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Female-sterile mutants are ideal materials for studying pistil development in plants.
Here, we identified a female-sterile mutant fsm in Chinese cabbage. This mutant, which
exhibited stable inheritance, was derived from Chinese cabbage DH line ‘FT’ using a
combination of isolated microspore culture and ethyl methanesulfonate mutagenesis.
Compared with the wild-type line ‘FT,’ the fsm plants exhibited pistil abortion, and floral
organs were also relatively smaller. Genetic analysis indicated that the phenotype of fsm
is controlled by a single recessive nuclear gene. Morphological observations revealed
that the presence of abnormal ovules in fsm likely influenced normal fertilization process,
ultimately leading to female sterility. Comparative transcriptome analysis on the flower
buds of ‘FT’ and fsm using RNA-Seq revealed a total of 1,872 differentially expressed
genes (DEGs). Of these, a number of genes involved in pistil development were
identified, such as PRETTY FEW SEEDS 2 (PFS2), temperature-induced lipocalin (TIL),
AGAMOUS-LIKE (AGL), and HECATE (HEC). Furthermore, GO and KEGG pathway
enrichment analyses of the DEGs suggested that a variety of biological processes and
metabolic pathways are significantly enriched during pistil development. In addition, the
expression patterns of 16 DEGs, including four pistil development-related genes and
12 floral organ development-related genes, were analyzed using qRT-PCR. A total of
31,272 single nucleotide polymorphisms were specifically detected in fsm. These results
contribute to shed light on the regulatory mechanisms underlying pistil development in
Chinese cabbage.

Keywords: Chinese cabbage, female-sterile mutant, pistil development, RNA-Seq technology, DEGs

INTRODUCTION

Floral organ development is the most obvious characteristic of the reproductive stage of flowering
plants. The flowers of typical dicotyledonous plants are composed of four wheel-like structures
(whorls). The first whorl (from outside to inside) contains the sepals, the second contains the
petals, the third contains the stamens, and the innermost whorl contains the carpels, which are the
female organs. In recent years, a variety of floral organ mutants have been characterized, leading
to the isolation of a series of floral development- and morphogenesis-related genes using various
techniques, and the expression patterns and functions of these genes have also been analyzed
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(Hu et al., 2003; Szécsi et al., 2006; Koyama et al., 2007; Nag
et al., 2009; Sarvepalli and Nat, 2011; Lu et al., 2012; Huang
et al., 2015). Studies on the commonality and characteristics of
floral development in different species can help elucidate the
origins and evolution of flowers. Such information would lay the
foundation for altering the process of floral development, which
might be used to control the flowering process and fertility in
plants.

Female sterility has been identified in crops such as wheat
(Triticum aestivum) (Dou et al., 2001), rice (Oryza sativa) (Tang
et al., 2002), soybean (Glycine max) (Pereira et al., 1997),
pearl millet (Pennisetum glaucum) (Arthur et al., 1993), ramie
(Boehmeria nivea) (Zhou, 1996), and rapeseed (Brassica napus)
(Chen et al., 2003). Studies have been performed on the biological
characteristics, development, genetic methods, and potential
applications of female sterility (Brown and Bingham, 1984; Luo
et al., 1996; Daskalov and Mihailov, 1998; Xiao et al., 1998; Zhong
et al., 1998; Li and Zheng, 2002; Liu et al., 2003; Sun et al., 2009).
Female-sterile mutants have been used to identify regulatory
genes that influence ovule and female gametophyte development.
These regulatory genes are involved in nucellar and integument
cell development (Schiefthaler et al., 1999; Balasubramanian
and Schneitz, 2000, 2002), the regulation of megasporogenesis
(Schneitz et al., 1997; Singh et al., 2011; Chevalier et al., 2013),
metabolism, division and differentiation, and the developmental
regulation of embryo sac cells (Pagnussat et al., 2005; Portereiko
et al., 2006; Johnston et al., 2007; Jones-Rhoades et al., 2007;
Colombo et al., 2008; Moll et al., 2008; Punwani et al., 2008).

The female-sterile mutants (with abnormal ovule and
embryo sac development) have recently been produced through
mutagenesis, including chemical mutagenesis, transposon
mutagenesis, and T-DNA insertion mutagenesis (Bao et al., 2005;
Venkatesan and Monica, 2010). Mutation of genes controlling
female organ development, such as carpel development gene
DROPPING LEAF (DL) and ovule development genes FLORAL
BINDING PROTEIN 7 (FBP7) and SHATTERPROOF 1 (SHP1)
(Cheng et al., 2000; Ferrándiz et al., 2000; Yamaguchi et al., 2004),
can lead to female sterility. In addition, such mutations can lead
to abnormal ovule or endosperm development, thereby affecting
the function of female gametophytes as well as megasporogenesis
(Huang and Sheridan, 1996; Siddiqi et al., 2000; Shi et al., 2005).
Luo et al. (2001) found that the abnormal pistil development
trait in rice mutant dl(t) is controlled by a single recessive gene,
whose function may be similar to that of SUPERMAN (SUP),
which regulates floral organ development in Arabidopsis thaliana
(Sakai et al., 1995). The SUP inhibits the expression of floral
organ development genes in the pistil, functioning as a cadastral
gene of stamen and pistil genes (Jacobsen and Meyerowitz, 1997;
Nibau et al., 2011). These mutants would be useful for studying
female sterility-related proteins, cloning the related genes, and
further analyzing their structures and functions, shedding light
on the molecular mechanisms underlying sex differentiation and
development in floral organs.

The male-sterile line has played an important role in the plant
hybrid breeding. The research showed that the female-sterile
line can also be used as the pollinator, the pollination distance
between the both parents can be reduced, thus improving the

hybrid seed yield. Therefore, further studies of female-sterile
mutants not only help uncover additional information about
floral organ development, but also may provide important basic
materials for hybrid breeding (Maruyama et al., 1991; Dou et al.,
2001).

