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Super-resolution Microscopy –
Applications in Plant Cell Research
Veit Schubert*

Leibniz Institute of Plant Genetics and Crop Plant Research, (IPK) Gatersleben, Seeland, Germany

Most of the present knowledge about cell organization and function is based
on molecular and genetic methods as well as cytological investigations. While
electron microscopy allows identifying cell substructures until a resolution of ∼1 nm,
the resolution of fluorescence microscopy is restricted to ∼200 nm due to the
diffraction limit of light. However, the advantage of this technique is the possibility
to identify and co-localize specifically labeled structures and molecules. The recently
developed super-resolution microscopy techniques, such as Structured Illumination
Microscopy, Photoactivated Localization Microscopy, Stochastic Optical Reconstruction
Microscopy, and Stimulated Emission Depletion microscopy allow analyzing structures
and molecules beyond the diffraction limit of light. Recently, there is an increasing
application of these techniques in cell biology. This review evaluates and summarizes
especially the data achieved until now in analyzing the organization and function of plant
cells, chromosomes and interphase nuclei using super-resolution techniques.
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INTRODUCTION

Light microscopy of DNA and proteins specifically fluorescently labelled by FISH and
immunostaining, respectively, as well as live cell imaging based on fluorescent recombinant
proteins significantly increased our knowledge concerning cell organization and function, and is
an important advantage compared to electron microscopy.

However, due to the diffraction limit of light as defined by Abbe (1873) the spatial resolution
of light microscopy including conventional fluorescence techniques is restricted, and reaches only
∼200 nm laterally and ∼600 nm in the axial dimension in biological specimens (Pawley, 1995).
Thus, this limited resolution did not allow identifying single molecules and structures with the
resolution achieved by electron microscopy.

Recently, to overcome this restriction and to bridge the resolution gap between light and
electron microscopy the so-called super-resolution (also referred as optical nanoscopy) techniques
SIM, PALM, STORM, and STED offering new insights into molecular structures, interactions
and functions were developed. These “subdiffraction” methods can be divided into two different
principles: (i) localization of individual fluorophores in the specimen with subdiffraction precision
(PALM, STORM), and (ii) structuring the illumination light to collect high spatial frequencies in
the image that contain high resolution information (SIM, STED) (Rego et al., 2012).

Abbreviations: CENH3, centromeric histone H3; FISH, fluorescence in situ hybridization; HILO, highly inclined and
laminated optical sheet; PALM, Photoactivated Localization Microscopy; RNAPII, RNA polymerase II; SIM, structured
illumination microscopy; STORM, stochastic optical reconstruction microscopy; STED, stimulated emission depletion; TIRF,
total internal reflection fluorescence.
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To honor the establishment of these stunning methods
as PALM/STORM and STED the Nobel Prize in Chemistry
2014 was awarded to Eric Betzig, William Moerner and Stefan
Hell, respectively (Gevaux, 2014; Möckl et al., 2014; Stelzer,
2014). The meanwhile widely applied SIM technique has mainly
been developed by the late Mats Gustafsson (Gustafsson, 2005;
Gustafsson et al., 2008).

In addition to special super-resolution microscope systems
established in different research groups, since 2004 also
commercial systems are produced by companies as Leica
Microsystems (Leica TCS SP8 STED 3X - STED; Leica SR
GSD 3D microscope - STORM), Carl Zeiss (Elyra S.1 -
SIM; Elyra P.1 - PALM; Elyra PS.1 - combination of SIM
and PALM), Nikon (N-SIM; N-STORM; combination of
N-SIM and N-STORM) and GE Healthcare Life Sciences
(DeltaVision OMX System - SIM; DeltaVision Localization
Microscopy System - STORM; combination of SIM and
STORM).

Excellent reviews describing and comparing the different
super-resolution light microscopy methods (Schermelleh et al.,
2010; Agrawal et al., 2013; Allen et al., 2014; Komis et al., 2015b;
Nienhaus and Nienhaus, 2016) already exist. These techniques
were applied successfully in cell biology (Rouquette et al., 2010;
Han et al., 2013; Fornasiero and Opazo, 2015) at fixed and live
specimens from both pro- and eukaryotes and helped to discover
new structures.

Compared to animal tissues and due to varying refractive
indices of plant cell organelles inducing spherical aberrations
and light scattering, plant cell imaging is particularly challenging
(Komis et al., 2015b). Nevertheless, the applications in this field
are also increasing. Here I summarize and evaluate the recent
achievements in plant cell research applying different super-
resolution techniques.

