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Small RNAs are a class of short non-coding endogenous RNAs that play essential roles

in many biological processes. Recent studies have reported that microRNAs (miRNAs)

are also involved in ethylene signaling in plants. LeERF1 is one of the ethylene response

factors (ERFs) in tomato that locates in the downstream of ethylene signal transduction

pathway. To elucidate the intricate regulatory roles of small RNAs in ethylene signaling

pathway in tomato, the deep sequencing and bioinformatics methods were combined

to decipher the small RNAs landscape in wild and sense-/antisense-LeERF1 transgenic

tomato fruits. Except for the known miRNAs, 36 putative novel miRNAs, 6 trans-acting

short interfering RNAs (ta-siRNAs), and 958 natural antisense small interfering RNAs

(nat-siRNAs) were also found in our results, which enriched the tomato small RNAs

repository. Among these small RNAs, 9 miRNAs, and 12 nat-siRNAs were differentially

expressed between the wild and transgenic tomato fruits significantly. A large amount

of target genes of the small RNAs were identified and some of them were involved in

ethylene pathway, including AP2 TFs, auxin response factors, F-box proteins, ERF TFs,

APETALA2-like protein, and MADS-box TFs. Degradome sequencing further confirmed

the targets of miRNAs and six novel targets were also discovered. Furthermore, a

regulatory model which reveals the regulation relationships between the small RNAs

and their targets involved in ethylene signaling was set up. This work provides basic

information for further investigation of the function of small RNAs in ethylene pathway

and fruit ripening.

Keywords: ethylene, microRNAs, target, high-throughput sequencing, regulatory network

INTRODUCTION

Small RNAs are a class of non-coding endogenous RNAs ranged from 20 to 24 nucleotides (nt)
that play essential roles in plant growth and development, signal transduction, response to biotic
and abiotic stresses and other biological processes (Rhoades et al., 2002; Jones-Rhoades et al., 2006;
Tomato Genome Consortium, 2012). MicroRNAs (miRNAs) and small-interfering RNAs (siRNAs)
are two mainly classes of small RNAs divided on the difference of their precursor structures
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and biosynthetic pathways (Carthew and Sontheimer, 2009).
Mature miRNAs are evolved from miRNA genes with the action
of Dicer-like 1 (DCL1), Hua Enhancer 1 (HEN1), and HASTY
proteins (Jones-Rhoades et al., 2006; Xie et al., 2015). SiRNAs
are derived from long double-stranded RNAs (dsRNAs) and
could be classed to heterochromatic siRNAs (hc-siRNAs), trans-
acting short interfering RNAs (ta-siRNAs) and natural antisense
siRNAs (nat-siRNAs; Chen, 2009). Recent studies showed that
small RNAs can negatively regulate gene expression at the
post-transcriptional level based on two possible mechanisms:
transcript cleavage and translational repression (Sunkar et al.,
2007; Couzigou and Combier, 2016).

As a climacteric fruit model, tomato has been widely used to
study the molecular mechanisms of fruit ripening and senescence
as well as ethylene biosynthesis and signal transduction. Recently,
increasing studies showed that small RNAs are also involved
in regulating ethylene signal transduction (Pilcher et al., 2007;
Moxon et al., 2008; Zhang et al., 2011; Zuo et al., 2012). For
example, Moxon et al. (2008) found that one of the target genes of
miR156 was CNR, which belongs to SBP-box family transcription
factors (TFs), and the target gene of miR172 was AP2. It has
been reported that the expression of genes that encode miRNAs
is regulated at the transcriptional level by various transcriptional
factors (Yant et al., 2010; Baek et al., 2013). For example, EIN3,
a key transcription factor in ethylene signaling, directly binds to
the promoter region of miR164 and represses its transcription (Li
et al., 2013).

ERFs were a class of TFs located in the downstream of
ethylene signal transduction pathways that function in diverse
plant growth and metabolism processes as well as in the
biotic and abiotic stress response, such as ethylene (Wu et al.,
2002; Pirrello et al., 2006), high salt (Park et al., 2001; Wang
et al., 2004), drought and low temperature, and so on (Qin
et al., 2004; Zhang et al., 2007). Given that the miRNAs
were also involved in the ethylene signaling pathways, there
may be some relationships between miRNAs and ERFs. The
high-throughput sequencing technology has been widely used
to explore the functions of miRNA and siRNAs due to its
high throughputs and accuracy (An et al., 2011; Cao et al.,
2014; Thiebaut et al., 2014). In this study, High-throughput
sequencing of small RNAs and degradome sequencing were
used to gain a better understanding of the relationship
between ethylene and small RNAs using wild type and LeERF1
transgenic tomato fruits. MiRNAs expression patterns were
profiled and their targets were conferred; the regulatory network
model between the small RNAs and ethylene was set up.
This research provides more evidences for understanding
the regulatory pathways of miRNAs in the network of fruit
ripening.

