ± 2.33 38.81 ± 4.57 52.83 ± 1.14 32.07 ± 0.66 −2.22 ± 0.09 0.58 ± 0.11

P. hirsutissimum 128.07 ± 4.84 51.82 ± 4.41 54.46 ± 1.40 69.06 ± 3.96 37.53 ± 0.51 −2.17 ± 0.04 0.74 ± 0.04

P. malipoense 115.64 ± 7.39 65.61 ± 5.41 46.20 ± 1.87 125.92 ± 4.78 55.33 ± 1.09 −2.02 ± 0.08 1.10 ± 0.25

P. micranthum 166.51 ± 14.92 20.29 ± 1.23 25.86 ± 0.33 114.58 ± 5.68 28.45 ± 0.55 −1.94 ± 0.12 0.53 ± 0.04

P. tigrinum 99.30 ± 6.88 39.59 ± 1.81 43.96 ± 1.79 77.16 ± 3.19 37.27 ± 0.67 −2.15 ± 0.03 0.73 ± 0.05

P. villosum 118.20 ± 4.01 35.22 ± 1.94 48.21 ± 0.94 108.30 ± 2.20 35.50 ± 0.81 −2.16 ± 0.10 0.61 ± 0.07

P. wardii 72.49 ± 6.50 31.95 ± 3.57 47.38 ± 1.11 57.28 ± 2.30 57.60 ± 0.49 −2.46 ± 0.03 1.09 ± 0.12

LMA, leaf dry mass per unit area; LA, leaf area; FMA, flower dry mass per unit area; FA, floral area; FL, floral longevity; π tlp, floral turgor loss point; ε, floral bulk modulus
of elasticity.

FIGURE 3 | Pearson correlations (A) and phylogenetically independent contrast correlations (B) of floral longevity (FL) with floral dry mass per unit area (FMA)
across 11 Paphiopedilum species.
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test function in the R package). Our phylogenetic tree of
Paphiopedilum species was constructed according to the method
described by Cox et al. (1997). Phylogenetically independent
contrasts (PICs; Felsenstein, 1985) were calculated by applying
the ‘pic’ function in the package picante for the R software.

RESULTS

Within our sample group of 11 species of Paphiopedilum, we
found large interspecific diversity in leaf dry mass per unit
area, leaf area, flower dry mass per unit area, floral area, FL,

FIGURE 4 | Pearson correlations (A) and phylogenetically independent contrast correlation (B) of FL with floral area (FA) across 11 Paphiopedilum species.

FIGURE 5 | Pearson correlations (A,B) and phylogenetically independent contrast correlations (C,D) of FL with turgor loss point (π tlp) and modulus of elasticity (ε)
across 11 Paphiopedilum species.
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turgor loss point, and bulk modulus of elasticity (Table 1).
Furthermore, significant relationships were found among traits
associated with FL, FMA, and flower maintenance. Whereas, FL
was positively correlated with FMA (P = 0.01), but not with FA
(P = 0.74) (Figures 3, 4). Even after phylogeny was considered,
FL was still correlated with FMA (P = 0.03) (Figure 3).
Longevity was correlated negatively with π tlp (P = 0.02) and
positively with ε (P < 0.001) (Figure 5). These correlations
of FL with π tlp and ε remained significant before and after
accounting for the phylogenetic relationships (π tlp : P = 0.04),
ε: P < 0.001).

We observed no correlation between FA and LA (P = 0.87),
and FA was still not correlated with LA after considering
phylogeny (P = 0.47) (Figure 6). Likewise, phenotypically
and phylogenetically, FMA showed no relationship with LMA
(Pearson correlation: P = 0.53, phylogenetically independent
contrast correlation: P = 0.27) (Figure 6).

DISCUSSION

Our results solidly support the hypothesis that FL is tightly
coupled to the cost of flower maintenance in terms of flower dry

mass per unit area and drought tolerance. This study provides
novel insight into the physiological mechanism for maintaining
FL in species of Paphiopedilum, and our data reveal important
functional associations related to the maintenance of longer-lived
flowers based on water relations in Paphiopedilum.

