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The group of polyhydroxysteroid phytohormones referred to as the brassinosteroids
(BRs) is known to act on plant development and the stress response. BR signal
transduction relies largely on protein phosphorylation. By employing a label-free,
MS (Mass Spectrometry)-based phosphoproteomic approach, we report here the
largest profiling of 4,034 phosphosites on 1,900 phosphoproteins from rice young
seedlings and their dynamic response to BR. 1,821 proteins, including kinases,
transcription factors and core components of BR and other hormone signaling
pathways, were found to be differentially phosphorylated during the BR treatment.
A Western blot analysis verified the differential phosphorylation of five of these proteins,
implying that the MS-based phosphoproteomic data were robust. It is proposed that
the dephosphorylation of gibberellin (GA) signaling components could represent an
important mechanism for the BR-regulated antagonism to GA, and that BR influences
the plant architecture of rice by regulating cellulose synthesis via phosphorylation.
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INTRODUCTION

In addition to the five well recognized phytohormones (the auxins, cytokinins, gibberellins (GA),
abscisic acid (ABA) and ethylene), brassinosteroids (BRs) are a class of polyhydroxysteroids that
have been recognized as the sixth class of plant hormones. Over 70 BR compounds have been
identified from plants (Bajguz, 2007), where they contribute to cell elongation and proliferation,
leaf senescence, vascular differentiation, plant architecture, flowering time and germination
(Wang et al., 2012; Guo et al., 2013; Wang W. et al., 2014; Zhang C. et al., 2014). They work
synergistically with auxin, but also engage in cross-talk with other hormones such as GA, ABA
(Gallego-Bartolome et al., 2012), and ethylene (Guo et al., 2013).

The details of BR signaling model in Arabidopsis thaliana have been well elucidated (Wang
et al., 2012; Wang W. et al., 2014). In this model, BR are sensed by the extracellular domains of
the membrane receptor BRI1 (BRASSINOSTEROID INSENSITIVE 1) and BAK1 (BRI1 Kinase
Insensitive 1) (Santiago et al., 2013; Sun et al., 2013). In the presence of BRs, BRI1 directly
binds with BRs to form a special crystal structure favoring the binding of the co-receptor
BAK1. BRI1 is activated within the BRI1-BR-BAK1 complex via the autophosphorylation and
BAK1-mediated transphosphorylation of its kinase domain, which enables it to phosphorylate
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both BSK1 (Brassinosteroid-Signaling Kinase 1) and CDG1
(Constitutive Differential Growth 1) (Oh et al., 2015). The latter
phosphorylates BSU1 (BRI1 Suppressor 1), a phosphatase which
acts to suppress the kinase activity of BIN2 (Brassinosteroid
Insensitive 2) via its dephosphorylation (Mora-Garcia et al., 2004;
Tang et al., 2008b; Kim et al., 2009). Upon the BIN2 inactivation,
BZR1 (Brassinazole Resistant 1) and BZR2 (Brassinazole
Resistant 2, also named as BES1) are dephosphorylated by PP2As
(Phosphatase 2A), and are accumulated in nucleus, where they
regulate the expression of BR responsive genes. In the absence
of BRs, activated BIN2 phosphorylates BZR1 and BZR2 to
inhibit their nuclear localization and DNA-binding activity, and
ultimately blocks the BR signaling pathway (He et al., 2002; Wang
et al., 2002; Yin et al., 2002). Almost in all the known BRs-related
signaling pathways, signal is transduced in forms of phosphate.
It is therefore that exploring the protein phosphorylation, in
particular the phosphorylation sites, intensities and dynamics
in BRs signaling has attracted great attentions. A number of
critical residues in both BRI1 and BAK1 have been identified.
A particularly critical site is the residues lying within the BRI1
and BAK1 activation loops, although both Thr-1180 and Ser-
1162, which lie outside of the activation loop, are also stimulatory
with respect to kinase activity (Oh et al., 2000; Wang et al., 2005,
2008). A substitution of Ser-891 into Thr-891 remains but delays
the catalyzing activity of BRI1. Interestingly, phosphorylation
may impose opposite effects on the function of different proteins.
For example, phosphorylation of Tyr-610 on BAK1 is essential for
BR signaling in vivo (Oh et al., 2010), while autophosphorylation
on Tyr-831, Tyr-956, and Ser-891 of BRI1 could inhibit the
receptor kinase activity and terminate the BR signaling (Oh et al.,
2009, 2012). In addition, BRI1 phosphorylates BKI1 (BRI1 Kinase
Inhibitor 1) on Tyr-211 in the transphosphorylation, leading to
the disassociation of BKI1 from the plasma membrane (Wang
et al., 2011). Nevertheless, the overall level of understanding
of protein phosphorylation in the context of BR signaling
remains patchy, mainly because conventional assays can only
focus on a single kinase-substrate pair. On the other hand,
protein phosphorylation is highly dynamic to fine-tune the
BR signaling under different physiological conditions, thus the
phosphorylation intensity, in addition to the phosphorylation
status, are also key to understand the BR signaling process.
To achieve this, quantitation of protein phosphorylation
by quantitative phosphoproteomic methods is certainly
important. Previous attempts to identify BR-induced protein
phosphorylation by coupling gel electrophoresis with liquid
chromatography/mass spectrometry (MS) have at best identified
only a small number of phosphoproteins in Arabidopsis (Deng
et al., 2007; Tang et al., 2008a; Shigeta et al., 2011). Until recently,
novel phosphopeptide enrichment methods, advanced MS, and
sophisticated algorithms have promoted the process of wide-
scale phosphoprotein identification, especially in a quantitative
manner. Lin et al. (2015) profiled 1104 phosphopeptides of
739 unique phosphoproteins induced by BR in A. thaliana.
This research constructed a time-dependent kinase-substrate
interaction network, and revealed complicated cross-talk
between BRs with other phytohormone signaling such as auxin
and ABA (Lin et al., 2015).

