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Yield and lodging related traits are essential for improving rapeseed production. The

objective of the present study was to investigate the influence of plant density (D) and

nitrogen (N) rates on morphological and physiological traits related to yield and lodging in

rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016)

under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2)

and four N rates (0, 60, 120, and 180 kg ha−1). Experiment was laid out in split plot

design using density as a main factor and N as sub-plot factor with three replications

each. Seed yield was increased by increasing density and N rate, reaching a peak at HD

with 180 kg N ha−1. The effect of N rate was consistently positive in increasing the plant

height, pod area index, 1,000 seed weight, shoot and root dry weights, and root neck

diameter, reaching a peak at 180 kg N ha−1. Plant height was decreased by increasing D,

whereas the maximum radiation interception (∼80%) and net photosynthetic rate were

recorded at MD at highest N. Lodging resistance and nitrogen use efficiency significantly

increased with increasing D from 10 to 30 plants m−2, and N rate up to 120 kg ha−1,

further increase of D and N decreased lodging resistance and NUE. Hence, our study

implies that planting density 30 plants m−2 can improve yield, nitrogen use efficiency,

and enhance lodging resistance by improving crop canopy.

Keywords: rapeseed, plant density, yield, lodging, nitrogen use efficiency

INTRODUCTION

Rapeseed (Brassica napus L.) is the third most important worldwide oil crop, after soybean and
palm oil. In 2014, rapeseed was produced on 36.12 M ha globally, mainly in China (7.59 M ha),
Canada (8.07 M ha), and the European Union (6.71 M ha; Food and Agriculture Organization of
the United Nations, 2017). It is one of the major oilseed crops in China, yielding 11.6 million tons
per year. Yangtze River Basin is the largest rapeseed production region in China, with about 90% of
national rapeseed production (Li et al., 2016). Many climatic and agronomic factors affect rapeseed
yield, including lodging, plant density and fertilizers rates. Direct drill planting and mechanized
harvesting has enabled farmers to gain higher yield of rapeseed from attaining higher plant densities
(Hu et al., 2016). Although previous studies reported that after a saturation threshold, yield per unit
area does not increase with plant density because of high intra specific competition for resources
(Raey and Ghassemi-Golezani, 2009). Al-Barzinjy et al. (1999) showed that dry biomass per plant,
seed weight per plant and number of pods per plant decrease with increasing plant density, whereas
seed yield m−2 peaks at 50 plants m−2 and decreases at higher densities, following a parabolic
curve relationship. Likewise, relatively low plant densities decrease the overall rapeseed yield by
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promoting vegetative but not reproductive growth (Bagheri et al.,
2011). Therefore, desired plant density needs to be attained
before the onset of the reproductive stage, a stage at which canopy
reaches its maximum size, by changing seeding rates and row
spacing (Purcell et al., 2002; Wang C. et al., 2015; Wang R. et al.,
2015).

Nitrogen (N) is a macronutrient that significantly affects yield
and growth in rapeseed plants. However, plant requirements
for N vary with cultivar, growth stage of plant, N utilization
efficiency, soil type, climate, and type of N application (Sidlauskas
and Bernotas, 2003; Berry et al., 2010). Previous studies aimed
to optimize the rate of N to increase rapeseed yield (Kazemeini
et al., 2010). Applying fall nitrogen to oilseed rape is common
practice in China and Europe. In the last few years, farmers
have changed the crop rotation; in consequence, the sowing
date is often delayed. In addition, they increasingly pass on
plowing during seedbed preparation to reduce energy costs. In
order to compensate for delayed sowing, they additionally apply
about 30–50 kg N/ha in fall, often directly upon the stubble
of the preceding crop, to ensure adequate crop growth before
winter. Application of N increases the yield by improving growth,
but its excessive use leads to higher production costs, increase
risk of nitrate leaching and water contamination and reduce
nitrogen use efficiency (Sieling and Kage, 2010; Zhang et al.,
2013). Additionally, high N rates promote lodging by increasing
plant height and raising the center of gravity and by decreasing
lignin and cellulose content as well as stem diameter and cell
wall thickness of basal internodes (Wang et al., 2012; Zhang
et al., 2013). Despite of its capacity to absorb N from the soil
in fall and spring, the N use efficiency of rapeseed is low which
is around half that for cereals (Sylvester-Bradley and Kindred,
2009). Improving the N use efficiency of rapeseed is therefore
very important to ensure the competitiveness of this crop at
agronomic, environmental, and economic levels. Improving yield
under low N levels is a key step toward improving N use
efficiency, and estimation of seed yield under different N regimes
can be used as an indicator of global N use efficiency (Bouchet
et al., 2016).