APPLICATIONS IN PLANT CELL
RESEARCH

Similar as in other organisms analyzing cell structures of plants
is essential to understand biological functions. Thus, increasing
efforts are undertaken to apply super-resolution techniques in
plant cell research.

Investigations were performed on structures outside and
inside of the nucleus, and on condensed chromosomes during
cell division (Table 1). Most results were obtained from fixed
material, but also live cell imaging based on fluorescently tagged
proteins was performed.

Fixed specimens were stained with specific antibodies and/or
hybridized with labeled DNA probes. Such experiments were the
basis to quantify and colocalize polysaccharides, proteins and
DNA.

Live cell imaging has already successfully applied to follow the
development of cytoskeleton components, membrane proteins
and fungal infection structures.

Meanwhile, in addition to model plants as Arabidopsis
and tobacco, also cereals and holocentric wild species were
investigated by super-resolution microscopy.

Till now, among the different super-resolution techniques
most results were achieved by SIM, whereas fewer applications
are based on PALM/STORM and STED (Table 1).

Cellular Components Outside of the
Nucleus/Chromosomes
Super-resolved imaging was applied to investigate interactions
between different cells, cellular organelles and nuclei.

In this field Oparka and co-workers studied especially by
using SIM cell-cell interactions by plasmodesmata imaging (Bell
and Oparka, 2011, 2015) and localized plant virus proteins
therein. Additionally, by other groups cytoskeleton components
and membrane structures were analyzed on fixed specimens
(Table 1). STORM was applied to elucidate the cellulose
microfibril organization in onion cells (Liesche et al., 2013) and
the cortical microtubule arrangement in Arabidopsis roots (Dong
et al., 2015).

Live cell imaging using fluorescent tags such as GFP and
mCherry fused to genetically encoded marker proteins together
with SIM has been applied to follow the development of
microtubules in Arabidopsis hypocotyl epidermal cells (Komis
et al., 2014), but also in cotyledon, petiole and root cells (Komis
et al., 2015a). Bozkurt et al. (2014) identified by SIM fungus
structures after Phytophtora infection in living tobacco leaves.
This indicates that SIM is also a very versatile method with a
broad application potential in plant live cell research.

Photoactivated Localization Microscopy on living cells was
performed to track Arabidopsis root membrane proteins (Hosy
et al., 2015) and to localize perinuclear actin in tobacco (Durst
et al., 2014).

To date only one STED application in plant cell research
has been published. Kleine-Vehn et al. (2011) detected polar-
competent YFP-labeled PIN protein clusters responsible for
auxin transport in the apical plasma membrane of living
A. thaliana root cells. The high laser power required for STED
causing fast bleaching impedes the acquiring of image stacks and
longer live cell imaging. In addition, the number of applicable
florescence dyes is restricted. The high degree of autofluorescence
and the presence of color pigments (e.g., chlorophyll) make plant
tissues especially challenging for STED. Obviously, this causes its
so far restricted application in plant cell research.

Chromatin and Protein Organization in
Interphase Nuclei
To understand such basic cellular functions as transcription,
replication, and DNA repair the organization of chromatin,
DNA–DNA, DNA–protein and protein-protein interactions have
to be investigated in interphase nuclei. For this aim, super-
resolution imaging was performed on nuclei in tissue squash
preparations. However, especially the imaging of isolated and
flow-sorted nuclei delivered excellent resolutions due to the
absence of cytoplasm (Table 1).

FISH with differently labeled DNA probes allowed
investigating the subchromosomal arrangement of chromatin
within cell nuclei (Schubert et al., 2013) (Figure 1). Compared to
widefield microscopy and deconvolution imaging the increased
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TABLE 1 | Applications of super-resolution methods to analyze plant cell structures.

