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Tetraspanins are small transmembrane proteins that laterally associate with each

other and cluster with numerous partner proteins as well as lipids. These interactions

result in the formation of a distinct class of membrane domains, the tetraspanin-

enriched microdomains (TEMs), which influence numerous cellular processes such as

cell adhesion and fusion, intracellular membrane trafficking, signaling, morphogenesis,

motility as well as interaction with pathogens and cancer development. The majority

of information available about tetraspanins is based on studies using animal models or

cell lines, but tetraspanins are also present in fungi and plants. Recent studies indicate

that tetraspanins have important functions in plant development, reproduction and stress

responses. Here we provide a brief summary of the current state of tetraspanin research

in plants.
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TETRASPANIN PROTEIN FAMILY

A family of membrane proteins largely overlooked in plants are the tetraspanins, small (200–350
aminoacids; Hemler, 2005) integral membrane proteins that are important in animals for cellular
functions such as cell adhesion, fusion, polar growth, membrane trafficking, signaling, motility,
and morphogenesis (Hemler, 2008; Yáñez-Mó et al., 2009). Tetraspanins were discovered in the
early 1990s in immune cells, cancer cells and human parasites (Classon et al., 1990; Oren et al.,
1990; Wright et al., 1990; Maecker et al., 1997). Since then tetraspanins have been identified in
various eukaryotes including social amoeba (Dictyostelium discoideum, at least 5 tetraspanins),
fungi (Magnaporthe grisea, a plant pathogen, at least 2 tetraspanins), plants (Arabidopsis thaliana,
17 tetraspanins), animals (Drosophila melanogaster 37 tetraspanins) and humans (33 tetraspanins)
(Gourgues et al., 2002; Huang et al., 2005; Lambou et al., 2008; Boavida et al., 2013; Charrin
et al., 2014). Despite their involvement in various cellular and developmental processes and their
implication in diseases or pathologies, the molecular function of tetraspanins is still far from being
understood (Potel et al., 2013; Halova and Draber, 2016).

TETRASPANIN STRUCTURE AND POST TRANSLATIONAL
MODIFICATIONS

All tetraspanins have four transmembrane (TM) domains, short N- and C-terminal cytoplasmic
tails, an intracellular loop as well as a small and a large extracellular loop (LEL) (Figure 1A;
Hemler, 2005). The C-terminal cytoplasmic tail plays a role in sorting and intracellular targeting of
tetraspanins in animals (Andreu Z, Yáñez-Mó M, 2014; Coceres et al., 2015) and is important for
the function of the plant tetraspanin AtTET1/TRN2 during development (Cnops et al., 2006). The
LEL contains a conserved region, probably involved in homodimerization, and a variable region,
which is supposed to play a major role in interaction partner selection (Seigneuret et al., 2001;
Yanez-Mo et al., 2001; Stipp et al., 2003; Seigneuret, 2006). The variable region contains a conserved

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
https://doi.org/10.3389/fpls.2017.00545
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2017.00545&domain=pdf&date_stamp=2017-04-18
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jan.dettmer@fau.de
https://doi.org/10.3389/fpls.2017.00545
http://journal.frontiersin.org/article/10.3389/fpls.2017.00545/abstract
http://loop.frontiersin.org/people/394140/overview
http://loop.frontiersin.org/people/26525/overview
http://loop.frontiersin.org/people/338446/overview


Reimann et al. TETRASPANINs in Plants

motive (animals: GCC, plants: GCCK/RP) and additional
conserved cytosine residues are required for the formation of
disulfide bridges, which stabilize the domain structure and are
important for tetraspanin function (Kitadokoro et al., 2001;
Seigneuret et al., 2001; Hulme et al., 2014). Cryo-EM data
(Min et al., 2006) and computational modeling (Seigneuret,
2006) suggested that TM helices form a tightly associated four-
helix bundle. However, recent structural analysis of the human
tetraspanin CD81 revealed that the four TM helices fold as two
largely separated pairs with a cholesterol binding site in between.
The cone shaped structure formed by the CD81 TMs is capped by
the LEL, which appears to block access to the cholesterol binding
site from the extracellular space (Zimmerman et al., 2016).
Based on molecular dynamics simulations Zimmerman et al.
(2016) further suggest that the LEL adopts an open conformation
when cholesterol is not present in its binding site. This open
conformation may promote interaction with partner proteins,
whereas the closed state, when cholesterol is bound, may prevent
such interactions. Besides the LEL, TM domains have been
shown to be directly involved in protein—protein interactions
(Kovalenko et al., 2005; Shoham et al., 2006)