MATERIALS AND METHODS

Sample Collection and Preparation
Wild type (Solanum lycopersicum cv. zhongshu4) and sense-
/antisense-LeERF1 transgenic tomato plants (Li et al., 2007)
were grown in the greenhouse at standard conditions.
The Fruits at breaker stage were used in the experiment

(Supplementary Figure S1). Pooled mesocarp tissues from three
groups were flash frozen in liquid nitrogen and stored at −80◦C
until further analysis.

Small RNA (sRNA) Quantification and
Qualification
The RNA samples were extracted using Trizol. Nanodrop, Qubit
2.0, and Agilent 2100 bioanalyzer were used to detect the purity,
concentration and integrity of RNA samples, respectively, to
ensure the use of qualified samples for sequencing. RNA purity
was checked using the NanoPhotometer R© spectrophotometer
(IMPLEN, CA, USA). RNA concentration was measured
using Qubit R© RNA Assay Kit in Qubit R©2.0 Flurometer (Life
Technologies, CA, USA). RNA integrity was assessed using the
RNANano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system
(Agilent Technologies, CA, USA).

Library Preparation for Small RNA
Sequencing
A total amount of 1.5 µg RNA per sample was used as
input material for the RNA sample preparations. Sequencing
libraries were generated using NEBNext R©UltraTM small RNA
Sample Library Prep Kit for Illumina R©(NEB, USA) following
manufacturer’s recommendations and index codes were added
to attribute sequences to each sample. Briefly, first of all, ligated
the 3′ SR Adaptor, mixed 3′ SR Adaptor for Illumina, RNA
and Nuclease-Free Water, mixture system after incubationa
for 2 min at 70 degrees in a preheated thermal cycler,
Tube was transferred to ice. Then, add 3′ Ligation Reaction
Buffer (2X) and 3′ Ligation Enzyme Mix ligate the 3′ SR
Adaptor, incubated for 1 h at 25◦C in a thermal cycler. To
prevent adaptor-dimer formation, the SR RT Primer hybridizes
to the excess of 3′ SR Adaptor (that remains free after
the 3′ ligation reaction) and transforms the single stranded
DNA adaptor into a double-stranded DNA molecule. sRNAs
(18–30 nucleotides in length) were separated from the total
RNAs by polyacrylamide gel electrophoresis (PAGE). The small
RNA molecules were then ligated with 5′ and 3′ adaptor
and used for reverse transcription and subsequent PCR. The
final PCR product was purified and sequenced by Illumina
Cluster Station and Illumina Genome Analyzer (SanDiego,
CA, USA).

Clustering and Sequencing
The clustering of the index-coded samples was performed on a
cBot Cluster Generation System using TruSeq PE Cluster Kit v4-
cBot-HS (Illumina) according to the manufacturer’s instructions.
After cluster generation, the library preparations were sequenced
on an Illumina Hiseq 2500 platform and pair-end reads were
generated. The sequencing results were deposited in the Sequence
Read Archive (SRA) at the NCBI database (accession number:
SRP094091).

Quality Control
The quality control of raw data (raw reads) in fastq format has
been performed by using in-house scripts written in Perl. Reads
containing adapter and poly-N sequences and reads with low
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quality from raw data were removed. Then reads were cleaned
by removing the sequences smaller than 18 nt or longer than
30 nt. At the same time, Q20, Q30, GC-content, and sequence
duplication level of the clean data were calculated. All the
downstream analyses were based on clean data with high quality.

Bioinformatic Analysis of Sequencing Data
The Clean Reads were aligned with Silva database, GtRNAdb
database, Rfam database, and Repbase database respectively
to filter ribosomal RNA (rRNA), transfer RNA (tRNA), small
nuclear RNA (snRNA), small nucleolar RNA (snoRNA), repeat
sequences, and other ncRNA using Bowtie tools. The remaining
reads were used to detect known miRNAs and new miRNAs
predicted by comparing with known miRNAs from miRBase.
RNAFold tools were used to predict the secondary structure of
all new miRNAs.

Identification of siRNA and Putative Novel
miRNA
The adapter reads of the Solexa sequencing results were removed
(Supplementary Figure S2). And reads larger than 30 nt and
smaller than 18 nt were discarded. All high quality reads were
considered as significant and further analyzed. Small RNA reads
were mapped to tomato genome with mapping tool bowtie, all
tomato genome annotation information is downloaded from
ITAG2.3 include repeats and protein-coding regions (http://
solgenomics.net/organism/Solanum_lycopersicum/genome). Six
libraries are pooled together for miRNA prediction. The potential
miRNA loci were analyzed using MIREAP software (version 0.2)
with default parameters followed by additional manual check
criteria that included: the miRNA sequence length should be
between 18 and 26 nt; the maximal free energy allowed for
a miRNA precursor (−18 kcal/mol); flank sequence length of
miRNA precursor (100 nt); the predicted mature miRNA reads
count should be large than 10 and reading counts ratio for
miRNA∗/miRNA should be small than 0.1. The unique reads
left were aligned with known miRNAs from miRBase 21.0
(http://www.mirbase.org/). Phased small RNAs and nat-siRNAs
were predicted as described in the previous studies (Chen et al.,
2007; Zhou et al., 2009). All the reading counts were normalized
to per million of total mapped reads (TPM).