Structures/cell stages
analyzed

Results Speciesa Methods Reference

Cellular components outside of the nucleus/chromosomes

Pollen Analysis of pollen surface texture and shape 2 SIM Sivaguru et al., 2012

Cellulose microfibrils Analysis of the cellulose microfibril architecture in the cell
walls of onion-bulb scale epidermal cells

3 STORM Liesche et al., 2013

Cortical microtubules Organization and development of cortical microtubules in
living hypocotyl epidermal cells

4 SIM Komis et al., 2014

Cortical microtubules Vizualization of cortical microtubules in living cotyledon,
petiole and root cells

4 SIM Komis et al., 2015a

Cortical microtubules Organization and quantitation of cortical microtubules in
different root cells

4 STORM Dong et al., 2015

Endosomes Imaging and quantification of early and late endosomes
during root hair formation

4 SIM von Wangenheim et al., 2016

Plasmodesmata Organization of plasmodesmata in leaf parenchyma cells 11 SIM Fitzgibbon et al., 2010

Plasmodesmata Arrangement of plasmodesmata and callose in leaf cells 4 SIM Bell and Oparka, 2011

Plasma membrane Tracking of individual membrane protein motions in living
root epidermal cells

4 PALM Hosy et al., 2015

Plasma membrane Detection of polar-competent PIN protein clusters
responsible for auxin transport in the apical plasma
membrane of living root cells

4 STED Kleine-Vehn et al., 2011

Perinuclear cell region Localization of perinuclear actin in living tobacco cells (BY-2) 11 PALM Durst et al., 2014

Plasmodesmata and virus
proteins

Identification of callose and viral movement proteins in the
central cavities of complex plasmodesmata in leaf
epidermal cells

4 SIM Fitzgibbon et al., 2013

Plasmodesmata and virus
proteins

Localization of plant virus movement proteins in
plasmodesmata

10 SIM Tilsner et al., 2013

Sieve element reticulum and
virus proteins

Arrangement of the sieve element reticulum, callose, and
cellulose, and identification of potato virus X filaments in
phloem cells

10, 11 SIM Bell et al., 2013

Membrane structures and virus
filaments

Visualization of membrane structures of pseudoviral
replication complexes and individual potato virus X
filaments in leaf cells

10 SIM Linnik et al., 2013

Plasmodesmata and virus
proteins

Localization of RTNLB proteins in the the central
desmotubule of plasmodesmata and their colocalization
with tobacco mosaic virus movement proteins

4 SIM Knox et al., 2015

Membrane domains and
fungus structures

Identification of extrahaustorial membrane domains and
proteins in living leaf cells after Phytophtora infestans
infection

10 SIM Bozkurt et al., 2014

Chromatin and protein organization in interphase nuclei

Somatic interphase Chromatin ring formation of satellite DNA 14 SIM Ribeiro et al., 2017

Interphase nuclei, mitosis Distribution of histone H3K4me2, H3K9me2 and
H3K27me3 in holocentric chromosomes

9 SIM Heckmann et al., 2013

Interphase nuclei Detection of active and inactive RNAPII in the proximity of B
chromosome chromatin

17 SIM Ma et al., 2017

Meristematic nuclei Determination of the spatio-temporal distribution of rDNA
during replication

4 SIM Dvořáčková et al., in press

Meristematic and
endopolyploid nuclei

Distribution and quantification of active and inactive RNAPII
within euchromatin

4, 17 SIM Schubert, 2014

Endopolyploid nuclei Distribution and quantification of active and inactive RNAPII
within euchromatin

4 SIM, PALM Schubert and Weisshart, 2015

Interphase nuclei Co-localization of the transcript elongation factor SPT5 and
RNAPII within euchromatin

4 SIM Dürr et al., 2014

Interphase nuclei Co-localization between the transcript elongation factors
SPT6L, ELF7 and RNAPII

4 SIM Antosz et al., 2017

Differentiated nuclei Distribution of SMC3 and CAP-D3; eu- and
heterochromatin characterization in endopolyploid nuclei

4 SIM Schubert et al., 2013

(Continued)
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TABLE 1 | Continued

Structures/cell stages
analyzed

Results Speciesa Methods Reference

Chromatin/protein organization along condensed chromosomes

Pachytene Mitochondrial and plastidal DNA localization in B
chromosomes

17 SIM Klemme, 2013

Somatic metaphase Accumulation of chloroplast- and mitochondria-derived
sequences in B chromosomes

1 SIM Ruban et al., 2014

Somatic metaphase Localization of satellite repeats along holocentric
chromosomes

13, 14, 15, 16 SIM Ribeiro et al., 2017

Pachytene Evaluation of the cytosine methylation status of satellite
DNAs

5 SIM Zakrzewski et al., 2014

Somatic metaphase Detection of sister chromatid exchanges 7 SIM Vu et al., 2014

Somatic metaphase Sister chromatid exchange arrangement in mono- and
holocentric chromosomes