Correlation of Floral Longevity with
Water Availability and Maintenance
These results strongly indicate that longevity is evolutionarily
correlated with flower dry mass per unit area (Figure 3). This
relationship seems to mirror the correlation reported between
leaf dry mass per unit area and leaf life span, with LMA
being a key functional trait in plant performance (Lambers and
Poorter, 1992) as well as a critical indicator of plant adaptive
strategies (Poorter et al., 2009). For example, leaves from species
with higher LMA tend to have longer life spans (Ryser, 1996;
Poorter et al., 2009) and, consequently, those plants conserve
acquired nutrients and carbon more efficiently. Our data present
a surprisingly strong variation in FMA among species. Those with
longer-lived flowers show higher FMA values than species with
shorter-lived flowers. The high-FMA species also have greater
floral density, which is expected because FMA is the product of

FIGURE 6 | Pearson correlations (A,B) and phylogenetically independent contrast correlations (C,D) of FA with leaf area (LA) and of leaf dry mass per unit area
(LMA) with FMA across 11 Paphiopedilum species.
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thickness and density. This high-FMA trait might also enhance
the residence time of water in plants, thus providing those
particular species with a competitive advantage when moisture is
less available. Therefore, these correlations suggest that, similar to
the influence of LMA, FMA is the nexus for a suite of functional
traits.

We also found that FL is closely associated with the capacity
to maintain flower turgor. This was shown by our Pearson’s and
PICs analyses, which demonstrated that longer-lived flowers are
more capable of maintaining turgor. Such flowers also have lower
values for π tlp and higher values for ε, implying that they are
more tolerant of drought stress (Bartlett et al., 2012). The turgor
loss point reported is likely more negative than what it should be
because it was measured with a dewpoint potentiometer which
gives lower values than with the pressure chamber. Evolutionary
correlations have previously been reported between leaf life span
and leaf water potential at the turgor-loss point (Fu et al., 2012).
Our new data allow us to extend this conclusion to the flowers
in Paphiopedilum. A more negative π tlp and a more positive ε

broadens the range of values for leaf water potential at which
plant tissues remain turgid and maintain their functions (Sack
et al., 2003; Lenz et al., 2006; Bartlett et al., 2012). Therefore, all
of these findings point to a critical application of π tlp and ε as key
functional traits for maintaining floral and leaf longevity.

Correlations between Flower and Leaf
Traits
For the Paphiopedilum species investigated here, leaf and flower
sizes are not correlated with mass/area (Figure 6), which
strongly suggests that orchid flower and leaf economic traits have
evolved independently. This physiological modularity makes
good sense in the context of differing selective pressures upon
non-photosynthetic petals versus highly photosynthetic leaves.
Studies of variations in morphological and physiological traits
have found similar results and have emphasized a genetic basis
for reproductive and vegetative modularity (Juenger et al., 2005;
Pélabon et al., 2011). Although inflorescence size appears to be
coordinated with leaf size in the Proteaceae (Midgley and Bond,
1989), that relationship may not extend to individual flowers.
In Dalechampia scandens, floral bract length is more relevant to
variations in pollination-related floral traits than to variations
in leaf traits (Pélabon et al., 2011). For Arabidopsis thaliana,
quantitative trait loci mapping of leaf- and flower-size traits
has not revealed any correlations between those trait categories
(Juenger et al., 2005). Furthermore, Roddy et al. (2013) found no
proof of correlated evolution for leaf and petal venation patterns
across the angiosperm phylogeny. Those earlier results, as well as

our data, suggest that the physiological traits of leaves and flowers
may arise from non-correlated selection pressures and functions.

CONCLUSION

Our findings support the hypothesis that FMA is positively
correlated with FL, and they provide strong evidence that
drought tolerance coincides with FL in Paphiopedilum. Species
with different flower life spans also vary in their flower water
relations. These contrasting strategies among species are vital to
their survival because different capacities for water maintenance
must mean different costs. Although researchers are beginning
to explore these processes in vegetative organs, such as leaves
and stems (Fu et al., 2012; Simonin et al., 2012; Carins-Murphy
et al., 2014), little attention has been given to their significance
in reproductive organs. Further investigations into the costs of
sustaining FL in orchids under a range of ecological conditions
and amid various growth forms are required if we are to
understand how this lineage of species has become so successful.
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