Target Gene Functional Annotation
Gene function was annotated based on the following databases:
Nr (NCBI non-redundant protein sequences); Nt (NCBI
non-redundant nucleotide sequences); Pfam (Protein family);
KOG/COG (Clusters of Orthologous Groups of proteins); Swiss-
Prot (A manually annotated and reviewed protein sequence
database); KO (KEGG Ortholog database); GO (GeneOntology).

Quantification of Small RNAs Expression
Levels and Differential Expression Analysis
Small RNA expression levels were estimated by TPM for each
sample: sRNA were mapped back onto the reference genome,
and read count for each small RNA was obtained from the
mapping results. For the samples with biological replicates,
differential expression analysis of two conditions/groups was

performed using the DESeq R package (1.10.1). DESeq provide
statistical routines for determining differential expression
in digital miRNA expression data using a model based
on the negative binomial distribution. The resulting P-
values were adjusted using the Benjamini and Hochberg’s
approach for controlling the false discovery rate. MiRNA
with an adjusted p < 0.05 and |log2(fold change)| ≥ 1
were assigned as differentially expressed (Anders and Huber,
2010).

GO Enrichment Analysis
Gene Ontology (GO) enrichment analysis of the differentially
expressed genes (DEGs) was implemented by the GOseq
R packages based on Wallenius non-central hyper-geometric
distribution (Young et al., 2010), which can adjust to gene length
bias in DEGs.

KEGG Pathway Enrichment Analysis
KEGG (Kanehisa et al., 2008) is a database resource for
understanding high-level functions and utilities of the
biological system, such as the cell, the organism, and the
ecosystem, from molecular-level information, especially large-
scale molecular datasets generated by genome sequencing
and other high-throughput experimental technologies
(http://www.genome.jp/kegg/). We used KOBAS (Mao et al.,
2005) software to test the statistical enrichment of differential
expression genes in KEGG pathways.

RESULTS

Overview of the Small RNA Libraries from
Tomato Fruit
To identify small RNAs and analyze their functions in
ethylene pathway, the deep sequencing technology with Illumina
Hiseq 2500 platform (Biomarker Technologies, China) was
performed in wild and sense-/antisense-LeERF1 transgenic
tomato fruits at breaker stage. A total of 19.31, 19.80, 17.28,
15.24, 14.61, 14.60 million raw reads in CK1 (wild 1), CK2
(wild 2), F1 (sense-LeERF1 transgenic tomato 1), F2 (sense-
LeERF1 transgenic tomato 2), R1 (antisense-LeERF1 transgenic
tomato 1), and R2 (antisense-LeERF1 transgenic tomato 2)
were generated, respectively. After removing low quality and
contaminated reads, poly A-containing sequences, sequences
outside of 18–30 nt, 3′ and 5′ adaptors sequences, 15.75
(CK1), 16.88 (CK2), 13.79 (F1), 13.05 (F2), 12.63 (R1),
12.94 (R2) million clean reads were remained for further
analysis. Then the small RNAs were categorized into miRNAs,
ribosomal (r) RNAs, transfer (t) RNAs, small nuclear (sn)
RNAs, small nucleolar (sno) RNAs, repeat regions, exon and
intron RNA based on genomic location and function analysis
(Table 1).

The size distribution is one of the distinct features of the
small RNAs libraries from different plants. In our experiments,
the length of small RNAs ranges from 18 to 30 nt and the most
abundant group of small RNAs have length 21–24 nt in all the
six libraries (Figure 1). There is no obvious difference of the
length distribution between wild and LeERF1 transgenic tomato.
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TABLE 1 | Small RNAs profiling and classification in six tomato fruit groups.