Tetraspanins typically undergo post-translational
modifications which affect protein stability and binding to
interaction partners. Palmitoylation of intracellular cysteine
residues influences protein stability (Berditchevski et al.,
2002; Yang et al., 2002) and supports tetraspanin-tetraspanin
interactions (Charrin et al., 2002; Yang et al., 2004), whereas
glycosylation appears to be relevant for tetraspanin function
(Ono et al., 2000; Baldwin et al., 2008; Wang et al., 2012) and
localization (Scholz et al., 2009; Tominaga et al., 2014). In
Arabidopsis thaliana (At) potential N-glycosylation sites in the
variable region of the LEL were predicted for the tetraspanins
AtTET1—4, 8, 10, 13, and 14 (Boavida et al., 2013).

TETRASPANIN INTERACTIONS AND
DYNAMICS

Tetraspanins associate with each other and with various
integral membrane proteins such as integrins, proteins with Ig
domains, membrane bound proteases and intracellular signaling
molecules (Little et al., 2004; Andre et al., 2006; Le Naour
et al., 2006) thereby forming distinct tetraspanin-enriched
microdomains (TEMs) that function as mobile signaling hubs
within membranes (Hemler, 2005; Yáñez-Mó et al., 2009).
Tetraspanin interactions within TEMs occur at three distinct
levels, as revealed by biochemical characterization. First level
interactions are represented by primary complexes between
tetraspanins and other transmembrane proteins as well as by
tetraspanin homodimers or -oligomers. These interactions are
direct, and resist harsh solubilization conditions (Charrin et al.,
2003a; Kovalenko et al., 2004). Primary complexes are linked
into a network due to the tendency of tetraspanins to form
heterooligomers. Within these networks, secondary interactions
occur between tetraspanin interaction partners and numerous
non-tetraspanins. These interactions are indirect and much
more sensitive to disruption (Charrin et al., 2003a; Hemler,

2005). The number of potential protein partners expands
when third level interactions are considered. These indirect
interactions can be identified in tetraspanin complexes that
were isolated via cell lysis using milder (less hydrophobic) non-
ionic detergents. Sucrose gradient centrifugaton results in the
selective enrichment of tetraspanin complexes isolated under
these conditions in the insoluble, light membrane fraction, in
which lipid rafts also accumulate (Claas et al., 2001; Cherukuri
et al., 2004a,b). The identification of TEMs in this membrane
fraction is likely to be a consequence of palmitoylation and
of tetraspanin interaction with lipids such as gangliosides and
cholesterol (Hemler, 2005). The association of gangliosides
or cholesterol with tetraspanins affects both, tetraspanin—
tetraspanin interactions as well as the interaction of tetraspanins
with other proteins (Charrin et al., 2003b; Odintsova et al., 2006;
Silvie et al., 2006; Todeschini et al., 2007; Zimmerman et al.,
2016). Although they share some characteritstics, TEMs and lipid
rafts are clearly distinct types of microdomains as they react
differently to temperature changes, cholesterol depletion or non-
ionic detergents, and as most of their components do not overlap
(Hemler, 2005).

More recently, different tetraspanin interaction levels
were also observed and confirmed by advanced microscopy
(Nydegger et al., 2006; Barreiro et al., 2008; Homsi et al.,
2014; Zuidscherwoude et al., 2015). Imaging of tetraspanin
dynamics revealed that these proteins are distributed
throughout membranes and usually exhibiting Brownian
movement during lateral diffusion. However, in some
membrane areas tetraspanins remained transiently confined
and accumulated (Espenel et al., 2008). The dynamics of
co-diffusing tetraspanins was also observed and suggested
that these proteins form mobile clusters containing other
tetraspanins, partner proteins and lipids (Espenel et al.,
2008; Potel et al., 2013; Zuidscherwoude et al., 2015). These
small clusters may interact with each other and exchange
tetraspanins indicating that protein-protein interactions within
TEMs are transient and highly dynamic (Barreiro et al., 2008;
Espenel et al., 2008). Furthermore it was proposed that these
clusters mainly contain tetraspanin homo-oligomers and are
organized as non-randomly distributed clusters of different
tetraspanins adjacent to each other (Zuidscherwoude et al.,
2015).