Transcriptome analysis, i.e., investigating transcription and
the regulation of all genes in an organism at the genome-wide
level, is an important component of functional genomics research
(Qi et al., 2011; Li et al., 2013). Transcriptome analysis can
uncover the global expression patterns of genes and provide
information about gene-protein interactions in plants (Filichkin
et al., 2010; Montgomery et al., 2010; Faulconnier et al., 2011;
Li et al., 2012; Ren et al., 2012; Zhang et al., 2012; Huang
et al., 2015). The recent transcriptional profiling studies on
the female gametophyte development have demonstrated that
the female gametophyte formation is a complicated process,
and numerous genes are involved in the regulation of female
gametophyte formation in several plant species (Pagnussat et al.,
2005; Anderson et al., 2013; Chettoor et al., 2014). Therefore,
the female-sterile mutants are ideal for revealing the molecular
mechanism of pistil development, and further analyses of the
gene expression changes during pistil development are very
necessary.

Chinese cabbage (Brassica campestris ssp. pekinensis [Lour]
Olsson), an economically and nutritionally important vegetable
crop, is widely cultivated in Northeast Asia. With the completion
of genome sequencing of Chinese cabbage (Wang et al., 2011),
transcriptome analysis of this crop has become an important
field of study. Considering that the female-sterile plants are a
powerful tool to study genes involved in the pistil development
and investigate gene functions (Arthur et al., 1993; Rosellini et al.,
1998, 2003), and thus the female-sterile mutants may be useful for
the study of the reproductive system of Chinese cabbage.

In this study, we identified a female-sterile mutant (fsm) in
Chinese cabbage. To help elucidate the molecular mechanism
underlying pistil development, we conducted comparative
transcriptome analysis using the Illumina sequencing platform
HiSeqTM 2000 to characterize the gene expression profiles in
flower buds of fsm and the corresponding wild-type line ‘FT’
on a global level. The main objective of this study was to
identify differentially expressed genes (DEGs) and potential
candidate genes related to pistil development. Our results provide
a comprehensive view of the transcriptome of Chinese cabbage,
which contributes to increase our understanding of the regulatory
mechanisms underlying pistil development in this crop.

MATERIALS AND METHODS

Plant Materials and Mutagenic Treatment
The fsm mutant was derived from a Chinese cabbage doubled-
haploid (DH) line ‘FT’ via a combination of isolated microspore
culture and ethyl methanesulfonate (EMS) mutagenesis. Based
on our parallel study (Huang et al., 2016a), the isolated
microspores were treated with 0.08% EMS solution for 10 min.
The microspore regenerated plants were transplanted to pots and
cultivated in the greenhouse for further growth and development.
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It is thought that the genetic background between ‘FT’ and fsm
is highly consistent, with the difference mainly occurring at the
mutation sites.

Morphological Observation
In December 2014, the seeds of ‘FT’ and fsm were sown in a
greenhouse at Shenyang Agricultural University, China. In March
2015, morphological analyses of ‘FT’ and fsm plants were carried
out at the full-bloom stage.

Floral Organs Observation
Four-wheeled floral organs were directly observed and
photographed under a dissecting microscope (Nikon SMZ800,
Japan).

Identification of Female Sterility
Three ‘FT’ and fsm plants were respectively selected, and bagged
for 3 days before pollination. Twenty flower buds were randomly
selected from each plant, and the artificial self-pollination of
‘FT’ and fsm was carried out. Additionally, 20 flower buds were
randomly selected from each plant again, and a reciprocal cross
between ‘FT’ and fsm was performed. After the seeds were
mature, the seed setting rates were recorded.

Pollen Viability Detection
The anthers were removed from the stamens and the pollen from
each anther was extruded onto a slide. The pollen was immersed
in 0.1% TTC (2,3,5-triphenyltetrazolium chloride) dye solution,
covered with a cover slip, and dyed for 15–20 min at 35–37◦C
in an incubator. Pollen viability was observed under an optical
microscope (Nikon ECLIPSE 80i, Japan).

Ovary and Ovule Development Observation
Ten flower buds were randomly selected from ‘FT’ and fsm plants,
respectively. Flowers on the first flowering day of ‘FT’ and fsm
were respectively marked and artificially pollinated. The length
and width of the ovaries were measured every other day; ovaries
were measured six times, and each measurement was performed
in three independent experiments. The ovules in the ovary of
‘FT’ and fsm on the first flowering day and the 5th day after
pollination were respectively observed and compared under a
dissecting microscope (Nikon SMZ800, Japan); Accordingly, the
pistils on the first flowering day and the 5th day after pollination
were fixed using FAA (Formalin-Aceto-Alcohol) fixative and then
dyed using safranine and fast green. The detailed procedures
of paraffin section were performed according to the traditional
method of Li (1996), and the ovule development was observed
under an optical microscope (Nikon ECLIPSE 80i, Japan).

Genetic Analysis
To investigate the inheritance of fsm, ‘FT’ (P1) and fsm (P2) were
used as the parents to develop the F1, BC1, and F2 populations.
Phenotypic data were obtained for each plant of the P1, P2, F1,
BC1, and F2 populations, and the segregation ratios of the BC1
and F2 populations were analyzed by a Chi-square (χ2) test.

RNA Extraction
In March 2015, developing flower buds were collected from
‘FT’ and fsm at the full-bloom stage and used as transcriptome
sequencing materials. All samples were immediately frozen in
liquid nitrogen and stored at−80◦C.

At the full-bloom stage, five ‘FT’ and fsm plants were
respectively selected, and three inflorescences were randomly
selected from each plant. All the flower buds from these
inflorescences collected from five ‘FT’ and fsm plants were
respectively mixed, and the mixed samples were used as a single
biological replicate; three independent biological replicates were
performed for ‘FT’ and fsm.