Types CK1 CK2 F1 F2 R1 R2

Total 15,753,031 16,876,616 13,793,259 13,050,621 12,633,453 12,938,234

miRNA 606,491 678,439 529,661 514,194 506,601 500,709

rRNA 363,895 334,157 348,969 268,843 294,359 318,280

tRNA 73,283 69,194 68,966 58,727 42,953 60,809

snRNA 4,726 5,906 5,517 5,220 4,802 5,752

snoRNA 7,876 8,100 8,275 7,264 5,938 6,951

Repeat 2,451,172 2,683,382 2,008,299 1,958,898 1,867,224 1,935,560

NAT 1,228,736 1,400,759 1,213,807 1,070,151 1,174,911 1,125,626

TAS 40,958 37,129 37,242 40,457 41,690 37,521

exon:+ 677,380 573,805 537,937 587,278 517,972 491,653

exon:− 247,323 275,089 219,313 216,640 228,665 238,064

intron:+ 849,088 916,400 760,009 726,920 720,107 720,660

intron:− 521,425 567,054 464,833 445,026 423,221 437,312

Other 8,680,677 9,327,202 7,590,433 7,151,003 6,805,010 7,059,338

FIGURE 1 | Length distribution of small RNAs in wild (CK1, CK2), sense-LeERF1 (F1, F2), and antisense-LeERF1 (R1, R2) tomato fruit.

Among the 21–24 nt size small RNAs, 24-nt size class has the
highest abundance, accompanied with the 23-nt sRNAs as the
second largest groups, which is in accordance with that of rice
(Morin et al., 2008), Arabidopsis (Rajagopalan et al., 2006), and
our previous results (Zuo et al., 2012, 2013).

Identification of miRNAs and siRNAs in
Tomato
To identify miRNAs and siRNAs in tomato, the clean
sequences were aligned with the tomato small RNAs database
(http://ted.bti.cornell.edu/cgi-bin/TFGD/sRNA/home.cgi) and
the latest miRNA database (http://www.mirbase.org/, Release
21). In total, 178 known miRNAs belonging to 108 families
were obtained in our libraries. Among the 108 families, 46
miRNA families (Supplementary Table S1) were registered
in miRBase as belonging to S. lycopersicum and other 62
families (Supplementary Table S2) were less conserved and first
identified in tomato (Supplementary Figure S3). Most of the
miRNA families belonging to S. lycopersicum in miRBase are

composed of more than one member. For instance, miR156 and
miR482 were the largest ones with seven members in the families
in this study. MiR171 and miR319 were the second largest family
with six members. On the other hand, except for the miR548
family, other less conserved miRNA families had only one
member detected in this study. Sequence length statistical results
showed that the 21-nt miRNAs were the main type of the 178
known miRNAs.

In addition, 36 putative novel miRNAs with hairpin
structures renamed as miRZ101 to miRZ136 were predicted
and all of them were found to have star sequences (Table 2
and Supplementary Table S3). The length of the putative
novel miRNAs were 18–24 and 24 nt miRNAs accounted
for the predominance. Most of the first nucleotide of the
putative novel miRNAs were A, which was in accordance
with previous study that 24 nt miRNAs used to had an
A as the first nucleotide (Jain et al., 2014). The minimum
folding free energies varied from −149.8 to −28.3 kcal/mol
(Supplementary Table S3).
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TABLE 2 | Putative novel miRNAs found in tomato.

MiRNA Length Sequence Chromosome Star MEF (kcal/mol)