9, 17 SIM Schubert et al., 2016b

Somatic metaphase Localization of H2AThr120ph and H3S10ph at
chromosome arms

6 SIM Sousa et al., 2016

Meiosis Analysis of the synaptonemal complex formation and the
progression of meiotic chromosome synapsis

7 SIM Phillips et al., 2012

Meiosis Analysis of the synaptonemal complex organization and
interlock formation

19 SIM Wang et al., 2009

Zygotene Colocalization of AFD1 and ASY1 during the synaptonemal
complex formation

19 SIM Gustafsson et al., 2008

Mitosis Visualization of 3xHMG-box proteins at somatic
chromosomes

4 SIM Antosch et al., 2015

Centromeres

Somatic metaphase Deviating centromere chromatin organization in A and B
chromosomes

17 SIM Banaei-Moghaddam et al., 2012

Metaphase I Detection of CENH3 at the centromeres of bi- and
univalents

17 SIM Cuacos, 2013

Interphase nuclei, mitosis,
meiosis

Chromatin ring formation at centromeres 1, 4, 7, 17, 18 SIM Schubert et al., 2016a

Interphase nuclei, mitosis Co-localization of CENH3 and centromere-specific repeats
in holocentromeres

15 SIM Marques et al., 2015

Interphase nuclei, mitosis,
meiosis

Co-localization of tubulin, CENH3, CENP-C and
centromere-specific repeats in holocentromeres

15 SIM Marques et al., 2016

Somatic inter- and metaphase Localization of CENH3 and centromeric repeats along
holocentric chromosomes

13, 14, 15, 16 SIM Ribeiro et al., 2017

Interphase nuclei, mitosis,
meiosis

CENH3 amount measurements based on fluorescence
intensities

17 SIM Schubert et al., 2014

Somatic metaphase Localization of CENH3 along holocentric chromosomes 15 SIM Cabral et al., 2014

Mitosis, meiosis Co-localization of the two CENH3 variants 7 SIM Karimi-Ashtiyani et al., 2015

Somatic inter- and metaphase Intermingled co-localizaton of αCENH3 and βCENH3 7 SIM Ishii et al., 2015

Interphase nuclei Intermingled colocalization of A. thaliana and Zea mays
CENH3s

4 SIM Maheshwari et al., 2016

Somatic metaphase Intermingled co-localizaton of αCENH3 and H2AThr120ph 7 SIM Demidov et al., 2014

Somatic metaphase Localization of CENH3 and H2AThr120ph in holokinetic
chromosomes

9 SIM Jankowska et al., 2015

Mitosis Co-localization of α and βCENH3, H2AThr120ph and
tubulin at holo- and monocentromeres

9, 7 SIM Wanner et al., 2015

Meiosis Co-localization of CENH3, H2AThr120ph and tubulin at
holocentromeres

9 SIM Heckmann et al., 2014

Somatic metaphase Co-localization of CENH3 and α-kleisin in mono- and
holocentromeres

9, 7 SIM Ma et al., 2016

Meristematic nuclei Co-localization of CENH3 and KNL2 4 SIM Lermontova et al., 2013

Root tip nuclei Co-localization of CENH3 and KNL2 4 SIM Sandmann et al., 2017

Interphase nuclei, mitosis Co-localization of CENH3 and GIPs at centromeres 4 SIM Batzenschlager et al., 2015

Somatic metaphase Co-localization of both CENH3 variants, H2AThr120ph and
H3S28ph in polycentric chromosomes

8, 12 SIM Neumann et al., 2016

Somatic metaphase Localization of H2AThr120ph and H3S10ph at centromeres 6 SIM Sousa et al., 2016

(Continued)
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TABLE 1 | Continued