Rice (Oryza sativa L.) is one of the most important crops
in the world, providing calories for over half of the global
population. Meanwhile, rice is also a model plant for molecular
biology research due to its small genome size, released reference
sequence, ample genetic resources and co-linearity with other
grasses (Zhang et al., 2007). In rice, the majorities of mutants
which are either BR-deficient or BR-insensitive are dwarfed in
stature and tiller profusely (Hong et al., 2003; Tanabe et al.,
2005; Sakamoto et al., 2013). By controlling the leaf angle and
thereby increasing the leaf area index of the plant, BRs make
a positive contribution to the plant’s productivity (Sinclair and
Sheehy, 1999; Sakamoto et al., 2012). Recently, BRs is also
implicated in grain size determination and stress response in rice
(Zhang C. et al., 2014). Unlike the well-documented BR signaling
pathway in Arabidopsis, only a rudimentary understanding of
BR signaling is currently available in rice. Homologs of several
critical A. thaliana genes, notably BRI1, BAK1, GSK1 and BZR1,
have been shown to encode rice proteins which act in the same
way as they do in A. thaliana, while others are not represented in
rice and still others are not functionally related. The indication is
therefore that certain aspects of BR signaling are not conserved
between rice and A. thaliana. The present research set out
to obtain a clearer picture of BR-induced phosphorylation in
rice, by initiating a quantitative phosphoproteomic analysis of
seedlings exposed to exogenous BR. The experiment has revealed
a substantial set of phosphosites and phosphoproteins, while also
exposing aspects of BR signaling in this important crop and
model species.

MATERIALS AND METHODS

Plant Materials and BR Treatment
The Nipponbare (Oryza sativa L. ssp japonica) plants used in this
study were grown by hydroponics method in growth chambers
(90% relative humidity, 30/28◦C, 14 h light/10 h dark cycle).
Two-week old young seedlings with hydroponics were soaked
into water containing 10 µM epibrassinolide (Cat No. E1641,
Sigma, St. Louis, MN, USA) for 24 hours, during which samples
were collected at different time points (0 h, 3 h, 6 h, 12 h, and
24 h) and immediately stored in liquid nitrogen until use. Three
biological replicates were performed for each treatment and the
control.

Quantitative RT-PCR
Total RNA of the samples after BR treatment was isolated
using Trizol (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s manual. Four micrograms of total RNA was
performed for reverse transcription using first strand cDNA
synthesis Kit (Toyobo, Shanghai, China). The primer pairs were
set to detect the expression level of ILI1 (LOC_Os04g54900)
(forward: 5′ ATGTCGAGCAGCCGGAGGTC 3′, reverse: 5′
CGTCTCGCTGAGGTTGTCC 3′), BUI1 (LOC_Os06g12210)
(forward: 5′ CGACGACGAAGCTGCTGA 3′, reverse: 5′ CGCC
TGGGCTGTTGTGAT 3′), IBH1 (LOC_Os04g56500) (forward
5′ CCGCCGAACCCTAACCCTAG, reverse 5′ CAGGAAGTG
GAAGGCCAGCAT) and ubiquitin gene was used as an
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internal control (primer forward 5′ CACCCTGGCTGACTACAA
CA 3′, reverse 5′ TTCTTCTTGCGGCAGTTGAC 3′). Real-time
quantitative RT-PCR was performed in a total reaction volume
of 20 ml (10 µL THUNDERBIRD SYBR R© qPCR Mix (Toyobo,
Shanghai, China), 1 µL cDNA, 1 µL primers, and 8 µL water)
on the Bio-Rad CFX96 real-time PCR detection system (Bio-Rad,
Hercules, CA, USA). The relative expression level was calculated
by the 2−11CT method. The experiment was performed in three
biological replicates.

Phosphopeptide Preparation
The total protein extraction and digestion were performed by
exactly following the methods described by (Hou et al., 2015).
For phosphopeptides enrichment, 1 mg digested peptides were
dissolved with binding buffer (80% ACN, 5% TFA, 1 M lactic
acid), then incubated with 4 mg TiO2 beads (GL sciences,
Torrance, CA, USA) for three times, each time for 30 minutes
at room temperature. The totally 12 mg beads were then washed
with 500 µL binding buffer for twice and 500 µL washing buffer
(80% CAN, 0.5% TFA) for twice. All TiO2 beads were transferred
into a 200 µL homemade StageTip containing two layers of
C18 solid phase extraction disk (3M, St. Paul, MN, USA). The
StageTip was centrifuged at 300 g for 10 min to discard the flow
through. The enriched phosphopeptides were incubated with
150 µL elution buffer (40% ACN, 15% NH3H2O) for four times.
The combined 600 µL eluates were subsequently dried to ∼5 µL
in a SpeedVac and reconstituted with 5% MeOH in 1% TFA
solution for LC-MS/MS analysis.