miRZ101 22 uaacuucgucuagcucgccuuc 10 + −70

miRZ102 24 guagagaacucuagaaccuucuag 10 + −84.1

miRZ103 24 aaaggacuccuagauuucucuagu 11 + −93.9

miRZ104 24 aaagacuguucaauuacugcuuga 11 + −28.3

miRZ105 24 uauguccuuuaacuuugagugugc 12 + −110.4

miRZ106 24 uuaguauaguauaagugugucucu 12 + −57.1

miRZ107 24 acacacucugcauucaauuaaauu 12 + −63.4

miRZ108 24 acguugcucagacucuucaaaaau 12 + −60.3

miRZ109 22 auuuauggcuaugaauuugagu 12 + −62.9

miRZ110 24 uuaguauaguauaagugugucucu 1 + −41.7

miRZ111 24 uuaguuuaauuaagaugugucucu 1 + −105.2

miRZ112 21 gcacggcagauaguuauuggc 1 + −114.6

miRZ113 24 guagagaacucuagaaccuucuag 1 + −71.4

miRZ114 24 aagcgaugacuuuagugaccuagu 1 + −39.9

miRZ115 22 cacggucguaccuugacaaggc 2 + −77.8

miRZ116 22 uuguuucuguuuuuguuugagu 2 + −149.8

miRZ117 23 guugcucggacucuucaaaaaug 2 + −69.1

miRZ118 20 auaacacaaaucugagccuc 2 + −56.5

miRZ119 22 agugacucgcucgaucuuucuu 3 + −64

miRZ120 24 uuucgucuugaaaguuugcccaug 4 + −58.3

miRZ121 24 auuuccgaucaaacuuaaacuguu 4 + −40.8

miRZ122 23 guugcucgaacucuucaaaaaug 5 + −62.7

miRZ123 24 augugaucgcuguaaugaccuuac 5 + −132.9

miRZ124 24 ucgagggucuaucagaaacaacau 6 + −50.8

miRZ125 18 accugguugauccugcga 6 + −73.3

miRZ126 24 guugcucgaacucuucaaaaaugu 6 + −78.9

miRZ127 24 uuuucuaucggaacuaucaugugu 6 + −69.3

miRZ128 21 ucaacgcugcacucaaucaug 7 + −75.2

miRZ129 24 aagacguuugaaucugaaaaagau 8 + −57.7

miRZ130 23 uuauacuauacuaagguccuauu 8 + −117

miRZ131 24 cgagugcucauuccacagauaagu 8 + −64.2

miRZ132 24 auacaucgguuacuugauagacgu 8 + −109.4

miRZ133 24 uuaguauaguauaagugugucucu 8 + −103.1

miRZ134 24 ugaaaucgagaugugauguagagg 9 + −59.9

miRZ135 23 uucuucugacucauuuacuuuag 9 + −54.2

miRZ136 24 augcucuagucuuugaacgacagg 9 + −58.7

Moreover, several conserved and species-specific endogenous
siRNAs were also characterized in our libraries. Ta-siRNAs
are a special class of siRNAs that generated from TAS
gene transcripts and mediated by miRNA (Xie et al., 2005;
Yoshikawa et al., 2005; Li et al., 2012). On the basis of
the conservation of the TAS genes in plants, three TAS5
gene family members: TAS5, TAS5b, and TAS5d (TAS5b and
TAS5d were found in our previous study; Zuo et al., 2016),
all miR482 targets, were identified (Table 3). Surprisingly, one
more TAS5 family member (TAS5e) and two more TAS genes
(TAS11a and TAS11b), triggered by sly-miR6024, are reported
in our results (Table 4). In addition, 19 potential phased small

RNAs and 958 nat-siRNAs were also found in this study
(Supplementary Tables S4,S5).

The Effect of Overexpression
Sense-/Antisense-LeERF1 on Small RNA
Profiles
To evaluate the regulatory roles of LeERF1on miRNA expression,
differential expression of miRNAs among the wild and sense-
/antisense-LeERF1 transgenic tomato were analyzed. After
normalization using a RPM method, the miR399a was found
to have significant different accumulation between wild type
and sense-LeERF1 transgenic tomato fruits. The expression of
the miR399a was down-regulated in sense-LeERF1 transgenic
fruit (Figure 4A). MiR8990 and the novel miRZ118 were the
two miRNAs significant differently expressed between wild
type and antisense-LeERF1 transgenic tomato fruits, and their
accumulations decreased in the transgenic fruit. Totally, there
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TABLE 3 | The conserved TAS5 family in tomato fruit.

Name Chromosome Length Start End Phased abundance related miRNA

sly-TAS5 6 539 423,570 424,108 3,954 sly-miR482d-3p

sly-TAS5b 2 644 21,186,658 21,187,301 530 sly-miR482d-3p

sly-TAS5d 8 917 58,262,775 58,263,691 4,729 sly-miR482e-3p

Three TAS5 family members were found and were located in Chromosome 6, 2, and 8 separately. “Phased abundance” means the abundance of phased sequence and the “related

miRNA” related the miRNAs that mediated TAS.

TABLE 4 | The novel TAS families in tomato fruit.

Name Chromosome Start End Length Phased abundance related miRNA

sly-TAS5e 11 48,467,984 48,468,816 833 22,190 sly-miR482b

sly-TAS11a 5 2,500,975 2,501,555 581 389 sly-miR6024

sly-TAS11b 11 51,986,458 51,986,681 224 137 sly-miR6024

Three members belong to two TAS families (TAS5, TAS11) were found and located in Chromosome 11, 5, and 11 separately. “Phased abundance” means the abundance of phased

sequence and the “related miRNA” related the miRNAs that mediated TAS.

were nine miRNAs having significant differential expression
between sense-LeERF1 and antisense-LeERF1 transgenic fruit.
Among them, miR399a and miR8263-5p were up-regulated
in antisense-LeERF1 transgenic fruits. Meanwhile, other seven
miRNAs including miR7484, miR319a, miR95-5p, miR8990,
miR2569-5p, and two putative novel miRNAs (miRZ118 and
miRZ131) were down-regulated.

Besides, 12 nat-siRNAs were found to show differential
expression patterns. Compared with wild type fruits, most of the
nat-siRNAs showed lower expression in sense-LeERF1 tomato
fruits, only two of them increased (Figure 4B). However, among
the differentially expressed nat-siRNAs, more than half of them
had higher expression levels in antisense-LeERF1 transgenic
fruits.