In summary, tetraspanins appear to act as dynamic
master organizers within membranes, which control the
distribution and clustering of associated partner-proteins
and thereby regulate cellular functions, such as signaling
and adhesion (Berditchevski and Odintsova, 1999; Levy and
Shoham, 2005). In plants, no direct interaction partners of
tetraspanins besides other family members (Boavida et al.,
2013) have been identified to date. However, genetic data
indicate that AtTET1 functions in a common pathway
with TORNADO1 (TRN1), a leucine rich-repeat protein
that regulates patterning processes during Arabidopsis
development. Furthermore AtTET1 may function together
with WINDHOSE1 and 2 (WIH1/WIH2), two small peptides,
in promoting megasporogenesis (Cnops et al., 2000; Lieber et al.,
2011).
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TETRASPANIN MUTANTS IN PLANTS

Although the Arabidopsis Tetraspanin (AtTET) gene family
consists of 17 members and several T-DNA insertion lines have

been analyzed, in which the expression of single members of
this family is reduced or enhanced (Table 1), to date mutant

phenotypes have been described only for AtTET1, 13 and the

functionally redundant genes AtTET5 and 6. Characterization
of these mutants revealed an involvement of plant TETs in the
control of cell proliferation, cell differentiation and cell identity,
as well as tissue patterning. Such developmentally important
functions have been described for tetraspanins earlier in other
model organisms (Kazarov et al., 2002; Hemler, 2008; Franco
et al., 2010; Anderson et al., 2011; Hou et al., 2015), suggesting
that TET functions are partially conserved between kingdoms.

The best characterized TET in plants is AtTET1 (also
referred to as TORNADO2 (TRN2) and EKEKO). Analysis
of different Attet1 mutant alleles revealed its involvement
in following processes: root epidermal patterning and
differentiation, establishment of leaf lamina symmetry,
leaf venation patterning, (Cnops et al., 2000, 2006),
controlling peripheral zone identity of the shoot apical
meristem (Chiu et al., 2007) and megasporogenesis
(Lieber et al., 2011).

The recent phenotypical characterization of an Attet13 T-
DNA insertion knock-out (KO) mutant indicates that AtTET13
promotes primary root growth and lateral root emergence, but
restricts lateral root initiation (Wang et al., 2015). No obvious
phenotype was observed in single Attet5 KO and Attet6 knock-
down (KD) T-DNA insertion mutants. However, the Attet5
Attet6 double mutant phenotype indicates that AtTET5 and 6
redundantly function in restricting cell proliferation during root
and leaf growth (Wang et al., 2015).

Functional redundancy might also complicate the
characterization of other plant TETs, as partially overlapping
expression patterns have been identified for several TETs.

TET EXPRESSION PATTERNS DURING
PLANT REPRODUCTION AND PLANT
DEVELOPMENT

As only a limited set of mutant phenotypes is described,
transcriptomic data and localization studies are an
important source to gain insights into TET function in
plants. Transcriptional analysis of TET expression in rice
and Arabidopsis together with recent studies using stable
transgenic plants expressing AtTET–reporter gene fusions
constructs (Boavida et al., 2013: pAtTET::NLS3xeGFP and
pAtTET::AtTET::GFP; Wang et al., 2015: pAtTET::NLS-
GFP/GUS), revealed specific and partially overlapping
expression patterns of AtTET genes during plant development
and in reproductive organs (Table 1). Furthermore, observed
changes in AtTET expression in response to developmental and
environmental signals as well as the identification of regulatory
elements in AtTET promoter regions suggest that AtTET
function is highly regulated (Zimmermann et al., 2004; Winter

et al., 2007; Boavida et al., 2013; Mani et al., 2015). However,
attempts to find correlations between expression patterns of
individual AtTETs and their grouping into phylogenetic clades
failed, as most AtTETs belonging to the same clade show
divergent expression patterns (Wang et al., 2015).