Total RNA from six samples of ‘FT’ and fsm (with
three independent biological replicates) was respectively
extracted using TRIzol reagent (Invitrogen, USA) following
the manufacturer’s instructions, and the DNase treatment was
applied during RNA extraction to reduce DNA contamination.
The quality and integrity of all RNA samples were assessed
with a 2100 Bioanalyzer (Agilent Technologies, USA) and by
electrophoresis on 1.0% agarose gels.

cDNA Library Construction and Illumina
Sequencing
To construct six cDNA libraries, equal amounts of total RNA
from the three independent biological replicates of ‘FT’ and
fsm were pooled for RNA-Seq library construction, which
were designated F1, F2, F4, M1, M2, and M3, respectively.
Oligo (dT)-coated magnetic beads were used to isolate mRNA,
which was broken into small fragments by the addition of
fragmentation buffer. First-strand cDNA was synthesized with
these short fragments serving as templates, and second-strand
cDNA was synthesized using the reaction system. The short
fragments were purified and subjected to end repair and
the addition of sequencing adapters. Following agarose gel
electrophoresis, suitable fragments were selected as templates
for PCR amplification. Quantification and quality analysis of
the constructed libraries were conducted using an Agilent 2100
Bioanalyzer and an ABI StepOnePlus Real-Time PCR System (Li
et al., 2011; Huang et al., 2016b). The cDNA libraries were then
sequenced on Illumina sequencing platform HiSeqTM 2000 with
a paired-end sequencing strategy at Beijing Genomics of Institute
(BGI), Shenzhen, China.

Mapping of Reads to the Reference
Genome
Prior to bioinformatic analysis, the raw image data were
transformed into sequence data by base calling. Clean reads
were obtained by removing reads containing adaptors, reads with
more than 10% unknown nucleotides, and low-quality reads
with more than 50% bases with a quality value < 20. Clean
reads were mapped to the reference genome (Version 1.5)1 with
SOAPaligner/SOAP2 (Li et al., 2009b), allowing no more than five
base mismatches in the alignment.

1http://brassicadb.org/brad/
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Identification of SNPs
The genotype of three biological replicates of ‘FT’ and
fsm were identical. Therefore, RNA-Seq data from the
three biological replicates of ‘FT’ and fsm were combined
for single nucleotide polymorphism (SNP) identification,
respectively. In this study, SNPs were identified using SOAPsnp
software (Li et al., 2009a). The SOAPsnp program is a
resequencing utility that can detect the consensus sequence
for the transcriptome of a sequencing individual based
on the alignment of the sequencing reads on the known
reference sequence. The SNPs can then be identified on the
consensus sequence through the comparison with the reference
sequence.

Assessment of Differential Gene
Expression
The expression levels of genes determined by RNA-Seq were
normalized by the RPKM (reads per kb per million mapped
reads) method, thereby limiting the effects of different gene
lengths and sequencing levels on the calculation of gene
expression level (Mortazavi et al., 2008). DESeq was applied
to identify DEGs based on the RPKM-derived baseMean for
each gene between samples (Anders and Huber, 2010). The false
discovery rate (FDR) was used as the threshold of P-value in
multiple tests (Benjamini and Hochberg, 1995). The combination
of FDR ≤ 0.001 and the absolute value of log2Ratio ≥ 1 were
used as the threshold for judging the significance of differences in
gene expression (Benjamini and Yekutieli, 2001). More stringent
criteria, including smaller FDR and larger fold-change values,
can be used to identify DEGs. In the current study, genes with
FDR ≤ 0.001 and the absolute value of log2 Ratio ≥ 4 were
defined as DEGs. In addition, the specifically expressed genes
(SEGs) were detected, i.e., genes that were not expressed in one
library but had baseMean values ≥ 11 in the other library (Tao
et al., 2012).

Functional Enrichment Analysis of DEGs
To characterize the biological functions and metabolic pathways
of the DEGs, the DEGs were subjected to Gene Ontology
(GO)2 functional analysis (Ashburner et al., 2000) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)3 pathway
enrichment analysis (Kanehisa et al., 2008). Compared to
the genome background, the significantly enriched GO
terms and KEGG pathways for the DEGs were determined
using hypergeometric tests, with the Bonferroni-corrected
P-value ≤ 0.05 and Q value ≤ 0.05 as the thresholds, respectively
(Abdi, 2007).

Quantitative Real-time PCR (qRT-PCR)
Analysis
Total RNA was extracted from the same plant samples of ‘FT’ and
fsm as those used for RNA-Seq using TRIzol reagent (Invitrogen,

2http://www.geneontology.org/
3http://www.genome.ad.jp/kegg/

USA), and cDNA was synthesized using a FastQuant First-
strand cDNA Synthesis kit (Tiangen, Beijing, China) according
to the manufacturer’s instructions. The Actin and 18S rRNA
were used as internal reference controls (Huang et al., 2015;
Chen et al., 2016) and gene-specific primers were designed using
Primer Premier 5.0 software. The qRT-PCR analysis was carried
out using SYBR Green as a fluorescent detection dye (Tiangen,
Beijing, China) and performed on a Bio-Rad IQ5 real time PCR
detection system (Bio-Rad, USA). Each reaction contained 9 µl
2.5× Real MasterMix/20× SYBR solution, 2 µL (2 µmol L−1) of
each forward and reverse primers, 2 µl of diluted cDNA (50 ng),
and 5 µl ddH2O to a final volume of 20 µL. The qRT-PCR
program was performed in 96-well plates under the following
cycling conditions: initial activation at 95◦C for 3 min, followed
by 40 cycles of 95◦C for 30 s, 58◦C for 30 s, and 68◦C for 15 s.
This procedure was followed by melting curve analysis from 55 to
95◦C to check the specificity of PCR amplification. The 2−11Ct

method was employed to calculate the relative expression levels
of the target genes (Livak and Schmittgen, 2001). All reactions
were performed with three biological and technical replicates,
respectively. Differences in gene expression were analyzed using
Bio-Rad IQ5 Manager software.