Structures/cell stages
analyzed

Results Speciesa Methods Reference

(Sub)telomeres

Somatic metaphase Localization of telomeric repeats in holokinetic
chromosomes

9 SIM Jankowska et al., 2015

Interphase nuclei, mitosis,
meiosis

Chromatin ring formation at subtelomeres 1, 4, 7, 17, 18 SIM Schubert et al., 2016a

a(1) Aegilops speltoides (Boiss.) Chennav.; (2) Agropyron repens (L.) P. Beauv.; (3) Allium cepa L.; (4) Arabidopsis thaliana (L.) Heynh.; (5) Beta vulgaris L.; (6) Coccinia
grandis (L.) Voigt; (7) Hordeum vulgare L.; (8) Lathyrus sativus L.; (9) Luzula elegans Lowe; (10) Nicotiana benthamiana Domin; (11) Nicotiana tabacum L.; (12) Pisum
sativum L.; (13) Rhynchospora ciliata (G. Mey.) Kük.; (14) Rhynchospora globosa (Kunth) Roem. & Schult.; (15) Rhynchospora pubera (Vahl) Boeckeler; (16) Rhynchospora
tenuis Link; (17) Secale cereale L.; (18) Triticum aestivum L.; (19) Zea mays L.

FIGURE 1 | Chromatin organization in a differentiated 8C A. thaliana leaf nucleus. Three chromosome arm territories (CTs) of chromosomes 1, 3, 5 showing
similar size were stained in different colors (A). After FISH and SIM the distribution of the euchromatic arm regions becomes visible beyond the diffraction limit of
light, in comparison to the resolution achieved by deconvolution and widefield microscopy (B). The enlarged region of CT3top (rectangle) shows clearly the increased
resolution compared to widefield and deconvolution imaging (C).
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content of information due to the higher resolution obtained by
SIM becomes obvious.

Several publications show the distribution and colocalization
of RNA polymerase II (RNAPII) enzymes and interacting factors
in Arabidopsis nuclei after labeling with specific antibodies.
In addition, the relative and absolute quantification of these
molecules in 3D image stacks was performed by SIM and
PALM, respectively (Schubert, 2014; Schubert and Weisshart,
2015). Figure 2 demonstrates the colocalization of RNAPII
and the structural condensin subunit CAP-D3 within the
euchromatin of an isolated 32C Arabidopsis nucleus, and the
improved resolution achieved by SIM compared to widefield
microscopy.

The combination of SIM and PALM feasible with systems such
as the Elyra PS.1 from Zeiss enables acquiring image stacks by
both techniques subsequently. Then, the combination of these
stacks allows counting and localizing single molecules within
the structures identified by SIM (Schubert and Weisshart, 2015;
Weisshart et al., 2016) (Figure 3).

Chromatin and Protein Organization
Along Condensed Chromosomes
All organisms perform cell divisions, at which for proper
segregation during mitosis and meiosis chromosomes have to be
condensed. To better understand this process super-resolution
microscopy has been used to analyze the distribution and
organization of DNA in cereal supernumerary B chromosomes
(Ruban et al., 2014), and of satellite DNA along holocentric
chromosomes (Ribeiro et al., 2017) (Table 1).

Additionally, the distribution of specific DNA (Zakrzewski
et al., 2014) and histone modifications (Sousa et al., 2016) was
investigated along condensed chromosomes.

The arrangement of sister chromatids in holocentric
chromosomes could be clarified by differential labeling via
base analog incorporation during replication followed by SIM
(Schubert et al., 2016b).

SIM was also helpful to analyze the synaptonemal complex
formation during homologous chromosome paring in prophase
I of maize (Gustafsson et al., 2008; Wang et al., 2009) and barley
(Phillips et al., 2012).

Centromeres and (Sub)Telomeres
Centromeres/kinetochores as spindle fiber attachment sites are
required for proper chromosome segregation during cell division.
Telomeres protect chromosome termini from degradation and
fusion. Thus, both are essential to maintain genome stability of
organisms.

SIM investigations were helpful to get new insight into the
centromere organization during the cell cycle via specifically
labeling and co-localizing centromere components such as
centromere-specific DNA repeats, kinetochore proteins and
histone modifications at centromeric chromatin (Table 1).

Especially the finding that phosphorylated histone H2A
positive chromatin and different CENH3 variant containing
chromatin clusters intermingle to form centromeres has been
attained (Demidov et al., 2014; Ishii et al., 2015; Karimi-Ashtiyani

et al., 2015), an observation not achievable by refraction-
limited widefield resolution. Similar comparative investigations
in mono-, poly-, and holocentric plants species provided also new
insights into the evolution of centromeres (Wanner et al., 2015;
Neumann et al., 2016).

Regarding telomere investigations until now only two
publications appeared. One was published about the localization
of telomeric repeats in holokinetic Luzula chromosomes
(Jankowska et al., 2015), a second about chromatin ring
formation at subtelomeres in barley (Schubert et al., 2016a).