Target Gene Identification of the miRNAs
MiRNAs regulate gene expression mainly through cleaving
mRNA or inhibiting the translation process of the targets
gene, so identification and analysis of the target genes were
the basis to study the function of miRNAs. Bioinformatics
prediction and high-throughput degradome sequencing were
the two main methods to find the targets gene. Using
bioinformatic prediction method, a total of 103 target genes
that involved in biological process, cellular component, and
molecular function were found and most of them were identified
to participate in biological process (Figure 2). Previous studies
indicated that the targets of conserved miRNAs were also
conservative and most of the miRNA families had not only
one target site (Jin et al., 2008; Lu et al., 2008), which was
also found in our study. For example, the targets of miR166a
are homeobox-leucine zipper protein Revoluta, homeobox-
leucine zipper protein ATHB-14 and pentatricopeptide repeat-
containing protein At5g25630. Meanwhile, one target gene was
often cleaved by two or more miRNAs. For instance, AP2
is the target of miR172 and miR8737, miR319 and miR159
share the same target GAMYB. Among the identified target
genes, 16 targets were found to be involved in ethylene

FIGURE 2 | Targets of miRNAs in tomato fruit. Most targets of the miRNAs

were involved biological process.

(Supplementary Table S6) and most of them were AP2 TFs.
Another class of targets was auxin response factors including
ARF10, ARF16, ARF17 and ARF18. Two F-box proteins (F-
box protein 6, F-box protein At3g07870-like), two ethylene-
responsive factors (RAP2-7-like) and an APETALA2-like protein
were also predicted.

High-throughput degradome sequencing is a new technology
to identify miRNAs targets and is successfully applied in
Arabidopsis, rice (Addo-Quaye et al., 2008; Li et al., 2010). In
this study, a total of 55 cleavage sites associated with 41 miRNAs
were detected and seven target genes cleaved by five miRNAs
were identified to be related to ethylene synthesis and signal
transduction, including five auxin response factors (ARFs), one
AP2 TF, and one ERF TF (Supplementary Table S7). Except
for the known targets, six new targets were identified. The
representative target plots of new targets were shown in Figure 3.

In addition, 389 genes were predicted to be the targets of nat-
siRNAs, and 22 of them were found to participate in ethylene
pathway (Supplementary Table S8). Ethylene-responsive TFs,
MADS-box TFs, F-box proteins were the main targets involved
in fruit ripening. Moreover, 55 targets of the ta-siRNAs

Frontiers in Plant Science | www.frontiersin.org 6 April 2017 | Volume 8 | Article 527

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wang et al. Small RNAs in Ethylenen Pathway

FIGURE 3 | Target plots of miRNA targets confirmed by degradome sequencing. Six new genes were found to be targets of five miRNAs.

were also predicted and two of them (Solyc02g092020.1 and
Solyc02g082320.1) were related to ethylene pathway.

Target Parsing and Small RNA Regulatory
Network Analysis in Tomato
To investigate the network between the miRNAs and their
targets, cytoscape platform was employed. In the network, it
could be clearly seen that miR6024 had 11 targets and among the

targets two of them were also the targets of miR482 (Figure 5). In
addition, miR6024 and miR6027-3p shared one common targets.
Moreover, miR6022 and miR528 shared most of their targets and
they also had common targets with miR6023 and miR8527.

To comprehensively understand the functions of the miRNAs,
ta-siRNAs, and nat-siRNAs involved in ethylene synthesis and
signal transduction, all the predicted target genes of small
RNAs were screened carefully and a regulatory model including
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small RNAs, the targets and their main functions was set up
(Figure 6). As shown in Figure 6, it could clearly been seen
that the AP2 TFs that involved in ethylene signaling were the
targets of miR172a, miR172b, and miR8737. Ethylene-responsive
transcription factors were the target of miR172a, miR172b
and the nat-siRNAs renamed as nat-siRNA-G2009, nat-siRNA-
G2010, nat-siRNA-G2011, nat-siRNA-G2012, nat-siRNA-G2013,
and nat-siRNA-G2014. Meanwhile, the F-Box proteins and
MADS-Box TFs that participated in ethylene signaling were the
targets of miR394, miRZ131, nat-siRNA-G2015 to nat-siRNA-
G2017, sly-TAS5d, phased small RNA001 and nat-siRNA-G2001
to nat-siRNA-G2005, respectively. Moreover, the auxin response
factors that indirectly control ethylene signaling were the targets
of miR160a and the nat-siRNA-G2006 and nat-siRNA-G2007.