RESULTS

Identification and Genetic Analysis
of fsm
A large number of microspore regenerated plants (M0
generation) were obtained using the isolated microspore
culture combined with EMS mutagenesis treatment, and the
double haploid plants were screened for investigating botanical
characteristics. The variant plants were observed and all double
haploid plants were selfed in the M0 generation. In the M1
generation, the variant traits and genetic stability of mutants
were further identified.

The fsm mutant exhibited the same visible phenotype as wild-
type line ‘FT’ in the M0 generation. After selfing, segregation
of characters appeared in the M1 generation (segregation ratio
of 196: 54): of the 250 plants, 54 plants showed pistil abortion;
other plants with the same phenotype as ‘FT’ were further selfed,
revealing that character segregation continued in the offspring.
These results suggest that the mutation may have occurred during
the spontaneous diploid period rather than during the haploid
period during the process of microspore culture and that the
mutant gene fsm is recessive.

Therefore, to further investigate the inheritance of fsm,
‘FT’ (P1) and fsm (P2) were used as the parents. As shown
in Table 1, the ‘FT’: fsm ratio among the BC1 progenies
produced from the F1 × fsm backcross was approximately
1: 1 (χ2

= 2.07 < χ2
0.05,1 = 3.84). Of the 226 F2 plants, 178 and

48 individuals showed the ‘FT’ and fsm phenotypes, respectively,
which represents a segregation ratio of 3.71: 1. The segregation
ratios in the F2 population conformed to the expected ratio of
3: 1 (χ2

= 1.81 < χ2
0.05,1 = 3.84). These results indicate that

the phenotype of fsm, which exhibiting stable inheritance, is
controlled by a single recessive nuclear gene.
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TABLE 1 | Genetic analysis of fsm and crosses between fsm and wild-type
line ‘FT.’

Generation ‘FT’ Fsm Total Segregation
ratio

Expected
ratio

χ2

P1 (‘FT’) 105 0 105

P2 (fsm) 0 54 54

F1 (P1 × P2) 170 0 170

F′1 (P2 × P1) 0 0 0

BC1 (F1 × ‘FT’) 206 0 206

BC1 (F1 × fsm) 97 78 175 1.24: 1 1:1 2.07

F2 178 48 226 3.71: 1 3:1 1.81

Morphological Characteristics of Floral
Organs in ‘FT’ and fsm
Compared to the wild-type line ‘FT,’ the fsm plants exhibited pistil
abortion, and the four-wheeled floral organs were also relatively
smaller (Figure 1). As shown in Figure 1E, the pistil parts in fsm
were significantly thinner and shorter, especially the ovaries.

Female Sterility Analysis of fsm
As shown in Table 2, compared to the wild-type line ‘FT,’ the fsm
plants exhibited pistil abortion. Whether the fsm mutant was self-
pollinated or used as the female parent to accept foreign pollen
(wild-type line ‘FT’), the seed setting rates of fsm were both zero.
The results showed that the female sterility of fsm was stable.

Pollen Viability Observation of fsm
The pistils of fsm were completely sterile; however, there were
small amounts of pollen in the stamens. As shown in Figure 2, the
pollen of fsm was viable. In accordance with the results of Table 2,
therefore, the fertility of fsm stamens was normal.

Morphological Comparison of Ovary and
Ovule Development in ‘FT’ and fsm
In plants, the development of female reproductive organs meant
the ovary development, mainly including the development of
ovule and formation of embryo sac. To further investigate
the female sterility phenotype of fsm, the ovary and ovule
development in ‘FT’ vs. fsm were observed and compared. As
shown in Figure 3, under artificial pollination conditions, ovary
development in fsm stopped at the end of flowering. The ovaries
gradually became atrophied and yellow, ultimately leading to
abscission. By contrast, the ovaries of ‘FT’ were elongated
and widened at the end of flowering, and they developed
rapidly.

Also, the structural characteristics of ovule development were
observed and compared in ‘FT’ and fsm. As shown in Figure 4,
compared with ‘FT,’ the ovules of fsm were abnormal, fewer,
and smaller. After artificial pollination, the ovules of ‘FT’ were
expanded and eventually developed into seeds, whereas the
ovules of fsm were shriveled and did not develop into seeds. The
observation results were in accordance with the results of paraffin
section (Figure 5).

Illumina Sequencing and Mapping Reads
to the Reference Genome
To help increase our understanding of the regulatory
mechanisms underlying pistil development at the molecular
level, we performed comparative floral transcriptome analysis of
‘FT’ and fsm using RNA-Seq technology.

Based on Illumina sequencing, a total of 130,216,688 and
134,955,118 clean reads were generated from the three biological
replicates of ‘FT’ and fsm, respectively. Of the total clean reads,
the number of reads that could be mapped to the reference
genome ranged from 23.3 to 28.3 million, and the percentage of
cleans reads ranged from 53.95 to 61.52% in the six libraries. As
shown in Table 3, the overwhelming majority of these mapped
reads were matched to unique genomic locations. The uniquely
matched reads were used for gene expression analysis between
‘FT’ and fsm. These transcriptomes provide valuable resources for
further analysis.

A total of 36,120 genes were detected in ‘FT’ and fsm. Among
these, 32,843 (F1), 32,853 (F2), 32,837 (F4), 32,675 (M1), 32,640
(M2), and 32,665 (M3) expressed genes were identified from
the six libraries, respectively (Supplementary Table S1). To
further evaluate the RNA-Seq data, we analyzed the distribution
of gene coverage in each library, representing the percentage
of a gene covered by reads. As shown in Figure 6, genes with
coverage > 90% were the most abundant category, accounting for
65–69% of the total number of genes. The second most abundant
category was gene coverage of 80–90%, while the percentages of
gene coverage for the remaining eight categories were similar.