TET EXPRESSION IN FEMALE
REPRODUCTIVE ORGANS

In Arabidopsis, the female reproductive organ termed pistil or
carpel is composed of an ovary containing the ovules, a style,
and the pollen receptive tip, the stigma (Figure 1B). AtTETs are
expressed in all these pistil tissues. Already at the first stage of
fertilization, when pollen is adhering to the papilla of the stigma,
TETs seems to be involved as indicated by the expression of
AtTET2, 8, 9–10 in the stigmatic papilla and AtTET1, 2, 3, and
9 at the base of the stigma (Boavida et al., 2013). Pollen grains
germinate on the stigma and form elongating pollen tubes that
carry sperm cells to the ovules. On their journey through the
carpel pollen tubes grow within the transmitting tract (Crawford
and Yanofsky, 2008), where AtTET8 - 10 are expressed (Boavida
et al., 2013). Lured by specific signals, pollen tubes exit the
transmitting tract and grow through the micropylar opening
into an ovule, where they burst and release the two sperm cells
contained in their cytoplasm. One sperm cell fuses with the egg
cell, which gives rise to the zygote, whereas the second sperm cell
fertilizes the central cell to trigger development of the endosperm
(Figure 1B; Kohler and Makarevich, 2006; Ngo et al., 2007;
Kanaoka and Higashiyama, 2015). Ovules are comprised of the
following tissues: integuments forming the outer layers, nucellus
and the embryo sac, which is embedded within the nucellus and
represents the haploid female gametophyte. AtTET expression
in the different tissues of the ovule further suggests that plant
TETs also participate in ovule development, fertilization and
seed development. The latter is indicated by the expression of
AtTET1, 7–10 in the integuments (Boavida et al., 2013), which
are progenitors of the seed coat (Haughn and Chaudhury, 2005).
The mature embryo sac is composed of three antipodal cells at
the chalazal end, two synergids, and one egg cell at themicropylar
end and two central polar nuclei, which eventually fuse to form
the diploid nucleus of the central cell (Yadegari and Drews, 2004;
Boavida et al., 2013; Figure 1B). Two AtTETs are present in the
embryo sac: AtTET7 and 9 are coexpressed in the synergids,
central cell and antipodal cells. In addition, AtTET9 is expressed
in the egg cell. Microarray data further suggest expression of
AtTET8 in the embryo sac. Ovules and, at a later stage, developing
seeds are connected to the maternal plant by the funiculus, which
is responsible for nutrient supply via the vasculature (Nguyen
et al., 2000; Ngo et al., 2007; Drews, 2011). In regions involved
in nutrient supply of developing ovules and seeds AtTET9 and 10
are expressed in the funiculus,AtTET5 and 6 in the vascular tissue
and AtTET4, 8 and 9 in the chalazal region (Boavida et al., 2013).
After fertilization the pistil develops into a silique, which encloses
the developing seeds (Lewis et al., 2006).AtTET10 expression was
found in the valve margins, a region required for the opening of
the siliques and release of the seeds.
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TABLE 1 | Overview of Arabidopsis Attet mutants and AtTET gene expression patterns described in the literature.

TET Mutant

lines

Embryo Seedling and

adult plant

Male tissue Female tissue Sources

AtTET1 KO,

KD

Provascular

tissue•
Root◦; lateral

root cap•;

vasculature•;

cotyledon•;

rosette leaf◦•;

flower◦•

Stigma•; outer integument (BP,

AP)•
1, 2, 3,

4, 5, 6

AtTET2 KO,

KD

Cotyledon•;

rosette leaf◦•;

flower◦•

Mature pollen• Carpel stomata (PM)•; stigma•;

papilla (BP, AP)•
1, 6

AtTET3 KO,

KD

SAM

progenitor

domain•

Root◦•;

quiescent

center•; flower◦•

Stigma• 1, 6

AtTET4 KD Central

part of the

embryo•

Root◦•;

quiescent

center•; flower◦•

Mature pollen• Carpel stomata (PM)•; chalazal

proliferating tissue•
1, 6

AtTET5 KO,

KD

Provascular

tissue•
Root•;

vasculature•;

cotyledon•;

rosette leaf◦•;

flower◦•

Vasculature in carpels and

ovules•
1, 6

AtTET6 KD Root◦•;

vasculature•;

cotyledon•;

rosette leaf◦•;

flower◦•

Vasculature in carpels and

ovules•
1, 6

AtTET7 KO,

OE

Rosette leaf•;

flower◦•
Mature pollen◦•

and pollen tube:

PM• and

cytoplasm•

Ovule: outer integument• and

inner integument• (PM) central

cell•; synergid (filiform

apparatus)•; antipodals•

1, 3, 5,

6

AtTET8 KO,

KD

Apical

domain•,

tip regions

of

cotyledons•

Root◦•;

cotyledon•;

rosette leaf◦•;

flower◦•

Mature pollen◦•

and pollen tube:

PM• and

cytoplasm (AP)•

Stigma (BP)•; papilla•;

transmitting tract (PM) (BP,

AP+)•; ovule: outer integument

and inner integument (PM),

chalazal proliferating tissue (AP)•

1, 3, 5,

6

AtTET9 OE Root◦•;

cotyledon•;

rosette leaf•;

flower◦•

Stigma (AP)•; papilla•;

transmitting tract (PM, AP)•;

ovule: (PM) upper part of

funiculus•, ovule micropyle•,

chalazal proliferating tissue•, egg

cell•, central cell•, synergid•

antipodals•, endosperm (AF)•

1, 6

AtTET10 OE Central

part of the

embryo•

Root◦•;

vasculature•

cotyledon•;

rosette leaf◦•;

flower◦•; lateral

root cap•

Papilla•, carpel valve margins

(PM)•; stigma (BP)•; transmitting

tract (BP, AP+)•; ovule: (PM)

upper part of funiculus (AP),

integuments and funiculus (AF)•

1, 6

AtTET11 KO

OE

Flower◦• PM and sperm

cell interface◦•
1, 3, 5,

6

AtTET12 Root◦•; stipuli• PM and sperm

cell interface◦•
1, 3, 5,

6

AtTET13 KO,

KD,

OE

Hypophysis• Quiescent

center•; flower◦•
Mature pollen◦•

and pollen tube◦

PM• and

cytoplasm•

1, 3, 5,

6

AtTET14 KD Provascular

tissue•
Cotyledon•;

rosette leaf•:

vasculature•;

flower◦•

Bicellular

pollen◦: ER•

1, 3, 5,

6

(Continued)

Frontiers in Plant Science | www.frontiersin.org 4 April 2017 | Volume 8 | Article 545

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Reimann et al. TETRASPANINs in Plants

TABLE 1 | Continued

TET Mutant

lines

Embryo Seedling and

adult plant

Male tissue Female tissue Sources

AtTET15 OE Basal part• Root•; flower◦• Mature pollen◦:

ER•

1, 3, 5,

6

AtTET16 KO Rosette leaf◦;

flower◦•
Mature pollen◦•

and pollen

tube◦: ER•

1, 3, 5,

6

AtTET17 KO Rosette leaf◦;

flower◦
Mature pollen◦• 1, 3, 5,

6

KO, knock-out line; OE, overexpression line; KD, knock-down line; BP, before pollination; AP, after pollination; AF, after fertilization; PM, plasma membrane; ER, endoplasmatic reticulum;

SAM, shoot apical meristem. Symbols: (+) increased expression level, (◦) RT-PCR and microarray data, (•) transcriptional and/or translational GFP and/or GUS reporter studies; (Boavida

et al., 2013)1; (Cnops et al., 2006)2; (Honys and Twell, 2004)3; (Olmos et al., 2003)4; (Pina et al., 2005)5; (Wang et al., 2015)6.

Several AtTETs (AtTET1, 2, 8–10) alter their expression
pattern and/or expression level upon pollination or fertilization
(Table 1), which implies a diverse function of TETs in these
reproductive processes. Interestingly, many of the AtTETs
regulated upon pollination are expressed in diploid female
tissues such as papilla, funiculus or transmitting tract, tissues
that are involved in cell-cell communication with the male
gametophyte. In addition, the observation that interactions
with female tissues also influence the membrane localization
of certain pollen tube AtTETs (see below) suggests a role
of these proteins in crosstalk between male and female
tissue.