It has been hypothesized that rapeseed yield might be
improved by optimizing density and N rates by alteration
of canopy architecture, intercepted light and photosynthesis.
Therefore, objectives of present field experiments were: (1) to
examine the effects of different plant densities and N rates
on yield, lodging resistance, N use efficiency in rapeseed and
(2) to explore the relationship between lodging resistance and
morphological and yield traits.

MATERIALS AND METHODS

Site Characteristics and Field Trial
Management
The experiment was laid out in a split-plot design with three
replications. The previous crop for the plots sown at both
growing seasons was rice. The total experimental area was 840
m2, and the size of each main plot was 2× 40m (width× length)
containing four sub-plots. Three plant densities (LD, 10 plants

m−2; MD, 30 plants m−2; and HD, 60 plants m−2) were assigned
to the main plots and four N rates (N0, 0 kg N ha−1; N60, 60 kg
N ha−1; N120, 120 kg N ha−1; and N180, 180 kg N ha−1) to the
sub-plots. The treatments were replicated three times to give a
total of 36 experimental units. Seeds of Huayouza 9, a rapeseed
hybrid widely cultivated in central China, were manually sown in
rows at a depth of 2–3 cm, on September 26, 2014 and October
4, 2015. Distance between the rows was maintained at 30–35 cm.
Distance within each row was adjusted by dense seeding and then
thinned by hand to attain desired density rates when seedlings
had reached at 4–5 leaves stage. Nitrogen was broadcasted as
urea fertilizer (46% N), in three split doses: 50% before sowing,
30% during the over-wintering period, and 20% during the bud
development period. No herbicides were applied to the field
experiment and weeds were controlled by hand weeding. To
control aphid, 50% Imidacloprid, 40–60 g wettable powder was
mixed in 40–50 L water and was sprayed in 667 m2 when aphid
strain rate was 8%. To control cabbage worm, 120 ml, 48%
chlorpyrifos EC 100–120 ml was sprayed in 667 m2, when larva
2–3 cm. Fungicide 40% dimethachlon 0.1–0.2 kg/40–50 L water
was sprayed at the beginning of flowering to control Sclerotinia
sclerotiorum.

Soil samples were collected from the research field at a depth
of 0–15 cm before sowing, air-dried, sieved, and analyzed in the
laboratory using standard techniques. Total N was determined by
the Kjeldahl method (Bremner, 1965). The available N content
was determined using 1 M potassium chloride (KCl) extraction,
followed by colorimetric analysis (Keeney, 1982). Available P
was determined by the Olsen method according to Black (1965),
organic content by the titrimetric method (Walkley and Black,
1934), and available K with a flame photometer (Knudsen et al.,
1982). Physicochemical properties of the soil are presented in
Table 1.

Meteorological Conditions
Meteorological data were collected for both growing seasons
(2014/15 and 2015/16) from local weather station and they are
presented in Table 2. The total hours of sunshine, accumulative
temperature, and rainfall in 2014/2015 were slightly higher than
those in the 2015/2016 growing season.