Identification of SNPs
A total of 167,837 and 155,448 SNPs were identified in ‘FT’ and
fsm, respectively (Supplementary Tables S2, S3). As shown in
Table 4, the most common base substitutions were A/G and C/T,
and the least common was C/G. In addition, the SNPs between
‘FT’ and fsm were further analyzed and compared, among these
SNPs, 43,661 and 31,272 SNPs were specifically detected in ‘FT’
and fsm, respectively (Supplementary Tables S4, S5).

Global Analysis of Differential Gene
Expression
Comparative analysis of the gene expression profiles between ‘FT’
and fsm were conducted to identify DEGs. A total of 1,872 DEGs
were detected, including 1,021 up-regulated and 851 down-
regulated genes in the fsm vs. ‘FT’ comparison, respectively.
Therefore, the number of up-regulated DEGs in fsm is higher
than the number of down-regulated DEGs (Supplementary
Table S6).

We also detected a number of SEGs in this study. A total of 178
SEGs were identified between ‘FT’ and fsm, including 49 SEGs in
‘FT’ and 129 in fsm (Supplementary Table S7).

DEGs Related to Pistil Development
The morphological characterization suggested that the presence
of the mutant gene fsm likely influenced pistil development
(especially the presence of abnormal ovules), and thus the
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FIGURE 1 | Morphological characteristics of floral organs from fsm and wild-type line ‘FT.’ (A) Flowers of ‘FT’ (left) and fsm (right); (B) sepals of ‘FT’ (left)
and fsm (right); (C) petals of ‘FT’ (left) and fsm (right); (D) stamens of ‘FT’ (left) and fsm (right); (E) pistils of ‘FT’ (left) and fsm (right). Scale bar: 1 mm.

TABLE 2 | The seed setting rates of self-pollination and reciprocal crosses
between fsm and wild-type line ‘FT.’

Generation No. of pollinated
flower buds

No. of harvested
seeds

No. of seeds per
bud

fsm⊗ 60 0 0

‘FT’ ⊗ 60 976 16.27

fsm × ‘FT’ 60 0 0

‘FT’ × fsm 60 628 10.47

fertilization process cannot be accomplished, ultimately leading
to female sterility.

To identify potential genes related to pistil development,
we compared the gene expression profiles of ‘FT’ and fsm.
Among the DEGs, a number of pistil development-related
genes were identified, including genes for PRETTY FEW
SEEDS 2 (PFS2; Bra026791), temperature-induced lipocalin (TIL;
Bra020391), AGAMOUS-LIKE (AGL; Bra029154), and HECATE
(HEC; Bra012128). In the fsm vs. ‘FT’ comparison, these
genes were up-regulated, with relatively high expression levels
(Supplementary Table S6), providing clues about the molecular
mechanisms underlying female sterility.

The fsm mutant not only exhibited pistil abortion, but
the floral organs were also relatively smaller compared to the
wild-type line ‘FT’ (Figure 1). Consequently, numerous DEGs
involved in floral organ development were also identified
in this study, such as genes encoding F-box family protein
(Bra001764, Bra004091, Bra027182, and so on), JASMONATE-
ZIM-DOMAIN PROTEIN (JAZ; Bra022981, Bra025713, and
Bra031065), VANGUARD 1 (VGD 1; Bra000438 and Bra040474),
FLOWERING LOCUS T (FT; Bra022475), polygalacturonase
(PG; Bra001268, Bra001269, Bra025631, and so on), MYB
family transcription factors (Bra012579, Bra013526, and
Bra028717), Arabinogalactan proteins (AGPs; Bra003296,

Bra014611, Bra016902, and so on), EARLY FLOWERING 4-LIKE
1 (EFL1; Bra000468), pectinesterase family protein (Bra009264,
Bra009921, Bra034960, and so on), BROTHER OF FT AND
TFL1 (TERMINAL FLOWER 1) protein (BFT; Bra010052),
especially for Auxin-Regulated Gene Involved In Organ Size
(ARGOS; Bra007491), which can regulate the floral organ size in
Arabidopsis thaliana (Hu et al., 2003). Most of these genes were
highly expressed in the fsm vs. ‘FT’ comparison (Supplementary
Table S6).

Overall, these genes may play important roles in floral organ
development in Chinese cabbage. Further investigating possible
pistil development-related genes would help elucidate the gene
expression patterns and regulatory mechanisms involved in the
female sterility phenotype of fsm.

Functional Enrichment Analysis of DEGs
Using GO Classification and KEGG
Pathway Analysis
To gain insight into the biological functions of the DEGs, all
DEGs in the fsm vs. ‘FT’ comparison were mapped to GO terms
using GO functional category analysis. For the three main GO
categories, DEGs assigned to “biological process” (1,084, 57.9%)
accounted for the majority of genes, followed by “molecular
function” (1,077, 57.5%) and “cellular component” (960, 51.3%).
Among these, the terms “cellular process” (GO: 0009987) and
“metabolic process” (GO: 0008152), with 648 genes (59.8%) and
669 genes (61.7%), respectively, were dominant in the biological
process category. In the molecular function category, the terms
“binding” (GO: 0005488; 677, 62.9%) and “catalytic activity” (GO:
0003824; 638, 59.2%) were the most highly represented. In the
cellular component category, “cell” (GO: 0005623; 780, 81.2%),
“cell part” (GO: 0044464; 780, 81.2%), and “intracellular” (GO:
0005622; 606, 63.1%) were the most abundant groups (Figure 7).
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FIGURE 2 | Pollen viability observation of fsm and wild-type line ‘FT.’ (A) Mature pollen microspores of ‘FT’; (B) mature pollen microspores of fsm. Scale bar:
50 µm.

FIGURE 3 | Ovary development in fsm and wild-type line ‘FT’ on different days after artificial pollination. (A) Dynamic changes of ovary length; (B)
dynamic changes of ovary width. Each value is the mean of three independent experiments. The error bars represent standard error (SE) of the means.