SPECIMEN PREPARATION AND THE
SUPER-RESOLUTION METHODS

All super-resolution techniques are based on imaging fluorescent
molecules. Consequently, they are used to label structures and
molecules of interest. After fixation of a specimen, which
should alter the native structures as less as possible, specific
fluorescent affinity probes of preferably small size (FAB fragments
of antibodies, nanobodies, snap-tags) may be used for labeling
(Fornasiero and Opazo, 2015).

The advantage of genetically encoded and expressed
fluorescent proteins (Hedde and Nienhaus, 2014) is that
they allow investigating dynamic processes in living cells
without fixation artifacts. However, due to phototoxicity live
cell nanoscopy is much more challenging than imaging fixed
specimens (Fornasiero and Opazo, 2015). Hence, fewer live cell
imaging results have been published so far in plant cell research
(Table 1).

Both structured illumination and localization microscopy
may be used for fixed material but also for imaging living
cells. Depending on the different super-resolution techniques
and the imaging tasks to be performed (e.g., quantification and
colocalization of molecules) the specimen preparations have
to be adapted accordingly. Staudt et al. (2007) developed a
new embedding medium especially useful for STED microscopy
to avoid spherical aberrations induced by the refractive index
mismatch between the immersion system and the embedding
medium of the sample.

Imaging of Fixed Specimens
The major advantage of SIM is that most preparation and labeling
protocols and fluorophores used for widefield fluorescence
microscopy are applicable without modification, thus allowing
high-throughput experiments. Despite a reliable tissue fixation,
the use of high-quality glass slides and especially coverslips
(e.g., Marienfeld high precision cover glasses) are important to
reach the possible resolution of up to ∼120 nm by a 488 nm
excitation. It is quite important to notice that during SIM raw
data acquisition an overexposure must be avoided perfectly.
Otherwise, artificial not existing structures and shapes can be
generated during the SIM calculation.

Using a Zeiss ELYRA PS.1 microscope system the acquiring
of image stacks of up to 30 slices at a distance of ∼100 nm
at full resolution (∼1024 × 1024 pixel, 80 µm × 80 µm FOV,
100 ms exposure time), which takes ∼4–5 min in a sequential
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FIGURE 2 | Distribution and co-localization of active RNAPII (phosphorylated at serine 2) and the condensin subunit CAP-D3 in a flow-sorted
differentiated 32C A. thaliana leaf nucleus. After immunostaining with specific antibodies and SIM it becomes visible that both proteins are present within
euchromatin, but absent from heterochromatin (dense blue staining) and nucleoli (n) (upper left). Especially the enlarged region (rectangle) shows the increased
resolution obtained by SIM compared to widefield microscopy (upper right). The ortho view (below) generated from fully merged SIM image stacks visualizes the
nucleus as front (x–y) and side (x–z, y–z) views. Relative voxel intensity measurements based on the SIM image stack using the Imaris 8.0 (Bitplane) software showed
that this nucleus contains ∼19% less RNAPII than CAP-D3 molecules, and that ∼81% of these molecules colocalize.

3-color experiment (see Figure 1) are the basis to calculate
3D-SIM image stacks within∼10-20 min (Weisshart et al., 2016).
These stacks may be used for 3D-movie rendering by, e.g., the
commercial ZEN (Zeiss) (e.g., Schubert et al., 2013, 2016a) or
Imaris (Bitplane) (Neumann et al., 2016; Schubert et al., 2016b)
softwares.

To reveal the spatial ultrastructure of cellular components
SIM delivers best results after applying FISH and/or
immunolabelling at relatively flat (up to ∼10 µm) tissue
squashes and spreadings. But especially useful are isolated
and flow-sorted cell nuclei free of disturbing cytoplasm
(Dürr et al., 2014; Weisshart et al., 2016; Antosz et al., 2017)
(Figure 2).

SIM image stacks are also useful to determine relative
molecule amounts via pixel intensity measurements in organelles

like nuclei, and to measure the degree of colocalization of
differently labeled molecules (Dürr et al., 2014; Schubert, 2014;
Antosz et al., 2017) (Figure 2).

Bell and Oparka (2015) developed preparative methods
especially for imaging plasmodesmata by SIM on fixed plant
tissues.