Seed Yield and Yield-Related Traits
On May 15, 2015 and May 18, 2016, at maturity 10 plants from
each plot were randomly selected and roots were carefully dug
out from 30 cm depth of soil by using a spade to determine
plant height, root weight, root neck diameter, number of pods
per plant, number of seeds per pod, and the weight of 1,000 seeds.
Plant height was measured from the base to the highest bud. The
roots were cut from the shoot, washed to remove soil, weighed,
and root neck diameter wasmeasured using Vernier calipers. The
shoots and roots were oven-dried at 72◦C until constant weight
and their biomass was measured. The remaining plants in each
plot were harvested by hand tomeasure seed yield. Pod area index
was calculated from 10 randomly selected plants from each plot
as follows: Sa = πd × (h1+ 1/3 × h2), where h1 is 0.8 of the pod
length, h2 is 0.2 of the pod length, and d is pod width.
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TABLE 1 | Physico-chemical properties of the soil before the study conducted in 2014/15 and 2015/16.

Soil samples Texture pH Organic matter Available N Available P Available K Total Total Total

collected (g kg−1) (mg kg−1) (mg kg−1) (mg kg−1) N (%) P (%) K (%)

2014/15 Silt clay loam 6.45 8.01 64.5 9.81 148 0.07 0.03 1.11

2015/16 Silt clay loam 6.12 8.40 72.4 10.30 145 0.09 0.04 1.40

TABLE 2 | Meteorological conditions during the study conducted for two consecutive winter rapeseed-growing seasons.

Growing season Meteorological condition Growth stages

Seedling Wintering Flowering Pod filling Total growth

2014/15 Total precipitation (mm) 252.1 89.7 88.3 203.5 635.2

Effective accumulated temperature (◦C) 1,034.6 24.6 240.9 565.9 1,833.6

Solar radiation (MJ m−2) 1,656.3 206.5 362.2 650.5 2,860.5

2015/16 Total precipitation (mm) 242.2 66.7 125.2 168.4 605.4

Effective accumulated temperature (◦C) 958.2 80.6 271.5 522.7 1,825.4

Solar radiation (MJ m−2) 1,102.4 190.1 341.4 525.5 2,065.3

Lodging Resistance, Lodging Resistance
Index (LRI), and Lodging-Related
Morphological Traits
A lodging tester (Hangzhou TOP Instrument Co., Hangzhou,
China) was used to measure lodging resistance. The tester was
set perpendicularly in the middle of the second basal internode,
and the strength (kg cm) needed to break stem internode was
measured. The LRI was computed as follows (Peng et al., 2014):
LRI = (stem height at the center of gravity × shoot fresh
weight/breaking strength of the second basal internode)× 100.

Nitrogen Use Efficiency, Net
Photosynthetic Rate, and Light
Interception Ratio (LIR)
Plant N concentration was determined by the micro-Kjeldahl
method (Ozer, 2003). Apparent recovery nitrogen use efficiency
(ARNUE) was evaluated (Li et al., 2014):

ARNUE = [(NUfi −NUf0)/Nf]× 100,

Where, NUfi: N uptake of fertilized plants (kg ha−1), NUf0: N
uptake of unfertilized plants (kg ha−1), Nf: N fertilizer applied
(kg ha−1).

Photosynthetic rate of the topmost, the middle, and the lowest
leaf of intact plants was measured from 09:30 to 11:00 using Li-
6400 (Li-COR Inc., Lincoln, NE, USA) under a light intensity
of 1,500mol m−2 s−2. Measurements for leaf photosynthesis
were started at bud stage (BBCH 20) and performed with 14
days intervals until the onset of flowering (BBCH 60). Light
interception refers to the amount of solar radiation intercepted
by foliage and other green tissues. Light interception was
measured using a SunScan Canopy Analysis System (Delta-
T Devices Ltd., UK), during the growing season until the
onset of flowering (BBCH 20–60), between 11:00 and 15:00. To
measure intercepted light, 1m probe was set perpendicular to soil

surface and two measurements were recorded above the canopy
and two measurements below the canopy, with a third below-
canopymeasurement in low-density plots. Light interception was
calculated as (Liu et al., 2012):

LIR (%) = [1 − (Average PAR below canopy/PAR above

canopy)] × 100.