We also performed GO term enrichment analysis (corrected
P-value ≤ 0.05). The significantly enriched GO terms were
shown in Supplementary Table S8. In addition, GO analysis
revealed a number of GO terms related to floral organ
development, including gynoecium development (Bra012128
and Bra000979), pollen tube growth (Bra037213 and Bra034771),
floral organ morphogenesis (Bra012128, Bra000979 and
Bra026791), pollen tube development (Bra012579, Bra037213,
and Bra034771), floral organ formation (Bra012128 and

Bra000979), floral organ development (Bra012128, Bra001005,
Bra000979, Bra026791, Bra033931, and Bra012639), floral
whorl development (Bra012128 and Bra000979), pollen
development (Bra037213, Bra003255, and Bra020195), and
flower development (Bra012639, Bra012128, Bra001005,
Bra000979, Bra026791, and Bra033931, and so on).

To identify genes involved in metabolic or signal transduction
pathways, a total of 949 DEGs were mapped to 226 KEGG
pathways. Metabolic pathways (ko01100; 218, 22.97%) was
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FIGURE 4 | Structural characteristics of ovules in fsm and wild-type line ‘FT.’ (A) Ovules on the first flowering day in fsm (above) and ‘FT’ (below); (B) ovules
of the 5th day after pollination in fsm (above) and ‘FT’ (below). Scale bar: 1 mm.

FIGURE 5 | Morphological comparison of ovule development in fsm and wild-type line ‘FT.’ (A) Ovules on the first flowering day in ‘FT’; (B) ovules on the
first flowering day in fsm; (C) ovules of the 5th day after pollination in ‘FT’; (D) ovules of the 5th day after pollination in fsm. Scale bar: 50 µm.

TABLE 3 | Reads statistics based on RNA-Seq data of six libraries from fsm and wild-type line ‘FT.’

Summary F1 F2 F4 M1 M2 M3

Total clean reads 43,518,072 43,433,878 43,264,738 46,054,444 44,645,322 44,255,352

Total base pairs 5,439,759,000 5,429,234,750 5,408,092,250 5,756,805,500 5,580,665,250 5,531,919,000

Total mapped
reads

23,522,184 (54.05%) 23,450,417 (53.99%) 23,339,692 (53.95%) 28,329,921 (61.51%) 27,464,883 (61.52%) 27,164,647 (61.38%)

Perfect match
reads

13,181,506 (30.29%) 13,175,823 (30.34%) 13,074,384 (30.22%) 15,992,485 (34.73%) 15,568,851 (34.87%) 15,373,270 (34.74%)

≤5 bp mismatch
reads

10,340,678 (23.76%) 10,274,594 (23.66%) 10,265,308 (23.73%) 12,337,436 (26.79%) 11,896,032 (26.65%) 11,791,377 (26.64%)

Unique match
reads

22,821,592 (52.44%) 22,606,654 (52.05%) 22,581,156 (52.19%) 27,684,983 (60.11%) 26,845,981 (60.13%) 26,548,687 (59.99%)

Multi-position
match reads

700,592 (1.61%) 843,763 (1.94%) 758,536 (1.75%) 644,938 (1.40%) 618,902 (1.39%) 615,960 (1.39%)

Total unmapped
reads

19,995,888 (45.95%) 19,983,461 (46.01%) 19,925,046 (46.05%) 17,724,523 (38.49%) 17,180,439 (38.48%) 17090705 (38.62%)

Total mapped reads are the sum of perfectly match reads and reads with ≤5 bp mismatch, or the sum of uniquely matched reads and multi-position matched reads.
Numbers in parentheses indicate the percentages of total clean reads in each library.

the largest category, which was significantly larger than other
pathways, followed by biosynthesis of secondary metabolites
(ko01110; 131, 13.80%), plant-pathogen interaction (ko04626;
126, 13.28%), plant hormone signal transduction (ko04075;
103, 10.85%), and protein processing in endoplasmic reticulum

(ko04141; 51, 5.37%). In addition, the KEGG enrichment analysis
of DEGs was performed in this study. As shown in Table 5, a
total of eight KEGG pathways were significantly enriched. These
results indicated that a variety of genetic and active metabolic
pathways were involved in pistil development, which laid the
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FIGURE 6 | Distribution of gene coverage in fsm and wild-type line ‘FT.’

TABLE 4 | Summary of single nucleotide polymorphism (SNP) types
identified in fsm and wild-type line ‘FT.’

SNP type ‘FT’ fsm

Transition 93,291 (55.58%) 89,372 (57.49%)

A/G 46,987 (28.00%) 43,980 (28.29%)

C/T 46,304 (27.59%) 45,392 (29.20%)

Transversion 74,546 (44.42%) 66,076 (42.51%)

A/C 19,933 (11.88%) 18,010 (11.59%)

A/T 19,551 (11.65%) 16,648 (10.71%)

C/G 15,990 (9.53%) 14,282 (9.19%)

G/T 19,072 (11.36%) 17,136 (11.02%)

Total 167,837 155,448

Numbers in parentheses indicate the percentages of total number of SNPs in ‘FT’
and fsm, respectively.

foundation for further investigating specific processes, functions,
and pathways underlying female sterility in Chinese cabbage.

Analysis of the Gene Expression
Patterns by qRT-PCR
To help confirm the differential expression patterns of the
DEGs detected by RNA-Seq, we performed qRT-PCR analysis
of various DEGs. A total of 16 DEGs, including four pistil
development-related genes (Bra026791, Bra020391, Bra029154
and Bra012128) and 12 floral organ development-related genes
(Bra001764, Bra031065, Bra022475, Bra000468, Bra010052,
Bra007491, Bra000438, Bra001268, Bra019903, Bra009921,
Bra003296, and Bra021235) were selected for qRT-PCR analysis
(Supplementary Table S9). As shown in Figure 8, the gene
expression patterns obtained by qRT-PCR showed the similar
trends as those of RNA-Seq data, thus supporting the reliability
of our transcriptome analysis.