Practically localization microscopy (PALM, STORM)
reaches a circa five-fold higher resolution than SIM. Thus,
single molecules may be identified, counted and colocalized
in single- and even two-color experiments using, e.g., the
fluorescence dyes Alexa488 and Cy5 (Schubert and Weisshart,
2015; Weisshart et al., 2016). However, compared to SIM
specimen preparation is more challenging and raw data
acquisition and calculations are more time-consuming. To
achieve reliable results a high labeling density and efficient
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FIGURE 3 | Distribution and quantification of active RNAPII (phosphorylated at serine 2) molecules in a differentiated 16C A. thaliana leaf nucleus.
After immunostaining with specific antibodies SIM (A) and PALM (B) were performed consecutively. (A) Compared to widefield and deconvolution microscopy SIM
clearly delivers an increased resolution especially visible in the enlarged region (white rectangle) below. This indicates that RNAPII is distributed network-like within the
nucleus. (B) After 3D-PALM the resolution becomes further increased when visualized as Gauss distribution (left). Centroid visualization allows the exact localization
and counting of single molecules (center). The nucleus with a z extension of 1.2 µm contains in total 65761 molecules which were counted in 30 slices of 40 nm.
The merged Gauss-centroid view (right) represents the localization of eight single molecules in a single slice of a RNAPII cluster (red rectangle) containing in total 37
molecules in five slices with a total z range of 0.2 µm.

photoactivation are required (Fernández-Suárez and Ting,
2008).

2D-PALM may be performed under HILO (Tokunaga et al.,
2008), Epi and TIRF illumination (Hedde and Nienhaus, 2014),

whereby TIRF will give the best signal, followed by HILO and
last Epi. 3D-PALM features dependent on the 3D-technology
used to capture ranges between 1.2 and 2.0 µm. This range
might be extended by using classical z-scans. For a better signal
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HILO instead of Epi illumination is recommended (van de
Linde et al., 2011). TIRF and for best performance also HILO
illumination need the positioning of the specimen very close to
the coverslip surface. Thus, the preparation of specimens directly
onto coverslips has to be performed. These coverslips may be
fixed onto slides by rubber cement and then be handled as usual
during the staining and washing procedures. After placing them
into coverslip chambers, adding a redox reagent and adjusting the
pH to the needs of the dye to achieve efficient photoactivation,
PALM can be performed (Weisshart et al., 2016). The redox
reagent, e.g., 1% 2-mercaptoethanol in 1x PBS can be used if
the fluorescence dyes in the specimens are easily accessible.
Otherwise, adding of glucose is required (Olivier et al., 2013;
Schäfer et al., 2013).

PALM using fluorescent proteins can be performed in buffers
like PBS or Hepes. Acquiring raw data sets takes ∼15 min,
followed by a calculation procedure of also ∼15 min if, e.g.,
isolated nuclei and the Elyra PS.1 is used.

Non-commercial super-resolution microscope setups (Hamel
et al., 2014) and commercial systems as the Elyra PS.1
(Weisshart et al., 2016) allow producing SIM and PALM/STORM
data subsequently. Thereby, the observed SIM structures can
be combined with precise PALM/STORM single molecule
localization and counting. This clearly increases the information
obtained from the specimens under investigation (Figure 3).

Life Cell Imaging
Expressed fluorescent reporter proteins allow visualizing proteins
and structures inside living organisms (Hedde and Nienhaus,
2014). Because the implementation of super-resolution
microscopy in live cell microscopy is very challenging and
both structured illumination and localization microscopy have
different advantages and disadvantages (Schermelleh et al., 2010),
to date only few publications describing the dynamics of plant
cell components appeared (see above).

Propagating seedlings in coverslip chambers under sterile
conditions allow live cell imaging by SIM on roots growing
closely along the coverslip. However, due to the fast root
elongation via cell extension the imaging time (e.g., in
Arabidopsis) is limited, because the roots quickly leave
(within∼30 min) the field of view.

The application of hypocotyls circumvents this problem.
Samaj and co-workers produced excellent super-resolved movies
via SIM by analyzing the microtubule development inArabidopsis
hypocotyl epidermal cells by adapting the settings accordingly
to acquire the raw data. For tissue etiolation the seedlings were
grown in darkness which induces the thinning of the outer
epidermal wall and reduces the thickness of the cuticular surface.
Then, after mounting the seedlings into aqueous growth medium,
effects causing refractive index mismatches can be reduced
(Komis et al., 2014, 2015a).