Statistical Analysis
Analysis of variance (ANOVA) in conjunction with Duncan’s
multiple range test was applied to identify significant differences
between treatment levels and combinations of treatments at p <

0.05. All analyses were carried out using SAS 8.1 (SAS Corp.,
Cary, NC, USA), and graphs were constructed using Microsoft
Excel 2010 (Microsoft Corp., Redmond, WA, USA).

RESULTS

Seed Yield and Yield-Related Traits
The seed yield increased significantly with the increase in
plant density and nitrogen in both growing seasons, reaching
maximum levels at HD and N180 (Table 3). The weight of 1,000
seeds increased significantly with the application of nitrogen,
reaching the maximum at N180, whereas plant density and D
× N did not affect significantly the 1,000-seed weight. Plant
density had no significant effect on the effective number of
pods per plant, whereas N had a significant positive effect, with
the maximum number of pods per plant observed at N120 and
minimum at N0. Under LD, the number of branches increased
with the increasing N, reaching maximum at N180, however at
higher densities, branches numbers increased up to N120, and
declined at N180. The pod area index increased significantly with
increasing plant density and N rate, reaching a peak at HD and
N180 in both growing seasons (Table 3).
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TABLE 3 | Effect of plant densities and N rates on seed yield, 1,000-seed weight, number of pods per plant, number of branches, and pod area index in

the growing season of 2014/15 (I) and 2015/16 (II).

Seed yield (kg ha−1) 1,000 grains weight (g) Effective pods (no. plant−1) Effective branches (no. plant−1) Pod area index

I II I II I II I II I II

TREATMENTS

Density LD 2,893 3,095 3.04 3.07 185.6 206.3 6.51 6.09 4.05 3.35

MD 3,216 3,276 2.98 3.08 195.5 208.3 6.11 5.50 4.46 4.23

HD 3,794 3,708 2.84 2.78 180.1 199.3 6.74 6.42 6.36 5.59

Nitrogen 0 2,422 1,712 2.55B 2.72C 69.3B 86.9B 2.64 2.33 4.31 3.78

60 3,478 3,677 2.83B 2.94BC 220.6A 240.1A 7.03 6.78 4.58 4.09

120 3,571 3,927 3.21A 3.07AB 245.2A 243.9A 8.05 7.45 5.29 4.53

180 3,732 4,122 3.21A 3.17A 213.1A 247.6A 8.09 7.45 5.64 5.15

INTERACTIONS

LD 0 1,464e 1,528d 2.60 2.73 50.2 62.5 2.30f 2.00e 3.46h 3.09e

60 3,309c 3,374c 2.97 2.93 217.6 248.0 6.43d 6.00d 3.98fgh 3.24e

120 3,396bc 3,701bc 3.30 3.37 254.0 260.4 8.30ab 7.67abc 4.24fg 3.49e

180 3,402bc 3,777bc 3.27 3.23 220.7 254.3 9.00a 8.67a 4.51ef 3.56e

MD 0 2,563d 1,695d 2.73 2.93 91.3 117.0 2.10f 2.00e 3.62gh 3.43e

60 33,310c 3,426c 2.83 3.10 233.0 236.0 6.90cd 6.33d 3.83gh 3.63e

120 3,386bc 3,926bc 3.17 2.97 236.8 240.7 7.77bc 7.00bcd 5.05de 4.46d

180 3,603abc 4,057ab 3.20 3.31 220.7 239.4 7.67bc 6.67cd 5.34cd 5.38bc

HD 0 3,239c 1,913d 2.31 2.50 66.3 81.2 3.53e 3.00e 5.86c 4.81cd

60 3,814abc 4,232ab 2.70 2.80 211.3 236.3 7.77bc 8.00ab 5.93bc 5.39bc

120 3,932ab 4,155ab 3.17 2.87 244.7 230.6 8.07ab 7.67abc 6.58ab 5.65b

180 4,191a 4,532a 3.17 2.87 198.0 249.0 7.60bc 7.00bcd 7.08a 6.52a

Y ns ns ns ns ns

D ** ns ns * **

N *** *** ** *** **

Y×D ns ns ns ns ns

Y×N ns ns * ns ns

D×N * ns ns * *

D×N×Y ns ns ns * ns

ns, non-significant; *significant at p < 0.05; **significant at p < 0.01; and ***significant at p < 0.001. For significant interaction, differences among treatments are indicated by different