TET EXPRESSION IN THE MALE
GAMETOPHYTE

During pollen development and in mature pollen, which is
composed of the vegetative cell containing two sperm cells,
expression ofAtTET2, 4, 7, 8, 11, 13, 15–17 was detected based on
transcript level analysis and/or using transgenic lines containing
reporter constructs (Honys and Twell, 2004; Pina et al., 2005;
Boavida et al., 2013). Transcriptional up-regulation of several
TETs in growing pollen tubes was observed using reporter gene
constructs (Wang et al., 2008; Qin et al., 2009; Boavida et al.,
2011) for AtTET7, 8, and 13. In in-vitro cultured pollen tubes,
AtTET7 and 13 localize to the apical and subapical region of the
plasma membrane as well as to cytosolic granules. Interestingly,
in pollen tubes growing through female tissue AtTET7, 8, and
13 accumulate preferentially at the apical plasma membrane with
about 10% of the pollen tubes showing an enriched deposition
of AtTET7 at the tip. As the tip is the site of polar cell
expansion specific apical membrane accumulation indicates a
role of these three AtTETs in polar cell growth and/or pollen tube
guidance.

Although transcriptome data suggest expression of
AtTET7, 8, 11, and 12 in sperm cells (Borges et al., 2008),
this could only be confirmed for AtTET11 and 12 using
reporter gene constructs. These two AtTETs display a very
distinct localization to a membrane subdomain at the
site of contact between the two sperm cells, suggesting
a role in intercellular communication and/or adhesion.

Interestingly, GFP-tagged AtTET9 accumulates at the same
membrane subdomain when overexpressed (Sprunck et al.,
2012).

Plant reproduction involves cellular processes such as
cell adhesion, cell-to-cell communication and cell fusion,
which have been shown to be regulated by tetraspanins
in other model systems as well (Hemler, 2008; Anderson
et al., 2011; Fanaei et al., 2011; Jiang et al., 2015). The
expression of various AtTETs in the male gametophyte
and female reproductive tissues, together with changes in
expression patterns and levels as well as changes in protein
localization upon pollination or fertilization, strongly
suggest functions of plant TETs in the above mentioned
processes.

TET EXPRESSION IN EMBRYOS

During fertilization the egg cell fuses with one of the
two sperm cells delivered by the pollen tube to form the
zygote, which quickly elongates along the future apical-basal
axis before undergoing its first division. Following rather
regular and predictable cell divisions Arabidopsis embryogenesis
subsequently passes through several defined stages, which
are referred to as octant, globular, heart, and torpedo stage
(Figure 1C; Mansfield and Briarty, 1991; Boscá et al., 2011; ten
Hove et al., 2015). Analysis of stable transcriptional reporter
lines by Wang et al. (2015) revealed that 9 of the 17 AtTETs are
expressed in the early globular and heart stage embryo (Table 1).
The expression patterns of these AtTETs suggest that they
participate in defined patterning processes. For instance several
AtTETs show specific expression in tissues involved in apical-
basal patterning: AtTET3 is expressed in the progenitor domain
of the shoot apical meristem, AtTET8 in the apical domain
of heart shaped embryos and later at the tip of cotyledons,
AtTET13 in the hypophysis, the founder cell of the rootmeristem,
and AtTET15 in the basal part of the embryo. Functions in
radial patterning during embryogenesis may be inferred from the
observed specific expression of AtTET1, 5, 10, and 14 in vascular
tissue precursor cells, and of AtTET4 and 10 in the central part
of the embryo including the progenitor region of the vascular
bundle (Wang et al., 2015).
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FIGURE 1 | Tetraspanin structure and expression patterns in A. thaliana. (A) A schematic representation of tetraspanin structure and membrane topology.