LC-MS/MS and Data Analysis
This was done in Beijing Proteome Research Center. LC-
MS/MS analyses were performed on an Easy-nLC 1000 liquid
chromatography system (Thermo, Waltham, MA, USA) coupled
to a Q-Exactive Plus via a nano-electrospray ion source (Thermo,
Waltham, MA, USA). The peptide mixture was eluted from
a 360-µm ID × 2 cm, C18 trap column and separated on a
homemade 100 µm ID × 10 cm column with a linear 5–35%
acetonitrile gradient at 500 nl/min. Survey scan were acquired
after accumulation of 3e6 ions in Orbitrap for m/z 300–1400
using a resolution of 70,000 at m/z 400. The top 20 most intense
precursor ions were selected for fragmentation in the HCD
cell at normalized collision energy of 27%, and then fragment
ions were transferred into the Orbitrap analyzer operating at
a resolution of 17,500 at m/z 400. For the phosphopeptide
identification and phosphosite quantification, raw spectral data
were processed in Proteome Discoverer 1.4.1.14 suites with
Mascot search engine against the rice genome annotation project
database1. The mass tolerance was set at 20 ppm for precursor,
and 50 mmu for the tolerance of product ions. Oxidation
(M), Acetyl (Protein-N term), and Phospho(S/T/Y) were set
as variable modifications, and Carbamidomethyl (C) as static
modification in the Mascot searches for phosphopeptides. Two
missed cleavage on trypsin was allowed. The results were filtered
for peptide with False discovery rates <1% by the Percolator

1ftp://ftp.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/
annotation_dbs/pseudomolecules/version_7.0/all.dir/

tool of the Protein Discoverer package. PhosphoRS software
within the Protein Discoverer software suite were used for
an automatically re-analyzing of all the phosphopeptide hits,
and those phosphorylation sites with a PhosphoRS probability
higher than 90% were accepted as localized. Only those peptides
which were phosphorylated in at least two of the three
biological replicates were considered as truly phosphorylated.
The phosphorylation is quantified based on the peak area under
the ion intensity by using precursor ions area detector in
PD1.4.1.14. Within-group means were calculated to determine
fold changes. The differentially phosphorylated (DP) protein was
defined to have over twofold changes in the average intensity with
credible student’s t-test (P < 0.05).

Western Blot Analysis
CIAP treatment was performed by adding 1 µL of calf intestinal
alkaline phosphatase (Takara, Dalian, China) into 20 µg
protein of each sample for 30 min at 37◦C. Then, Western
blot was conducted following (Hou et al., 2015). The prepared
protein samples were resolved in 10% SDS-polyacrylamide
gel, and transferred onto a 0.45 µm polyvinylidene fluoride
fluoropolymer (PVDF) membrane (Millipore, Darmstadt,
Germany) by using an electrophoretic blotting system (Bio-Rad,
Hercules, CA, USA). The immune-blot were detected with
corresponding primary antibodies (1:1000 dilution), secondary
antibody IgG conjugated with HRP (1:20,000 dilution), and
visualized by using the enhanced chemiluminescence (Pierce,
Waltham, MA, USA). β-tubulin protein was used as the internal
control. The band intensities were quantified using the ImageJ
software according to the instructions2. All the sample intensities
were first normalized to the control β-tubulin, and then
calculated based on the ratio to set the relative level of 0 h into 1.
The primary antibody against OsBZR1, D1, GID2, SAPK9, and
SMG1 were commercially synthesized by immunizing rabbits
and affinity purified by GenScript Company (Nanjing, China).
The antigenic determinant peptide sequences are D1/RGA1:
CSRSHSLSEAETTK; SMG1: MRPGGPPSLRAGLQC; SAPK9:
MERAAAGPLGMEMPC; GID2: MSQPAELSREENVYC, and
BZR1: CRPPKIRKPDWDVDP. Anti-β-tubulin (Cat No.
M20005) were purchased from Abmart Company (Shanghai,
China).

RESULTS

Identification of Phosphorylation Sites,
Peptides, and Proteins
Phytohormone signaling is majorly transferred via protein
phosphorylation cascades (Walton et al., 2015). In an effort to
explore the roles of protein phosphorylation in BR signaling,
we profiled the phosphoproteome of Nipponbare (Oryza
sativa L. ssp japonica) 14 DAG (Day After Germination)
seedlings by using a quantitative, label-free phosphoproteomic
approach. Given that obvious genomic response to BR started
at 3 h after treatment and robust physiological responses were