DISCUSSION

Small RNAs are a class of non-coding RNAs that play vital
roles in growth and development, signal transduction, biotic
and abiotic stresses (Jones-Rhoades et al., 2006; Dalmay, 2010;
Mohorianu et al., 2011; Zuo et al., 2012; Pashkovskiy and
Ryazansky, 2013). Numerous studies have demonstrated that
miRNAs were involved in the regulation of diverse physiological
processes by repressing the expression of their target genes.
Ethylene is an important endogenous hormone and plays
important roles in fruit development and ripening. As a model
plant, tomato has been widely used to study the molecular
mechanisms of ethylene biosynthesis and signal transduction
(Giovannoni, 2004; Osorio et al., 2011), and through the study
on ripening-related mutants or transgenic plant, many advances
have been achieved. ERFs were a class of TFs located in the
downstream of ethylene signal transduction pathways, and as
one of the members of ERF class, LeERF1 had been showed to
mediate fruit maturation and softening, enhance resistance to
osmotic stress and improve plant tolerance to fungal invasion
(Li et al., 2007; Lu et al., 2011; Pan et al., 2013). To better
understand the relationship between LeERF1 and small RNAs in
ethylene pathway, high-throughput sequencing was employed in
the sense-/antisense-LeERF1 transgenic tomato fruits and many

ethylene-related small RNAs as well as their target genes were
found.

High-Throughput Sequencing of Tomato
Fruit
In the past decades, miRNAs identification and their biological
roles analysis were the mainly focused research fields. In
tomato, 46 miRNA families were identified and registered in
the miRBase database (http://www.mirbase.org/). It is well-
known that many small RNAs have temporal expression patterns
(Chen, 2009; Rubio-Somoza et al., 2009) and many studies
had not detected all the 46 miRNA families (Candar-Cakir
et al., 2016; Wu et al., 2016). In this study, the 46 families
were all identified though some miRNAs did not found in all
libraries, such as miR169 that only detected in wild tomatoes.
This result indicated that the high-throughput sequencing had
superiority in the identification of small RNA. Meanwhile, we
identified 62 less conservative miRNAs that had not previous
been found in tomato but documented in the miRBase for
other species. For instance, miR861 was found in Arabidopsis
(Fahlgren et al., 2007) and miR8010 were registered for
potato (Zhang et al., 2013). MiR440, miR528, miR2922 and
miR1049, miR1222, miR1063 were detected in rice and moss,
respectively (Liu et al., 2005; Sunkar et al., 2005; Talmor-
Neiman et al., 2006; Axtell et al., 2007; Sanan-Mishra et al.,
2009).

In addition, 41 putative novel miRNAs not identified in
other reports were also predicted in this study. The hairpin
structures were found and the minimal folding free energies
(MFEs) were −149.8 to −28.3 kcal/mol, indicated that the
hairpin structures were stable. MiRNAs with detected stars
were more likely to predict to be bona fide novel miRNAs
(Wu et al., 2016). The renamed putative novel miRNAs in
our libraries all had stars, suggested the accuracy of the
novel miRNAs. Most of the putative novel miRNAs were
24 nt in length. The 24 nt small RNAs were reported
to mainly match to the promoter regions of ripening-
associated genes (Tomato Genome Consortium, 2012) and
its high percentage in the putative novel miRNAs may

FIGURE 4 | Expression profiles of the significantly differentially expressed miRNAs (A) and nat-siRNAs (B) in wild (CK1, CK2), overexpression sense-LeERF1

(F1, F2), and antisense-LeERF1 (R1, R2) tomato fruit.
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imply regulatory roles of the novel miRNAs in ethylene
pathway.

Overall, the discovery of less conserved and putative novel
miRNAs in tomato provided enriched insight into the plant
miRNA dataset. In addition, one previously reported TAS5 gene
(Li et al., 2012) and two other TAS5 genes (TAS5b, TAS5d, found
in our other study) were detected in our libraries (Table 3).
Moreover, another TAS5 (TAS5e) with the target sly-miR482b
and twomore TAS genes (Named TAS11a and TAS11b) triggered
by sly-miR6024 were also found in our libraries (Table 4).

Differential Expression Profiles of the
Small RNAs
It is well-known that many small RNAs have temporal expression
patterns (Chen, 2009; Rubio-Somoza et al., 2009). Differential
expression patterns of small RNAs can be regarded as an index for
estimating the regulation contributions.We analyzed small RNAs
expression in the wild and sense-/antisense-LeERF1 transgenic
tomato. It is worth to noting that 14 miRNAs had significant
difference expression between the wild and transgenic tomato.
Among them, four miRNA families had a significant different

FIGURE 5 | Relationships between miRNAs and their targets.
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accumulation between wild and sense-LeERF1 transgenic tomato
fruits and 10 miRNAs differentially expressed in the response to
antisense-LeERF1, indicating their specific roles in fruit ripening
(Figure 4A).

It has been reported that miR399 was involved in plant
response to phosphate starvation (Fujii et al., 2005; Chiou et al.,
2006) and its accumulation increased during fruit development
in tomato (Gao et al., 2015). In this study, the miR399a is down-
regulated in sense-LeERF1 transgenic fruit, which indicated
that miR399 may play an important role in ethylene signal
transduction pathway. Totally, there were nine miRNAs having
significant different expression between sense-LeERF1 and
antisense-LeERF1 transgenic fruit. Among them, miR399a and
miR8263-5p were up-regulated in antisense-LeERF1 transgenic
fruits, meanwhile, other nine miRNAs, including miR7484,
miR319a, miR95-5p, miR8990, miR2569-5p, and two putative
novel miRNAs (miRZ118 and miRZ131) were down-regulated.
miR319 has been reported to control leaf development and
morphogenesis through regulating transmission control protocol
(TCP) transcription factors (Palatnik et al., 2003). In this study,
the target of miR319 was predicted to be GAMYB, which was also
related to ethylene pathway. According to our results, miR319
may also participate in ethylene signaling pathway.