DISCUSSION

In this study, we identified the fsm mutant in Chinese cabbage,
which exhibited stable inheritance. Based on a comparison with
‘FT,’ we speculate that the mutant gene in fsm likely influences
ovule development, which further affects normal fertilization
process, eventually leading to female sterility. Comparative
transcriptome analysis of ‘FT’ and fsm showed that a number
of DEGs are related to pistil development, and numerous DEGs
involved in floral organ development were also identified. Further
investigating these DEGs may increase our understanding of the
regulatory mechanisms underlying female sterility.

The previous study has reported that the microspore culture
enjoyed the characteristic of spontaneous doubling, requiring
no artificial doubling treatment, and a high percentage of
spontaneous diploids were found in Brassica campestris (Zhang
and Ting Guan, 1993). The research on the combination of
isolated microspore culture and EMS mutagenesis indicated that
the frequency of spontaneous diploids were approximately 76.4%
in Chinese cabbage (Huang et al., 2016a). In this study, the fsm
mutant is different from previously reported mutants (Huang
et al., 2015, 2016b). In general, the mutation occurred during
the haploid microspore period, however, the mutation of the
fsm mutant occurred during the spontaneous diploid period, and
the mutant gene fsm was recessive. Given this, the fsm mutant
exhibited the same visible phenotype as wild-type line ‘FT’ in the
M0 generation, and segregation of characters appeared in the M1
generation, which exhibiting the mutant character.

The female-sterile mutants represent important materials for
exploring floral organ-specific gene regulation and function. In
the present study, genetic analysis indicated that the mutant
phenotype of fsm is controlled by a single recessive nuclear gene,
however, fine mapping of fsm remains to be performed. The
results of gene mapping and our transcriptome analysis could be
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FIGURE 7 | Gene ontology (GO) functional classification of DEGs in the fsm vs. ‘FT’ comparison.

combined to further investigate candidate genes in fsm, especially
the DEGs identified between ‘FT’ and fsm, as well as SNPs
specifically detected in fsm based on the RNA-Seq results. The
DEGs with most dramatically reduced expression levels in the
fsm mutant could be candidates of the mutant gene, which would
be responsible for the pistil developmental phenotype in fsm.
Further investigating the fsm gene may help reveal the regulatory
mechanisms underlying pistil development in Chinese cabbage.
In addition, the developed SNPs markers represent a rich source
of valuable molecular markers, which are widely used for genetic
mapping and genetic diversity analysis in plants (Blair et al., 2013;
Frascaroli et al., 2013). In this study, finding SNPs between ‘FT’
and fsm is especially useful, as some SNPs specifically detected in
fsm may be directly related to the mutant phenotype.

Morphological observations suggested that the abnormal
ovules in fsm likely influenced normal fertilization process,
ultimately leading to female sterility. Therefore, identifying genes
involved in pistil development would facilitate the analysis of
female sterility. PRETTY FEW SEEDS2 (PFS2) is primarily
expressed in developing primordia, and its transcripts are most
abundant in developing ovules. PFS2 encodes a homeodomain
protein that plays a prominent role during ovule patterning
by regulating the differentiation of megaspore mother cells and
cell proliferation of maternal integuments (Park et al., 2004).
AGAMOUS (AG) can regulate ovule development and floral
development (Becker and Theissen, 2003), and the research has
showed that the ovule development is closely related to the level
of PFS2 activity, which can repress AG expression in Arabidopsis
thaliana (Park et al., 2005). In the present study, the up-regulation
of PFS2 (Bra026791) detected in fsm vs. ‘FT’ may inhibit the
AG expression, and thus affect ovule development of fsm. The
female gametophyte development is a complicated process, and

TABLE 5 | Significantly enriched KEGG pathways of DEGs in fsm vs. ‘FT.’

Pathway DEGs (%) Total
DEGs

Q-value Pathway
ID

Metabolism of
xenobiotics by
cytochrome P450

19 (2%) 949 1.06E-05 Ko00980

Plant-pathogen
interaction

126 (13.28%) 949 4.72E-05 Ko04626

Drug metabolism –
cytochrome P450

19 (2%) 949 5.16E-05 Ko00982

Protein processing
in endoplasmic
reticulum

51 (5.37%) 949 2.36E-03 Ko04141

Carotenoid
biosynthesis

24 (2.53%) 949 2.36E-03 Ko00906

Glutathione
metabolism

20 (2.11%) 949 2.74E-03 Ko00480

Antigen processing
and presentation

18 (1.9%) 949 2.45E-02 Ko04612

Plant hormone
signal transduction

103 (10.85%) 949 2.45E-02 Ko04075

DEGs: number of DEGs with specific pathway annotations. Total DEGs: total
number of DEGs with pathway annotations. Percentage (%) = 100% × (number
of DEGs)/total number of DEGs.

numerous genes are involved in its regulation in Arabidopsis
thaliana (Wang et al., 2012). The temperature-induced lipocalin
(TIL), which is mainly expressed in the embryo sacs of ovules,
plays an essential role in female gametophyte development.
Mutation of TIL causes ovule abortion and sometimes seed
abortion, ultimately leading to low seed set (Chang et al., 2014).
In the MADS-box gene family, AGAMOUS (AG) gene plays an
important role in regulating floral carpel and ovule development
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FIGURE 8 | Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of gene expression patterns. The relative expression levels of 16 DEGs
identified by RNA-Seq analysis are shown. The gene expression analysis was performed based on three biological and technical replicates, respectively.
∗Significantly different at a level of 0.05 by t-test, and the statistical analysis was conducted using SPSS16.0 (Chicago, IL, USA).