PALM in living cells was performed on Nicotiana BY-2 cell
cultures after transferring the cells into coverslip chambers
(Chamber SlidesTM, Thermo Scientific) to localize perinuclear
actin (Durst et al., 2014).

Single particle tracking by PALM was used for the first time
on living plants by Hosy et al. (2015). They mounted Arabidopsis

seedlings between two coverslips to track plasma membrane
proteins.

CONCLUSION AND PERSPECTIVE

Currently, most results obtained by super-resolution microscopy
in plant cell research are concentrated in the fields of research
groups with access to super-resolution microscopes. But it is
expected that the applications will extent in future significantly
due to the general applicability of super-resolution to analyze
biological specimens, so that super-resolution microscopy will
become a standard technique also in plant cell research.

This development will be further accelerated by improving
and combining the existing super-resolution methods. Especially
SIM has the potential for extended applications in the field of live
cell imaging. Additionally, SIM methods are under development
to excel its to date achieved two-fold increased resolution.

To image also thick fluorescent samples (Calliphora salivary
glands) SIM was combined with line-scanning to remove
disturbing out-of-focus fluorescence background deteriorating
the illumination pattern (Mandula et al., 2012). Rego et al. (2012)
developed nonlinear SIM, and thus were able to visualize with
a∼ 40 nm resolution purified microtubules, mammalian nuclear
pores and the actin cytoskeleton by applying the fluorescent
photoswitchable protein Dronpa.

SIM can be applied for live cell imaging in multiple colors by
using conventional fluorescent dyes as fast as 11 frames/s (Kner
et al., 2009) at intensities of only 1 to 100 W/cm2 preventing
phototoxicity (Li et al., 2015). Betzig and co-workers extended
the resolution of live cell SIM by using an ultrahigh numerical
aperture TIRF-SIM and achieved up to 84 nm, and by patterned
nonlinear SIM they obtained up to 45-62 nm. By this approach
the dynamics of plasma membranes components, mitochondria,
actin and the Golgi apparatus in cultured mammalian cells has
been imaged (Li et al., 2015). In addition, patterned nonlinear
SIM and lattice light sheet microscopy (Chen et al., 2014) were
combined to perform 3D live cell imaging beyond the diffraction
limit (Li et al., 2015).

Gao et al. (2012) performed in vivo karyotyping of somatic
chromosomes and identified the dynamics of the cytoskeleton
of fibroblasts by combining an ultrathin planar illumination
(produced by scanned Bessel beams) with SIM at thick animal
specimens. Similarly, based on this technique the dynamics
of mitochondria, filopodia, membrane ruffles, intracellular
vesicles, and mitotic chromosomes in living cultured cells were
investigated (Planchon et al., 2011).

It is expected that also the use of localization microscopy for
absolute molecule quantification will be intensified in future, and
that the combination with SIM will be increased to employ the
advantages of these different nanoscopical methods. Standing-
wave microscopy has the potential for parallel super-resolution
imaging as it simultaneously draws on SIM, PALM, and STED
technologies Chen and Xi (2015).

Recently, methods were developed to expand biological
specimens physically by synthesizing a swellable polymer
network within the specimen. This process called expansion

Frontiers in Plant Science | www.frontiersin.org 9 April 2017 | Volume 8 | Article 531

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00531 April 11, 2017 Time: 16:11 # 10

Schubert Super-resolution in Plant Cell Research

microscopy allows to separate labels spaced closer than the
optical diffraction limit isotropically. Thus, super-resolution with
diffraction-limited microscopes may be achieved (Chen et al.,
2015, 2016; Engerer et al., 2016). However, it remains to be tested
whether the swelling process is applicable to all organisms and
tissues, amongst others those from plants, without disturbing the
native structures. Additionally, the technique is not applicable
for live cell imaging. Thus, it is not expected that expansion
microscopy has the potential to replace optical nanoscopy.
But both have the potential to be combined in some special
applications.

Furthermore, with the development of genetically encoded
markers for electron microscopy (Shu et al., 2011; Martell et al.,
2012) correlative approaches with super-resolution techniques
will become more powerful in near future. However, due to the
harsher fixing conditions and the lack in high specificity electron

microscopy will not have the potential to replace completely the
super-resolution techniques as live cell imaging is not possible
and multi-color labeling is a challenge.
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