lowercase letters; for non-significant interaction, differences within treatment are indicated by uppercase letters.

Lodging Resistance, LRI, and
Lodging-Related Traits
Lodging resistance and LRI were affected significantly by plant
density and nitrogen. Lodging resistance was increased by
increasing the density from 10 to 30, but it decreased by further
increase of density to 60 plants m−2 (Table 4). N application
increased significantly the lodging resistance, peaking at 120 kg
ha−1. D × N affected the lodging resistance, with the maximum
resistance observed at MD at 120 kg N ha−1 and the minimum
at LD without N. The LRI at LD and MD decreased and at HD
increased with increasing the N. The maximum value of LRI
recorded at HD was at 180 kg N ha−1 and the minimum at MD
at 120 kg N ha−1 in both growing seasons.

The effects of density and N rates on some lodging-related
morphological traits were studied (Figure 1). Plant height
increased by increasing N levels, whereas it decreased at high
plant density; the maximum height was observed at LD with
180 kg N and the minimum at HD without N in both growing

seasons (Figure 1A). The shoot dry weight was increased with
increasing nitrogen rates, reaching a peak at 180 kg ha−1 for all
three plant densities. Shoot dry weight was more at LD and MD
which was reduced at HD (Figure 1B). The root neck diameter
and root dry weights were increased by N rate in both growing
seasons, reaching a peak at 180 kg N ha−1 for all three plant
densities.

Net Photosynthetic Rate, Light
Interception, and Nitrogen Use Efficiency
Density affected significantly the net photosynthetic rate and LIR;
both reached a peak at 30 plants m−2 and then declined as density
increased to 60 plants m−2 (Table 4). The net photosynthetic
rate and LIR at LD and MD showed a significant increase
as N rate increased from 0 to 180 kg ha−1. At HD, LIR was
increased by increasing N rate from 0 to 120 kg ha−1, further
increase of N rate to 180 kg ha−1, decreased the LIR. The D ×

N interaction significantly affected the net photosynthesis and
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FIGURE 1 | Effect of plant densities (10, 30, and 60 plants m−2) and N rates (0, 60, 120, and 180kg ha−1) on rapeseed, (A) plant height, (B) shoot dry

weight, (C) root neck diameter, and (D) root dry weight in two consecutive growing seasons (2014/15 and 2015/16). Error bars indicate standard errors. Different

letters indicate significant differences at p < 0.05.
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TABLE 4 | Effect of plant densities and N rates on lodging resistance, lodging resistance index (LRI), photosynthetic rate (Pn), light interception ratio

(LIR), and apparent recovery nitrogen use efficiency in the growing season of 2014/15 (I) and 2015/16 (II).

LR (kg cm) LRI (%) Pn (µmol m−2 sec−1) LIR (%) N use efficiency (%)