2http://rsb.info.nih.gov/ij/docs/menus/analyze.html#gels
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observed after 12 h (Goda et al., 2002; Deng et al., 2007),
three time points 0 hour (0 h), 3 hour (3 h), and 12 hour
(12 h) after BR treatment, which represent the control, early
BR response and late BR response, respectively, were selected
for the proteome assay. Prior to the proteomic assay, we
checked the mRNA expression level of three BR responsive
genes, including two BR-induced genes ILI1 (Increased Leaf
Inclination 1) (LOC_Os04g54900) and BU1 (Brassinosteroid
Upregulated 1) (LOC_Os06g12210) and one BR-repressed gene
IBH1 (ILI1 binding bHLH)(LOC_Os04g56500), at five time
points (Tanaka et al., 2009; Zhang et al., 2009). As indicated
in the qRT-PCR result, the expression levels of the three genes
were vigorously altered, confirming a valid BR treatment on the
plants in this experiment (Supplementary Figures S1A–C).
The LC-MS/MS assay identified 3,412 phosphosites on
3,179 phosphopeptides at 0 h, 2,980 phosphosites on 2,780
phosphopeptides at 3 h and 2,507 phosphosites on 2,347
phosphopeptides at 12 h (Figure 1A). Of the phosphosites
detected at 0 h, 89.7% were phosphoserine, 9.9% were
phosphothreonine, and 0.4% were phosphotyrosines (Figure 1B),
and the proportions were similar at the other two sampling times.
Emerging evidences have shown that the distribution ratios of
phosphorylation amino acids are much conserved in plants,
despite the great variety of species, tissue and treatment applied
(Han et al., 2014; Lv et al., 2014; Wang K. et al., 2014; Zhang M.
et al., 2014; Hou et al., 2015; Qiu et al., 2016). In the three samples,
92.9–93.3% of the peptides carried only one phosphorylation
group, 6.5–6.8% of the peptides carried two phosphorylation
modifications, whereas only less than 0.3% of peptides had more
than two phosphorylation modifications (Figure 1C). The 0, 3,
and 12 h phosphopeptides were corresponded to 1668, 1500,
and 1354 phosphoproteins, respectively, which represented the
largest scale identification of BR responsive phosphoproteins in
plants thus far.

Conserved Sequence Motifs and
Structures Flanking the Phosphosites
As revealed by previous mega data analysis, featured motifs
around the phosphosites provided valuable information of the
kinase-substrate specificities. In this study, Motif-X3 (Chou and
Schwartz, 2011) was employed to search the enriched motifs
around phosphosites identified. The full set of 3,659 distinct
phosphosites (3,283 phosphoserines, 361 phosphothreonines,
and 15 phosphotyrosines) revealed at all three sampling times
was submitted for analysis by motif-X software. As shown
in Figure 2, at least five phosphoserine motifs (n > 200)
and one phosphothreonine motif (n > 200) were identified
(Figures 2A–E). As reported by many studies, [sP], [sxS], and
[Rxxs] were frequently recurring (respectively, 1,498, 955, and
830 times) motifs, while the motif [Kxxs] (a basic S type) was
recorded 266 times. [sF] was annotated to be a low frequency
motif in plants by a previous meta-analysis (van Wijk et al., 2014).
However, it seemed to be not the case, at least in rice, because two
recent studies both found that [sF] was over-represented in rice
leaves and developing seeds (Hou et al., 2015; Qiu et al., 2016).

3http://motif-x.med.harvard.edu/

In the current study, we detected 252 hits of [sF] in rice young
seedlings, which again supported that [sF] is a highly conserved
motif for phosphorylation. [tP] was the only motif associated with
phosphothreonine here (Figure 2F), while we did not found any
conserved motifs for phosphotyrosine possibly due to the limited
number of input sequences.

NetsurfP4 has been routinely employed to predict the surface
accessibility and potential conserved secondary structures based
on primary amino acid sequences (Petersen et al., 2009). By using
the Netsurfp online tool, we found that 3093 of the 3283 (94.2%)
phosphoserines and 254 of the 361 (70.4%) phosphothreonines
lay on an exposed surface of the proteins, which is in agreement
with the assumption that a surface location facilitates the
access for the phosphorylation catalyzing enzyme(s) (Figure 2G).
Nevertheless, all of the 15 phosphotyrosines were likely buried
within the protein, displaying a divergent pattern from the
other two phosphosite types. For the protein secondary
structures, 327 (10.0%), 78 (2.4%), and 2797 (77.6%) of the
phosphoserines were located in α-helix, β-strand and coil
structures, respectively (Figure 2H). A similar distribution
obtained for the phosphothreonines, implying a preference for
coils with respect to the phosphorylation of both serine and
threonine. The pattern for the phosphotyrosines was rather
different: 73.3 and 26.7% of the locations were present in,
respectively, an α-helix and a β-strand, with none present in
a coil structure. The divergent results in surface accessibility
and secondary structures implied different mechanisms of
phosphorylation between serine/threonine and tyrosine.