Tetraspanins are composed of a small extracellular loop, a large extracellular loop (LEL), an intracellular loop, a N-terminal tail and a C-terminal tail. Red and yellow

shading indicate the variable and conserved domains of the LEL, respectively. (B) Tetraspanin expression in reproductive A. thaliana cells and tissues. Pollen grains

adhere to papilla on the stigmatic surface of the pistil, where they hydrate and subsequently germinate. Pollen tubes emerging from pollen grains grow through the

transmitting tract toward the ovules, where they release their sperm cells to initiate fertilization. A germinating pollen tube representing the male gametophyte (vn,

vegetative nucleus; sc sperm cells) and an ovule containing the embry sac, which represents the female gametophyte, (ac, antipodal cells; cc, central cell; ch, chalazal

region of the ovule; ec, egg cell; f, funiculus; mp, micropyle; sy, synergid cells) are drawn at higher magnification. AtTETs expression pattern in different reproductive

organs or structures as well as the subcellular localization of AtTETs in pollen tubes is indicated in red. (C) Tetraspanin expression pattern during A. thaliana embryo

development. Embryos at different developmental stages are shown: globular, heart and torpedo stadium. Apical, central and basal domains are represented due to

different patterns. Shoot (SAM) and root (RAM) apical meristems are indicated. AtTETs expression in different tissues of globular and heart shaped embryos is shown

in red.

TET EXPRESSION IN ROOT AND SHOOT

Interesting AtTET gene expression patterns were also found by
Wang et al. (2015) in developing seedlings and adult plants. TETs
are expressed in primary and secondary meristematic regions,
but also in differentiated cell types, indicating that they are
required for various cellular processes throughout the entire
plant life (Table 1). In roots,AtTET4 is expressed in the quiescent
center (QC), AtTET13 in the QC and surrounding stem cells,
AtTET1, 13, and 15 in the columella, AtTET1 and 15 in the
lateral root cap, and AtTET3 in the cortex, endodermis and
pericycle. Vascular expression was shown for AtTET5 and 6,

which restrict cell proliferation and organ growth as indicated
by knock-out analysis (Wang et al., 2015), as well as for AtTET1,
9, 14, and 13, which are expressed in pericycle cells and lateral
root primordia. Attet13 mutants display a weak lateral root
development phenotype (Wang et al., 2015), which was suggested
to be mild due to redundant functions of AtTET3–6, 8–10, which
are co-expressed with AtTET13 in the pericycle.

In shoots, AtTET3 and 9 are expressed in the apical meristem
(SAM), AtTET1, 5, 6, 9, 10, and 14 in the vascular tissue, AtTET2,
4 and 15 in guard cells, AtTET9 in trichomes and surrounding
pavement cells, AtTET8 and 12 in stipules and AtTET16 at
the base of flowers (Boavida et al., 2013; Wang et al., 2015).
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Interestingly AtTET3 localizes to plasmodesmata, suggesting an
involvement in cell-to-cell communication (Fernandez-Calvino
et al., 2011).

DEVELOPMENTAL AND ENVIRONMENTAL
REGULATION OF PLANT TET EXPRESSION

Based on their complex spatio-temporal expression patterns
TETs appear to be involved in a plethora of developmental
processes and to function in diverse responses to environmental
signals. This view is supported e.g., by the identification of
regulatory motifs in the promoter region of TET genes (Mani
et al., 2015; Wang et al., 2015). The observations that AtTET
expression levels and patterns are influenced by pollination and
fertilization (Boavida et al., 2013), that AtTET13 expression in
pericycle cells is auxin regulated and that AtTET8 expression
is upregulated upon treatment with pathogen elicitors (Wang
et al., 2015) demonstrate that AtTETs can be regulated by various
factors.

As cis-elements are primarily responsible for the regulation
of gene expression, the identification of such motifs helps to
determine whether specific factors regulate gene expression
directly or indirectly, and can contribute to an improved
understanding of the divergence, overlap and redundancy in
TET gene expression. Using complementary regulatory data
sources and combining them Wang et al. (2015) screened for
cis-elements in AtTET genes and for functional interaction
with transcription factors. Based on this approach, different
regulatory cis-elements were identified in the promoters of
AtTET1–6, 8, 9, 16 genes, which are consistent with the distinct
expression patterns of these genes (e.g., endosperm, root,
vascular tissue or pollen tube), as well as with their regulation
by environmental factors (high light, cold, dehydration,
drought, pathogens, sugar, abscisic acid, or brassinosteroids).
In addition, a regulatory network of transcription factors and
AtTET genes was described that provides a further although
partial view of the transcriptional regulation of AtTETs
and their position in molecular pathways during flowering
time, circadian clock and defense response. This regulatory
network also revealed that most AtTET genes are regulated
by multiple transcription factors and that some duplicated
AtTET genes shared common transcription factors (Wang et al.,
2015).