Besides, 12 nat-siRNAs were found to show differential
expression patterns. Compared with wild fruits, most of the
nat-siRNAs showed lower expression levels in sense-LeERF1
tomatoes, and only two of them increased. However, among the

nat-siRNAs, more than half of them had higher expression levels
in antisense-LeERF1 transgenic fruits (Figure 4B).

Small RNAs Participated in Ethylene
Pathway
To study the function of small RNAs in ethylene pathway,
bioinformatic prediction, and degradome sequencing were also
used in wild and sense-/antisense-LeERF1 transgenic tomato.
Results showed that most of the targets were identified to
participate in various biological processes (Figure 2). AP2
transcription factors, AP2-like ethylene-responsive transcription
factors, ethylene-responsive transcription factor were TFs belong
to AP2/EREBP transcription factors family involved in ethylene
signaling pathway and they were the main targets of miR172
family, which was also reported in Arabidopsis and tomato (Wu
et al., 2009; Cheng et al., 2016). The AP2/EREBP transcription
factors were also the target of miR5658 (Cheng et al., 2016).
However, in this study, the miR5658 was not detected and
miR8737 were predicted to target AP2/ERF TFs. F-Box proteins
were reported to regulate ethylene signaling in Arabidopsis
(Wang et al., 2009). It was also been reported that the F-Box
proteins were the targets of miR393 in Arabidopsis (Liu et al.,
2008). However, in this study, miR393 was not found and F-Box
proteins were predicted to be the target of miR394. In addition,
auxin response factors genes cleaved by miR160 were also found
in our results. In Arabidopsis, ARF6 and ARF8, ARF16, and
ARF17 were reported to be the targets of miR167 and miR160,

FIGURE 6 | Network model of the small RNAs and their target genes involved in ethylene.
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respectively. In this study, ARF8 cleaved by miR167 was found
via degradome sequencing. However, ARF6 was not identified
for miR167, perhaps because the abundance of cleaved products
was too low to be detected. Unexpectedly, ARF10 and ARF18
were identified to be the targets of miR160. Surprisingly, six new
targets were found (Figure 3).

Compared with the miRNAs, most targets of the ta-siRNAs
and nat-siRNAs in tomato were not verified yet. The distribution
of the targets of ta-siRNAs and nat-siRNAs was different from
that of the miRNAs, and a great part of the targets were
predicted to be involve in all kinds of metabolic processes
which were consistent with the previous studies (Zhai et al.,
2011; Li et al., 2012; Shivaprasad et al., 2012; Zuo et al., 2013).
In this study, several important target genes participating in
fruit ripening and senescence were found including Ethylene-
responsive transcription factors, F-box proteins, MADS-box TFs,
and MADS-box proteins.

Network Construction Revealed the
Relationship of Small RNAs and Ethylene
in Tomato
To illuminating the network between small RNAs and their
target genes involved in ethylene, all the predicted target genes
of miRNAs, ta-siRNAs, and nat-siRNAs were screened carefully
and a regulatory model was set up (Figure 6). From the network
model, it could clearly been seen that miR394, miRZ131, miR172,
miR8737, miR319, miR159, miR160, and nat-siRNA-G2001 to
nat-siRNA-G2017 as well as their target genes such as auxin
response factors, ethylene-responsive transcription factors and
GAMYB were involved in ethylene signal pathway. These results
indicate that the network of miRNAs are quite complicated,
and elucidation of the molecular mechanisms underlying the
interplay between miRNA and their target genes involved in
ethylene pathway requires further study.

CONCLUSION

In summary, ethylene biosynthesis and signal transduction
related miRNAs and siRNAs were identified in tomato fruit.
These informations broaden the knowledge of the relationship
between small RNAs and ethylene regulation. Additionally,
many target genes of miRNAs were identified by bioinformatic
prediction and degradome sequencing. The result showed that
the target genes were involved in various functions and ethylene
related targets were also discovered. In addition, a large amount
of the target genes of nat-siRNAs were found and some of them
were found to participate in ethylene regulation. A regulatory
model which reveals the regulation relationship between the
small RNAs and their targets was set up. Moreover, 41 putative

novel miRNAs were identified and many of them were also
involved in ethylene pathway. These findings lay the foundation
for exploring the role of small RNAs in ethylene signaling
pathway in the plant.
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