(Alvarez-Buylla et al., 2000; Becker and Theissen, 2003). The
related studies indicated that the AGAMOUS-LIKE 6 (AGL6)
gene played an essential role in the floral development (Rijpkema
et al., 2009). In Arabidopsis thaliana, AGL6 gene was mainly
expressed in the ovule and not expressed in the stamens (Schauer
et al., 2009), however, the AGL13 gene was expressed in both
ovule and stamens, and had the function of regulating stamen
and pistil development (Hsu et al., 2014). In addition, the AGL23
gene had an effect on the female gametophyte development
(Colombo et al., 2008). The gene function of AGL62 was similar
to AGL61, which interacted with AGL80, and they were jointly
associated with the differentiation of central cells in the female
gametophyte (Portereiko et al., 2006; Bemer et al., 2008; Kang
et al., 2008). The basic helix-loop-helix (bHLH) transcription

factors, HECATE 1 (HEC1), HEC2 and HEC3 genes are involved
in the transmitting tract formation and stigma development, and
the HEC activity is very necessary in the developing gynoecium
in Arabidopsis thaliana (Gremski et al., 2007). In addition, the
HEC genes can regulate both auxin and cytokinine signaling
during gynoecium development (Schuster et al., 2015). Therefore,
the interaction of these DEGs related to pistil development may
influence ovule development, ultimately resulting in the pistil
abortion phenotype of fsm.

In this study, the fsm plants not only exhibited pistil abortion,
but the floral organs were also relatively smaller compared to
the wild-type line ‘FT.’ The floral organ size is closely related
to the floral morphology and function in plants (Horiguchi
et al., 2006). The two cellular processes, cell proliferation and
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cell growth, can control the final size of floral organs during
the process of floral development (Horiguchi et al., 2006; Krizek
and Anderson, 2013). The research has shown that the ARGOS
gene can control the floral organ size in Arabidopsis thaliana,
with the up-regulation or down-regulation of ARGOS gene, the
size of floral organs would be increased or decreased accordingly
(Hu et al., 2003). The homologous gene of ARGOS has been
isolated from Chinese cabbage, and the overexpression of ARGOS
gene can make a significant increase in the leaves and floral
organs in Arabidopsis thaliana (Hu et al., 2003, 2006; Feng et al.,
2011). Based on the results presented here, the ARGOS gene was
up-regulated in fsm vs. ‘FT’ and specifically expressed in fsm,
however, the floral organs were relatively smaller in fsm. The
result was opposite to the previous studies (Hu et al., 2003, 2006).
In this study, except for the ARGOS gene, other DEGs involved
in the floral development were also found, such as F-box family
protein, FT and MYB family transcription factors. Therefore, we
speculated that the interaction and regulation of these DEGs may
result in the differences between ‘FT’ and fsm in floral organ
sizes.

Among the genes differed in expression between ‘FT’ and
fsm, approximately one third of genes which were annotated as
unknown function. These genes might be the potential candidates
to be involved in the pistil development, especially for the SEGs.
The genes expressed exclusively in fsm may lead to the female
sterility by inhibiting the pistil development. On the other hand,
the genes only expressed in ‘FT’ were detected, which may have a
role in the pistil development. Therefore, the actual functions of
these genes remain to be further studied.

The previous studies indicated that heat or cold stress
response-related proteins were associated with the pistil
development in plants (Zinn et al., 2010). In Arabidopsis thaliana,
heat-stress treatment can increase the number of aborted ovules
and reduce the ovule numbers (Whittle et al., 2009). The related
studies showed cold stress can reduce ovule fertilization and
ovule viability, and thus affect the pistil function (Srinivasan
et al., 1999; Thomashow, 1999). In our study, a number of DEGs
related with heat or cold temperature stress were identified,
such as heat shock proteins (HSP; Bra018216, Bra006697,
Bra002539, and Bra020295) and late embryogenesis abundant
(LEA) proteins (Bra022950, Bra027219, and Bra030494). Besides,
the GO term enrichment analysis showed the GO term “response
to heat” (GO: 0009408; 16 DEGs, 1.5%) was detected. Therefore,
we speculated that these genes associated with hot or cold
temperature stress may play important roles in the pistil abortion
in fsm.

The KEGG pathway analysis revealed that a total of eight
KEGG pathways were significantly enriched, of which, 103
(10.85%) DEGs were involved in the Plant hormone signal
transduction pathway (ko04075). In plants, flower development
was strongly influenced by hormonal regulation (Rudich et al.,
1972). The previous studies indicated that the genes involved
in the hormone signaling may play important roles in plant sex
determination (Chandler, 2011). In recent years, several different
transcriptome analyses showed that numerous hormone-related
genes were differently expressed between different flower types,
which further indicated hormones had roles in the sexual

differentiation and development of floral organ (Wu et al., 2010;
Ramos et al., 2014; Rocheta et al., 2014; Sobral et al., 2016).
For example, auxin enjoyed a critically regulatory function in
the process of floral growth and development in plants (Aloni
et al., 2006; Cheng and Zhao, 2007). The recent studies indicated
that cytokinine facilitates cell proliferation in early reproductive
tract development and regulates reproductive meristems and
ovule formation (Bartrina et al., 2011; Marsch-Martínez et al.,
2012a). The interaction between auxin and cytokinine has been
demonstrated to have a role in the gynoecium morphogenesis
(Marsch-Martínez et al., 2012b). Another hormone, ethylene,
was strongly relevant to the sex determination (Byers et al.,
1972). The ethylene was thought to be essential for the process
of sex determination in several species, such as cucumber
and melon (Guo et al., 2010; Gao et al., 2015). In this
study, the genes involved in the auxin signaling, cytokinine
signaling and ethylene signaling were differentially expressed
and had relatively high expression levels. Further study of
these genes related to the hormone signal transduction may
contribute to elucidate the female organ determination in
Chinese cabbage.

CONCLUSION

We performed a systematic morphological investigation of fsm,
followed by comparative transcriptome analysis between ‘FT’
and fsm. The results provide a comprehensive view of the
expression profiles of genes involved in pistil development, which
may help uncover the molecular mechanisms determining the
phenotypic differences between these lines. Further studies of the
functions of DEGs involved in pistil development should increase
our understanding of female sterility. Our results provide a
solid foundation for the further functional characterization
of genes associated with the pistil development in Chinese
cabbage.
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