DP Proteins in Response to BR
Treatment
Phosphorylation is a reversible, highly dynamic post-
translational modification. Therefore, an altered phosphorylation
pattern usually indicates the potential function of
phosphorylation in the corresponding biological process. In
this study, we collectively identified 3434 phosphopeptides
which showed a DP pattern among the three time points of
BR treatment (|log2(fold-change)| ≥ 1, P < 0.05) (Table 1 and
Supplementary Table S1). Of these, 598 were phosphorylated
at 0 h, 214 at 3 h and 219 at 12 h, while the equivalent
numbers of non-phosphorylated peptides were 136, 151,
and 589 (Figure 3A); the remaining 1,527 peptides were
phosphorylated at the three time points, but to a significantly
varied degree (P < 0.05). A search of the set of known rice
proteins allowed the DP peptides to be mapped onto 1,821
proteins, among which, respectively, 260, 92, and 100 were
phosphorylated at the three time points, and respectively,
70, 81, and 252 were non-phosphorylated (Figure 3B). Of
potential interest was that about 10% (191/1,821) of the
proteins were either kinases or phosphatases, enzymes which
are involved in protein phosphorylation/dephosphorylation,
suggesting that these proteins are potential components of
the BR signaling cascade. And indeed, several known BR
signaling-related kinases, including OsGSK1 and OsSERK1
were detected to be DP (Koh et al., 2007; Li et al., 2009; Park

4http://www.cbs.dtu.dk/services/NetSurfP/
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FIGURE 1 | (A) The number of identified phosphosites, phosphopeptides, and phosphoproteins in samples at 0, 3, and 12 h after brassinosteroid (BR) treatment.
(B) The counts of phosphosites in serine, threonine and tyrosine. (C) The counts of phosphopeptides carrying single, double, and triple phosphorylation
modifications.

FIGURE 2 | (A–F) Motif-X analysis of the significantly enriched phosphorylation motifs around the phosphosites of the differentially phosphorylated (DP) proteins in
response to BR treatment. (A) [sP], (B) [Rxxs], (C) [sF], (D) [sxS], (E) [Kxxs], (F) [tP]. (G) Surface accessibility of the identified phosphosites by using NetsurfP.
(H) Secondary structure analysis of the sequences flanking phosphosites.

et al., 2011). Rice genome contains at least 555 epi-genetic
controlling factors (Gendler et al., 2008). Hou et al. (2015)
reported that HDT701 and 27 other epigenetic controlling
factors were DP in response to the Xoo infection, from which
the proposal was that phosphorylation switch overriding
the epi-genetic regulation may be a very universal model
in the plant disease resistance pathway. In consistence with
the report, the BR treatment also significantly altered the
phosphorylation of 54 epigenetic controlling factors (involved in
DNA methylation, histone methylation, histone acetylation and
chromatin remodeling) and 118 transcription factors belonging
to the families such as bHLHs, bZIPs, C3Hs, and Mybs. An
analysis based on the CELLO algorithm showed that 52, 15,

14, and 10% of the DP proteins were located in the nucleus,
chloroplast, cytoplasm, and plasma membrane, respectively. In
contrast, proteins in the remaining 5 compartments such as
mitochondrial, ER, and golgi accounted only less than 10% in
total (Figure 3C).

Based on the phosphorylation intensity, a hierarchical
clustering analysis divided the DP proteins into seven groups
(Figure 3D). The various phosphorylation dynamic tendencies
suggested different roles of the DP proteins in each group.
For example, the members of group V were most strongly
phosphorylated at 3 h, and much less so at 0 and 12 h, indicating
their involvement in the early response to BR. Those in group VII,
in contrast, may be involved in the later response, because their
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FIGURE 3 | (A,B) The number of identified DP phosphopeptides and phosphoproteins shown by Venn diagram in 0, 3, and 12 h. (C) Distribution of the DP
phosphoproteins in subcellular compartments. (D) Hierarchical clustering analysis of the DP proteins among 0, 3, and 12 h.

level of phosphorylation remained low throughout the sampling
period. To our surprise, the majority of DP proteins belonged to
group I, in which the level of phosphorylation declined over time.

Protein–Protein Interaction (PPI)
Network of DP Proteins
By using the String 10.05 (Search Tool for the Retrieval
of Interacting Genes/Proteins) (Szklarczyk et al., 2015) and
Cytoscape visualization (Shannon et al., 2003), we constructed
PPI networks for DP kinases/phosphatases and all the BR
induced DP proteins, respectively. Figure 4A depicted the sub-
networks of DP kinases/phosphatases with high confidence
score of 0.9. Eight PP2A phosphatases formed 11 edges
(interaction relationships) sub-network, of which PP2A-2
(LOC_Os03g59060) and PP2Ac-4 (LOC_Os10g27050) were in
the center. In Arabidopsis BR signaling, PP2As are critical
phosphatases to dephosphorylate BZR1 and BZR2, which helps
to retain the functional BZR1 and BZR2 in the nucleus and
confer plants with BR response. The DP pattern suggested
critical roles of these PP2As in BR response, whereas the
predicted interaction relationships implied that PP2As may work
in forms of protein complexes in BR signaling. A CDKG-2-
CDKF-1-R2-SNT7 pathway was revealed in our PPI analysis.
CDKG-2 (LOC_Os04g41100), CDKF-1 (LOC_Os06g22820),
and R2 (LOC_Os05g32600) are cycling-dependent kinases
functioning in cell proliferations, indicating this to be a key
pathway in BR-regulated cell proliferation. In addition, we also
detected a putative OsMEK1-MA3K.14-SMG1 pathway which
is related to rice cell proliferation as well as stress resistance
(Figure 4A). The full set of 1,821 DP proteins produced
an interactome map composed of 459 nodes (proteins) and
946 edges. The various PPI sub-networks are associated with
cellulose biosynthesis (Figure 4B), oxidation-reduction reactions

5http://string-db.org/

(Figure 4C), phytohormone signaling (Figure 4D), and vascular
ATP synthesis/transportation (Figure 4E).