I II I II I II I II I II

TREATMENTS

Density LD 4.12 4.03 2.01 1.56 7.31 7.83 64.48 62.75 15.83B 15.03C

MD 7.30 5.60 1.99 1.23 9.40 6.47 72.05 70.13 21.83A 22.53A

HD 4.65 3.35 4.16 1.79 8.26 6.47 72.45 70.80 19.40A 17.97B

Nitrogen 0 5.31 3.91 3.29 1.85 4.30 4.00 66.07 66.03

60 5.46 4.85 3.10 1.54 8.45 7.14 68.30 66.63 21.57A 20.57A

120 5.45 4.41 1.95 1.48 10.11 7.75 71.87 66.87 20.13A 19.77A

180 5.19 4.12 2.55 1.24 10.43 8.79 72.40 72.03 15.37B 15.20B

INTERACTIONS

LD 0 3.47c 1.77c 3.55abc 2.15a 4.27e 3.91g 60.6e 60.6d – –

60 3.77c 4.40b 2.33bcde 1.44c 7.10d 6.91cde 62.4e 62.6bcd 19.1 16.4

120 3.73c 4.97ab 0.49e 1.82abc 8.71bcd 9.37ab 66.9bcde 63.5bcd 16.4 17.6

180 5.50bc 4.97ab 1.66cde 0.83de 9.15bcd 11.12a 68.0bcde 64.3bcd 12.0 11.1

MD 0 5.91abc 5.53a 2.98abcde 2.13ab 4.39e 3.92g 65.4bcde 62.2cd – –

60 8.30a 5.63a 3.79abc 1.51bc 9.85abc 8.83bc 68.4bcd 64.5bcd 23.5 25.2

120 8.59a 5.73a 0.47e 0.56e 11.09ab 6.12def 73.4abcd 74.4abc 24.1 22.5

180 6.38ab 5.50a 0.73de 0.72de 12.28a 7.00cde 81.0a 79.4a 17.9 19.9

HD 0 6.56ab 4.43b 3.34abcd 1.26cd 4.23e 4.17fg 72.2abc 75.3ab – –

60 4.32bc 4.53b 3.18abcd 1.66abc 8.41cd 5.69efg 74.1abc 72.8abcd 22.1 20.1

120 4.03bc 2.53c 4.88ab 2.07ab 10.52abc 7.77bcd 75.3ab 62.7bcd 19.9 19.2

180 3.70c 1.90c 5.25a 2.18a 9.86abc 8.26bc 68.2bcd 72.4abcd 16.2 14.6

Y ns ns * ns ns

D ** ** * * **

N *** * ** ** **

Y×D ns ns ns ns ns

Y×N ns ns ns ns ns

D×N * ** * * ns

D×N×Y * ns ns ns ns

ns, non-significant; *significant at p < 0.05; **significant at p < 0.01; and ***significant at p < 0.001. For significant interaction, differences among treatments are indicated by different

lowercase letters; for non-significant interaction, differences within treatment are indicated by uppercase letters.

LIR; the minimum values of both were observed at LD without
N. Within the same density rate, NUE was declined by increasing
the N rate, in contrast to which by increasing density rate from 10
to 30 plants m−2 NUE was increased, and at 60 plants m−2 was
also higher than 10 plants m−2.

Correlation of Lodging Resistance with
Yield and Other Traits
Lodging resistance was significantly and positively correlated
with seed yield, shoot and root dry weight, root neck diameter,
and pods per plant but negatively related with plant height and
lodging resistance index. Seed yield was positively correlated
with plant height, root neck diameter, and root dry weight
(Table 5).

DISCUSSION

Plant density is an important factor for establishing a uniform
crop stand to ensure high yield. Moreover, N is probably the most

important nutrient in rapeseed production because its deficiency
results in yield reduction (Jackson, 2000; Begdelo et al., 2011).
In the present study, seed yield increased with increasing plant
density and N rate, reaching a peak at high density (HD) and
180 kg N ha−1. Ahmadi and Bahrani (2009) reported the highest
yield for rapeseed at N concentration of 225 kg ha−1. This linear
relationship between seed yield and N rate could be attributed
to higher number of pods per plant, seeds per pods, and seed-
carrying pods (Ghanbari-Malidarreh, 2010; Imran et al., 2014).