TET EXPRESSION IN RICE

Considering the enormous potential importance of TETs in the
control of plant development and in the integration of biotic
and abiotic stress signaling, it appears timely to investigate this
gene family in economically important crops. In Oryza sativa
15 TET genes have been annotated, which Mani et al. (2015)
have recently begun to functionally characterize. Their analysis
of rice microarray datasets and spatial-temporal expression
profiles indicated that similar to AtTETs OsTETs display variable
and partially overlapping expression patterns and are regulated
by abiotic stresses, leaf senescence, nutrient deprivation and

hormones. Furthermore, in silico screening for cis-regulatory
elements in the 1 kb promoter region of OsTETs revealed motifs
responsive to temperature (heat and cold), abscisic acid or
methyl-jasmonate, as well as two motifs that confer pollen or
root specific gene expression, respectively. Correlation of the
data obtained based on bioinformatics with transcriptional data
revealed only partial overlap suggesting a complex regulation
of OsTET gene expression. Phylogenetic comparison of OsTETs
with other plant TETs revealed that only a single family
member may be monocot specific (OsTET3) (Mani et al., 2015),
indicating that the majority of plant TETs have conserved
functions in development and in responses to environmental
signals.

WHAT IS NEXT IN PLANT TETRASPANIN
RESEARCH?

The functional characterization of tet mutants, the detailed
description of TET expression patterns at different stages during
plant development, and the use of bioinformatics to predict or
confirm hormonal, developmental and environmental regulation
of TET expression represent an exciting tool kit to investigate
TET functions in planta. Progress in this research area will
heavily depend on the identification of novel mutant phenotypes,
the confirmation of predictions concerning TET regulation
made based on bioinformatics and on the identification of
TET interaction partners. Further interesting questions to be
addressed are for instance, whether plant cell membranes
contain TEMs, how TET interactions modulates functions
of binding partners, how lateral mobility of TETs within
the membrane is regulated or whether manipulating TET
expression can contribute to crop improvement. The application
of novel genetic and imaging techniques in combination with
(established) biochemical methods will be required to address
these questions.

In plants, progress of tetraspanin research has been mainly
hampered by the difficulty to identify phenotypes of single
KO mutants, making it difficult to assign specific physiological
function to individual TETs. To date phenotypes have been
only described for the single KO mutants Attet1 and Attet13,
as well as for the double KO/KD mutant Attet5 Attet6 (Cnops
et al., 2000; Wang et al., 2015). The use of CRISP/Cas9
methodology promises to simplify the generation of KO mutants
lacking expression of single or multiple members of the
AtTET protein family. CRISP/Cas9 based gene editing will
not only accelerate the identification of mutant phenotypes,
but also facilitate the study of TET protein interactions,
domain function, posttranscriptional modifications sites, lipid
interactions etc.

With the recent publications of plant TET expression patterns
and mutant phenotypes, interest in identifying direct TET
interaction partners might be spurred. Despite established
biochemical methods novel TET interaction partners or TEM
formation have not been reported in plants. To date, the only
direct TET interactions demonstrated in the literature are the
formation of homo- and heterodimers by AtTET7–17, which
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were investigated in a heterologous expression system (Boavida
et al., 2013).

Testing potential TET interactions in plant cells using
live-cell imaging techniques such as bimolecular fluorescence
complementation (BiFC) or Förster resonance energy transfer
(FRET) can complement biochemical studies. TET membrane
dynamics can be observed and quantified by single particle
tracking (SPT), recovery after photobleaching (FRAP),
the use of photactivatable or photoconvertible fluorescent
proteins or fluorescent correlation spectroscopy (FCS).
Although, TET microdomain formation might be visible
as an uneven protein distribution within membranes using
standard confocal microscopy, to study TET organization
in detail advanced light microscopy needs to be employed.
Total internal reflection fluorescence microscopy (TIRF) and
super-resolution microscopic techniques such as structured
illumination (SIM), stimulated emission depletion (STED),

stochastical optical reconstitution (STORM), or photoactivated
localization microscopy (PALM) provide enhanced resolution
and are therefore suitable for this purpose.

Based on the combined pursuit of the approaches described
above, exciting discoveries are expected to be made on the green
side of TET research within the near future.
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