Validation of the Phosphorylation Pattern
of DP Proteins
To validate the MS identified phosphorylation status, we
performed Western-blot analysis for seven selected DP
protein in the time course of BR treatment, including
BZR1 (LOC_Os07g39220), D1 (LOC_Os05g26890), GID2
(LOC_Os02g36974), SAPK9 (LOC_Os12g39630), and SMG1
(LOC_Os02g54600). Due to the phosphates attachment,
phosphorylated protein bands migrate more slowly through
the gel than the unmodified proteins. By using β-tubulin as
an internal control, the intensity of each phosphorylated band
was semi-quantified. Fit well with our expectations, all the
five DP proteins showed similar phosphorylation tendencies
as the phosphoproteomic data indicated, though the extent
of phosphorylation may vary from each other (Figure 5). The
reduced phosphorylation status of BZR1, D1, GID2, and SMG1 in
response to the BR treatment was confirmed by the Western blot
result, as was the induced increase in the level of phosphorylation
for SAPK9. Moreover, the absence of the slower-migrating
bands following treatment with CIAP (Calf Intestine Alkaline
Phosphatase) confirmed their identity as phosphorylated
proteins. The results above strongly suggested that our
phosphoproteomic data is highly reliable and such a MS-based
quantification strategy could be applied for the phosphorylation
dynamic detections in other biological processes.

DISCUSSION

After decades of research, the impact of BR is increasingly
being recognized. The signaling of BR in plants largely relies
on the transfer of phosphate groups among the signaling
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FIGURE 4 | (A–E) Sub-network of all the DP proteins by using STRING and Cytoscape. The locus ID of the abbreviations in (A–E) could be seen in additional
Supplementary Table S2.

cascade members. As the first step toward understanding
the mechanism of BR signaling, profiling the BR-induced
phosphosites, phosphoproteins and phosphorylation dynamics
is certainly fundamental and crucial. In the current study, a
set of over 4,000 phosphosites related to nearly 2,000 rice
phosphoproteins has been described. Given that the BR applied
for treatment was dissolved in ethanol, there are concerns
about the effects of solvent on the phosphoproteomic changes,
even though the ethanol solvent has been diluted to 0.05%
(v/v) (20 mM brassinnolide stock in 100% ethanol diluted to
10 µM in water). To verify this, we examined the transcriptional
levels of three BR-responsive genes in response to 0.05%
ethanol treatment by qRT-PCR. As shown in Supplementary
Figures S1D–F, 0.05% ethanol treatment did not alter the
transcriptional level of the three genes, indicating the solvent
imposed ignorable effects on the rice seedlings. Most of these
proteins were DP at some stage during the BR treatment, and a
functional analysis suggested that many of them are involved in
BR and other phytohormone signaling.

Differential Phosphorylation on the Core
Components of BR Signaling
According to the constructed BR signaling pathway in
A. thaliana, the initial sensing of BR involves the cell
membrane receptor BRI1, from which the signal is passed
through the phosphorylation-mediated cascade BSK1-BSU1-
BIN2/GSK1, finally reaching the transcription factor BZR1
which triggers the BR response (Wang et al., 2012; Wang W.
et al., 2014). The present phosphoproteomic analysis revealed
that both of the BR signaling core components OsGSK1
(Glycogen Synthesase Kinase3-like 1) (LOC_Os01g10840) and
OsBZR1 (LOC_Os07g39220) were DP. OsGSK1 belongs to
the plant GSK3/SHAGGY-like protein kinase family, and is

a close ortholog of AtBIN2. Meanwhile, OsBZR1, encoding a
transcription factor with a DUF822 domain, shared extensive
sequence homology with AtBZR1. The ectopical expression
of OsGSK1 led to a stunted plant growth, which mimicked
the typical phenotype of the BR-deficient mutants. Therefore,
OsGSK1 might serve as a negative regulator of BR signaling,
just as its ortholog BIN2 does in A. thaliana (Koh et al., 2007).
The function of BZR1 also appears to be conserved between
A. thaliana and rice. OsBZR1 RNAi suppressing lines showed
dwarfism, erect leaves and reduced BR sensitivity, which is
almost identical to the bzr1-D in A. thaliana (Wang et al., 2002;
He et al., 2005).