In present study, N use efficiency was improved with
increasing the density rate from 10 plants m−2 to 30 and 60
plants m−2. Li et al. (2014) compared two plant density levels and
reported that high density (45 plants m−2) in rapeseed improved
N use efficiency compared to low density of 15 plants m−2. The
present study showed that N use efficiency was less at 180 kg
N ha−1 as compared to lower applied N rates. It indicated that
rapeseed plants were unable to uptake N at high N rate because
the supply of N in excess of plant requirement and possibility
exists for the loss of N by leaching and denitrification. Plant N
concentration and N use efficiency mostly decline at the maturity
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TABLE 5 | Correlation coefficient (r) among plant height, shoot dry weight, root dry weight, root neck diameter (ND), 1,000-seed yield, number of pods per

plant, lodging resistance (LR), and lodging resistance index (LRI) in rapeseed.

Traits Plant height Shoot DW Root DW Root ND Seed yield Pods plant−1 LR LRI

Plant height – – – – – – – –

Shoot DW 0.31** – – – – – – –

Root DW 0.29* 0.80*** – – – – – –

Root ND 0.41*** 0.44*** 0.37** – – – – –

Seed yield 0.43*** 0.15ns 0.65*** 0.46*** – – – –

Pods plant−1 0.59*** 0.63*** 0.61*** 0.57*** 0.38*** – – –

LR 0.03ns 0.29* 0.30** 0.44*** 0.49*** 0.39*** – –

LRI 0.31* 0.03ns 0.02ns 0.04ns −0.20ns 0.15ns −0.29* –

ns, non-significant; *significant at p < 0.05; **significant at p < 0.01; and ***significant at p < 0.001.

stage due to the greater dry matter accumulation rate than N
accumulation rate (Chamorro et al., 2002). Significant proportion
of leaf N was not mobilized before abscission of leaves during
flowering and pod filling resulting in low N recovery by plant at
maturity (Malagoli et al., 2005).

In the present study, the number of branches was greater
at low plant density (LD) and the highest applied N rate
(N180). Tunçtürk and Çiftçi (2007) reported a positive correlation
between seed yield and the number of branches. However, in
the present study, the seed yield was greater at higher plant
density despite the lesser number of branches and pods per plant,
which might be correlated with increased lodging resistance
due to reduced plant height and greater number of plants with
uniform canopy at higher densities. Li et al. (2014) reported
that increasing planting density from 15 to 45 plants m−2

significantly decreases plant height, branch number, and effective
pod number per plant and thereby makes the canopy uniform.
Less competition for assimilates at low plant density stimulates
the growth of the apical and lateral meristems, resulting in
higher number of branches and uneven, delayed maturation
(Inamullah et al., 2013). Our results showed that the number
of branches increased with N application; however, the number
of branches decreased with increasing plant density at N120 and
N180, probably because at high N rates, plant growth is more
vigorous and the increase in plant density negatively affects the
number of branches (Ozer, 2003). Low planting density promotes
plant growth, leading to taller plants with increased number
of branches and pods per plants. Such plants require more
nitrogen as compared to plants at higher densities (Šidlauskas
and Tarakanovas, 2004). N application also increased the number
of pods per plant in both growing seasons, which could be
attributed to a higher number of pod-bearing branches (Ozer,
2003).

Lodging is a serious obstacle for rapeseed production
particularly in rapeseed growing areas of Yangtze River basin,
receiving high rainfall. Resistance to lodging depends on
morphological, physiological, and biochemical traits and is
related to stem strength, plant height, wall thickness, lignin
content, and center of gravity (Kong et al., 2013; Chen et al.,
2014; Ookawa et al., 2014). Lodging resistance (LR) and lodging
resistance index (LRI) are closely associated with the actual
lodging score at the field level (Islam et al., 2007). In the present
study, at medium density (30 plants m−2), LR increased with
N application, reaching a peak at 120 kg ha−1, but decreased