A very interesting cytoplasm-nucleus shuttling model has
been proposed for the BR signaling in the step from BIN2 to
BZR1. In absence or low level of BR, upstream components of
the cascade phosphorylate BIN2 to activate its kinase activity,
which in turn catalyzes the phosphorylation on BZR1. The
phosphorylation on BZR1 promotes its binding with a 14-3-3
protein, which allows the transport of BZR1 from the nucleus to
the cytoplasm, where OsBZR1 remains non-functional. However,
when the supply of BR is adequate, BIN2 is dephosphorylated,
thereby losing its kinase activity; meanwhile, a PP2A de-
phosphorylates BZR1, releasing it from its complex with the
14-3-3 protein, and allowing it to remain in the nucleus (Gampala
et al., 2007). Bai et al. (2007) validated the 14-3-3 protein-
mediated cytoplasm-nucleus shuttling mechanism of OsBZR1
in rice. Despite that they emphasized the binding of 14-3-3
to OsBZR1 retained its subcellular localization in cytoplasm
under low BR level, the mechanistic basis of this binding has
not be elucidated. The present experiment has shown that the
extent of the phosphorylation affecting OsGSK1 and OsBZR1
was gradually reduced as a response to the BR treatment, in
accordance with the behavior of BIN2 and BZR1 in A. thaliana.
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FIGURE 5 | Western-blot analysis of five selected proteins to verify the
MS identified phosphorylation pattern at 0, 3, and 12 h. Red triangle
indicates the target band in original size; Red asterisk indicates the
phosphorylated target protein band. Anti-tubulin was used as an internal
control for normalization. The values above the phosphorylated bands
represent the normalized, relative band intensities by setting 0 h into 1.

Perhaps more importantly, the differential phosphorylation
of OsBZR1 implies that phosphorylation/dephosphorylation is
likely to represent the means to determine whether it binds
with 14-3-3 (as is the case in A. thaliana), which would mean
that the BR signal transduction pathway is highly conserved
between mono- and dicotyledonous plants. It is noteworthy that
we failed to detect any phosphorylation on most of the reported
BR signaling core components such as BRI1, BAK1, BSK1 and
BSU1. In fact, a phosphoproteomic work of the BR signaling in
A. thaliana encountered the same dilemma (Lin et al., 2015). The
neglect of these proteins in the phosphoproteomic identification
may be an artifact of low protein abundance and/or inadequate
detection sensitivity. To overcome this, phosphorpoteomic works
on more time points during the BR induction or different rice
tissues might be necessary for wider proteomic coverage.

BR Alteres the Phosphorylation of Other
Phytohormone Signaling Proteins
Plant growth and development is fine-tuned by profound
cross-talk between the various phytohormones. The interaction
between BR and other hormones has been extensively studied
(Nemhauser et al., 2006; Vanstraelen and Benkova, 2012).
Though GA and BR both are growth-promoting hormones,
research in A. thaliana revealed an antagonistic relationship
between them (Bouquin et al., 2001). In the rice root, exogenously
supplied BR simultaneously represses certain GA synthesis genes,

while promoting GA homeostasis genes, thereby finally reducing
the level of bioactive GA present (De Vleesschauwer et al.,
2012). In addition, the interaction of the GA and BR signaling
pathway may also contribute to the complexity of their cross-talk.
Some BR-insensitive mutants were found to be compromised
in sensing GA signal, while some GA-hypersensitive mutants
even showed enhanced sensitivities to BR (Gallego-Bartolome
et al., 2012). Here, the two GA signaling proteins GID2
(LOC_Os02g36974) and D1/RGA1 (LOC_Os05g26890) were
both down-phosphorylated in response to the BR treatment. gid2
and d1/rga1 exhibited GA-insensitivity and typical GA-defective
phenotype such as dwarf, erected panicles, indicating that both
of them are positive regulators of GA signaling (Ueguchi-
Tanaka et al., 2000; Gomi et al., 2004). Through a SCFGID2-
proteasome pathway, GID2 mediates the degradation of GA
signaling repressor SLR1 to activate the GA signal transduction
(Gomi et al., 2004). D1/RGA1 is involved in GA and BR
signaling, and it participates in the GA signaling majorly via
a G protein-dependent pathway (Wang et al., 2006). SLR and
GID2 act epistatic over D1 (Ueguchi-Tanaka et al., 2000). As we
mentioned above, previous studies focused to explain the BR-GA
antagonism from the view of quantity changes of GA synthesis
and/or signaling genes in the transcriptional/translational levels.
Nevertheless, the BR-induced down-phosphorylation of GID2
and D1/RGA1 is suggestive of a novel mechanism whereby BR
inhibits the GA response by shutting down GA signaling. In
addition to the GA signaling components, we also found that
OSRK1/SAPK6 and SAPK4 involving in the ABA signaling (Chae
et al., 2007; Diedhiou et al., 2008), CPT1 participating in auxin
response (Haga et al., 2005) and OsEIN2 related to ethylene
signaling (Jun et al., 2004) were DP in this study, suggesting a
critical role of protein phosphorylation in the interplay between
BR and other phytohormones.