by further increase to 180 kg ha−1, whereas at high density
rate (60 plants m−2), LR was decreased with increasing N
rate. Zhang et al. (2014) reported an increase in lodging due
to N application, which was associated with enhanced plant
growth and height. Similarly, LR increased with increasing the
plant density up to 30 plants m−2, which was then followed
by a decrease at the highest studied density (60 plants m−2).
Previous studies showed that the risk of lodging increases under
conditions of relatively high plant density because of the longer
basal internode, higher center of gravity, and decreased shoot
diameter of plants (Mobasser et al., 2008, 2009; Xiao et al.,
2015). In the present study, LR showed positive correlation with
seed yield and dry biomass, whereas the correlation with plant
height was non-significant. The maximum LR was recorded
at MD using 120 kg N ha−1 and the minimum plant height
was at HD without N. Therefore, minimum plant height does
not warrant high lodging resistance and is not necessarily the
most important factor determining lodging resistance (Ookawa
and Ishihara, 1992). Plant height could be increased without
affecting the lodging if the breaking resistance and dry weight
per unit length are also increased (Islam et al., 2007). In the
present study, the shoot and root dry weight and the root
neck diameter were increased with increasing plant density
and nitrogen rate, reaching a peak at highest used N (180 kg
ha−1), which might be another possible reason for increased
lodging resistance in plants. Root traits are also valuable for
determining lodging, since resistant genotypes usually have a
well-developed root system that increases the anchorage strength
of the plant.

LRI is an important parameter for estimating lodging. This
index is affected by a number of plant traits such as plant
height, shoot weight, stem thickness, and breaking strength (Yang
et al., 2000; Mobasser et al., 2009; Peng et al., 2014). Our results
showed that the minimum LRI was found at medium density
(30 plants m−2) along with 120 kg N ha−1. Increasing density
(60 plants m−2) and N (180 kg ha−1) then increased the LRI
and thus weaker lodging resistance, which subsequently causes
lodging and yield losses. A negative relationship between LR and
plant height indicated that increase in plant height reduces the
lodging resistance of rapeseed. Increase in breaking resistance of
lower internodes and dry biomass per unit length are the main
morphological traits responsible for reduction in the lodging
index and thus the induction of lodging resistance (Islam et al.,
2007).
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In the present study, light interception ratio (LIR) and
photosynthetic rate was at peak at highest N (180 kg ha−1) and
medium plant density (MD), whereas decreased at lowest (10
plants m−2) and highest density (60 plants m−2) rates. It is
known that LIR is related to biomass production—relatively high
plant densities hasten canopy interception and increase yield
(Portes and Melo, 2014), whereas solar radiation is not fully
intercepted at relatively low plant densities (Atwell et al., 1999).
Concurrently, relatively high plant densities do not allow light to
reach lower shoot sections, triggering shoot elongation. However,
if the quantity and quality of light are not disturbed, the shoot
elongation rate is not affected by plant density (Holmes and
Smith, 1977). Plant density affects photosynthesis by influencing
the radiation interception and the structure of the canopy (Ma
et al., 2014). Since lodging may reduce the photosynthetic
capacity of the canopy, another target is needed to improve
lodging resistance. However, relatively high plant densities are
negatively correlated with photosynthetically active radiation
(Tetio-Kagho and Gardner, 1988). These results indicated that
rapeseed yield might be improved by selecting the density and
nitrogen rates at which plants have optimum height, shorter basal
internodes, and uniform canopy with high light interception—
traits that are associated with higher lodging resistance (Zhang
et al., 2014).

CONCLUSION

Increasing plant density and nitrogen rate to the maximum
studied rates significantly increased the seed yield. Lodging
resistance was increased by increasing plant density from 10 to

30 plants m−2 and N from 0 to 120 kg ha−1 and decreased by
further increase in density and N rate. The net photosynthetic
rate and light interception showed same trend—reached a peak
at 30 plants m−2 at 180 kg N ha−1. N use efficiency was increased
at higher plant density and decrease by increasing N rates. It
might be concluded from these results that the density rate of 30
plants m−2 and 180 kg N ha−1 is appropriate to attain high yield
of rapeseed, N use efficiency and lodging resistance in winter
rapeseed.
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