DP Proteins Related to Rice Architecture
One of the most direct effects of BR on plant is the altering
of plant architecture, including plant height, leaf angle and
tiller numbers (Zhang C. et al., 2014). Though BR defective
mutants usually display unfavorable agronomic traits like dwarf,
decreased leaf angle and more tillers, proper manipulation of
the BR related genes was regarded as an effective way to
improve crop architecture and eventually increase the yield
(Sakamoto et al., 2006). Therefore, sorting out the protein
connecting BR and plant architecture establishment will help
us to construct the regulatory network and provide more gene
resources for genetic improvement. As we expected, several rice
architectures controlling proteins were found in the DP protein
list. Cellulose synthesis for cell wall is a major determinant
for the building of plant architecture and mechanic strength.
Cellulose is synthesized at the plasma membrane by a complex
containing multiple CESAs (cellulose synthase catalytic subunits)
in plants. In rice, at least 10 CESAs (OsCESA1-10) have been
identified, the contribution of three of which (OsCesA4, A7
and A9) has been defined by analysis of loss-of-function mutants,
which all express a brittle leaf phenotype (Tanaka et al., 2003).
Our PPI analysis of the DP proteins revealed a cellulose synthesis
network containing five CESAs, which included OsCESA1,
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2, 7, 8, and 9. The suggestion is therefore that BR influences
cellulose synthesis and thereby has a profound effect on the
architecture of the plant. Consistent with this notion, it was
observed that several other cellulose synthesis-related proteins
were DP. For example, BC3 (Brittle Culm3), a dynamin-related
protein, is responsible for the membrane trafficking between the
plasma membrane and intracellular compartments, which is an
important process that regulates the deposition and metabolism
of cellulose of the second cell wall. Mutation of BC3 led to inferior
mechanical properties in rice plants (Xiong et al., 2010). The
BR-induced DP pattern of multiple CESAs and other cellulose-
related proteins in the current study strongly implied that BR
regulates rice architectures by controlling cellulose synthesis via
a phosphorylation-dependent mechanism.

DP Antioxidant Enzymes
Reactive oxygen species (ROS) production, including superoxide
radical, hydroxyl radical and hydrogen peroxide (H2O2) is
implicated as important regulatory and signaling elements for
plants to adapt to unfavorable environments. It has been reported
that application of exogenous BRs modified a wide range of
antioxidant enzymes to counter the oxidative stress led by various
environmental stimulus (Bajguz and Hayat, 2009). For example,
application of BR promoted the activities of superoxide dismutase
(SOD), catalase (CAT), ascorbate peroxidase (APX) in maize
seedlings under water stress as well as in rice exposed to saline
stress (Li et al., 1998; Núñez et al., 2003). Nevertheless, it is not
clear yet that how BRs promote the antioxidant enzyme activities
in response to stresses. Interestingly, we found that several DP
antioxidant enzyme proteins such as CATA (LOC_Os02g02400),
SOD (LOC_Os03g22810), and PEX5 (LOC_Os08g39080), which
hinted that BR-induced protein phosphorylation may be involved
in the adjustment of the activities of these antioxidant enzymes.
Peroxisomes are single membrane-bound organelles where
generation or degradation of ROS occurs. Peroxisomal proteins
are originally translated in the cytoplasm and transported into
peroxisomes. PEX5 is a PTS (Peroxisomal targeting signal)
receptor protein, which recognizes the PTS and is responsible
for the translocation of the peroxisomal proteins. In A. thaniana,
Atpex5 mutant loses germinability in the absence of sucrose, but
could be rescued by PEX5. PEX5 was also able to translocate
PTS-containing proteins into the peroxisome by interacting with
OsPEX7p (Lee et al., 2006). SOD is a type of key enzymes
in antioxidant defense, which catalyze the partitioning of the
superoxide radical into oxygen or less harmful H2O2, thus to
alleviate the cell damages caused by oxidative stresses. Catalases
act as scavengers of H2O2, and could further decompose it
into oxygen and water. In rice, it has been known that CATB

functions in an ABA-dependent manner to prevent the excessive
accumulation of H2O2 under water stress (Ye et al., 2011).
CATs are also targets of excess copper toxicity, which leads
to retarded seed germination in rice (Ye et al., 2014). A very
recent study suggested that the physical association-dissociation
of GLO (Glycolate Oxidase; H2O2 producer) and CAT serve as
a specific machinery to modulate H2O2 levels in rice (Zhang
et al., 2016). Moreover, a potential PEX5-CATA-SOD interaction
relationship was suggested by our PPI analysis (Figure 4C).
Hence, we proposed that exogenous BR alters the activity of
antioxidant enzymes via changing the phosphorylation status
and/or intensity on antioxidant enzymes, and finally confers
plants with resistance to environmental stresses.

AUTHOR CONTRIBUTIONS

YH, JQ, YW, ZL, JZ, XT, and HL performed the experiments
and analyzed the data, JZ conceived of the project, designed and
coordinated the experiments, and wrote the manuscript. All the
authors read and approved the final manuscript.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Qing Liu for assistance in
bioinformatics analysis. This work was supported by Agricultural
Sciences and Technologies Innovation Program of Chinese
Academy of Agricultural Sciences (CAAS) to Rice Reproductive
Developmental Biology Group, “Elite Youth” program (CAAS) to
Jian Zhang, and National Natural Science Foundation of China
(grant number: 31401366 and 31601288).

SUPPLEMENTARY MATERIAL

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD004705.

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fpls.2017.00514/
full#supplementary-material

FIGURE S1 | qRT-PCR analysis of the time-course expression of genes in
response to BR (A–C) or 0.05% ethanol solvent treatment (D–F). Ubiquitin gene
was used as the internal control and error bars indicate the SD from three
biological replicates. Significance of differences was determined by one-way
ANOVA tests. Different characters indicate a statistically significant difference at
P < 0.05.
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