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Traditional breeding strategies for selecting superior genotypes depending on phenotypic

traits have proven to be of limited success, as this direct selection is hindered by low

heritability, genetic interactions such as epistasis, environmental-genotype interactions,

and polygenic effects. With the advent of new genomic tools, breeders have paved

a way for selecting superior breeds. Genomic selection (GS) has emerged as one of

the most important approaches for predicting genotype performance. Here, we tested

the breeding values of 240 maize subtropical lines phenotyped for drought at different

environments using 29,619 cured SNPs. Prediction accuracies of seven genomic

selection models (ridge regression, LASSO, elastic net, random forest, reproducing

kernel Hilbert space, Bayes A and Bayes B) were tested for their agronomic traits.

Though prediction accuracies of Bayes B, Bayes A and RKHS were comparable, Bayes

B outperformed the other models by predicting highest Pearson correlation coefficient in

all three environments. From Bayes B, a set of the top 1053 significant SNPs with higher

marker effects was selected across all datasets to validate the genes and QTLs. Out of

these 1053 SNPs, 77 SNPs associated with 10 drought-responsive transcription factors.

These transcription factors were associated with different physiological and molecular

functions (stomatal closure, root development, hormonal signaling and photosynthesis).

Of several models, Bayes B has been shown to have the highest level of prediction

accuracy for our data sets. Our experiments also highlighted several SNPs based on their

performance and relative importance to drought tolerance. The result of our experiments

is important for the selection of superior genotypes and candidate genes for breeding

drought-tolerant maize hybrids.

Keywords: drought, genomic selection, transcription factor, SNP, parametric, non-parametric, semi-parametric

INTRODUCTION

Traditional breeding strategies for selecting improved and resistant varieties of maize depending on
the phenotypic trait have proven to be of limited success (Cushman and Bohnert, 2000). This direct
selection is hindered by low heritability, and the existence of genetic interaction (e.g., epistasis),
environmental-genotype interaction, and polygenic effects. This selection also takes a long period
of time. Understanding the genetic basis of the plants’ response to these various environments and
the advent of new genomic technique and tools has allowed breeders to pave a way for selecting
superior maize breeds (Tuberosa and Salvi, 2006).
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Drought stress has the most detrimental effect on maize,
leading to reduced yields in maize production (Nepolean et al.,
2014). Several QTLs have been identified for drought tolerance
in maize and those QTLs have been used to improve stress
tolerance through marker-assisted breeding. However, marker-
assisted breeding is limited to few major QTLs, thus minor QTLs
are not part of the selection process, leading to a loss of genetic
gain (Dekkers, 2004). To overcome this limitation, genomic
selection (GS) has been proposed as a method to understand the
effects of all the alleles across the genome to improve polygenic
traits (Meuwissen et al., 2001). This method is advantageous over
the traditional marker-assisted selection (MAS), as it addresses
the effect of small genes which cannot be captured by the
traditional MAS (Hayes et al., 2009).

GS is a form of MAS based on breeding values estimated
from a genomic dataset that explores the genetic variances
within each individual (Heffner et al., 2009). Current research
in the area of genetic improvement explores GS as one of
the approaches revolutionizing both animal and plant breeding
(Hayes et al., 2009; Lorenzana and Bernardo, 2009). Genetic
values of quantitative traits in maize and wheat datasets have
been studied for the estimation of their higher predictive ability
compared with molecular markers than pedigree information
(Crossa et al., 2010).

GS reduced the selection time by almost half per cycle
compared to the phenotypic selection for almost all traits in the
different sets of maize, Arabidopsis and barley (Lorenzana and
Bernardo, 2009). By replacing the phenotypic selection with the
genomic estimated breeding value (GEBV), the gain for each unit
cycle can be increased (Wong and Bernardo, 2008). GS can be
appropriate even in the presence of modest molecular markers
and diverse environmental conditions (Crossa et al., 2010). The
prediction accuracy of breeding values in genomic selection has
been found to be 0.58 for grain yield in maize (Zhao et al.,
2012) and is estimated to be a better option than other methods
considering the genetic gain each year (Lorenzana and Bernardo,
2009; Zhao et al., 2012).

Parametric (RR- Ridge Regression, LASSO- Least Absolute
Shrinkage and Selection Operator, Elasticnet, Bayes A and Bayes
B), semi parametric (RKHS- Reproducing Kernel Hilbert Space)
and non-parametric (RF-Random Forest) models have been used
to predict the genotype value, and machine learning programs
(Long et al., 2007) have been proposed to develop prediction
models for GS. These methods have been implemented in
biparental (Lorenzana and Bernardo, 2009) and multi-parental
populations (Heffner et al., 2011a) where the predictive ability
using several models was compared among different datasets
using Arabidopsis, wheat, maize, and barley.

Abbreviations: GS, Genomic selection; RR, Ridge regression; LASSO, Least

Absolute Shrinkage and Selection Operator; EN, Elastic Net; RF, Random Forest;

RKHS, Reproducing Kernel Hilbert Space; MAS, Marker Assisted selection; QTL,

Quantitative trait loci; GEBV, genomic estimated breeding value; SNP, Single

nucleotide polymorphism; ASI, anthesissilking Interval; GY, Grain yield; KR,

number of kernels per row; KRN, number of kernel rows; EG, Ear girth; EL,

Ear length; HKW, 100 kernel weight; GWA, genome wide association; CV, cross-

validation; TF, Transcription factor.

Different genomic selection models have been examined in
diverse panels of maize and wheat germplasm (De Los Campos
et al., 2009; Crossa et al., 2010). GS contributed appreciable
genetic gain for grain yield and stover quality in bi-parental maize
population (Massman et al., 2013) and drought stress tolerance
in tropical maize germplasm (Beyene et al., 2015). In maize,
prediction accuracy of GS among the full-sibs was more accurate
than unrelated crosses (Riedelsheimer et al., 2013). Among the
GS models, rrBLUP and BSSV were found equally efficient in
identifying the Stenocarpella maydis resistant maize inbred lines
using DArTseq markers (Pedroso et al., 2016).

Little information exists in comparing the efficiency of
genomic models to select the better genotypes for drought
tolerance in subtropical maize germplasm. The objectives of the
present investigation were to predict the GEBVs of genotypes
under drought stress using seven GS models, to compare the
prediction accuracies of those GS models, and to validate the top
selected SNPs from GS models with the SNPs identified through
previous GWAS experiment.

MATERIALS AND METHODS

Dataset
A set of 29619 cured SNPs, genotyped across a panel of 240
maize inbred lines from an earlier data set (Nepolean et al.,
2013, 2014) was used in this experiment. The curation of dataset
was done on the basis of MAF <0.05, heterozygosity > 5%,
removal of “no calls” (SNPs not included in any cluster were
categorized as “no calls”), monomorphs and unmapped SNPs.
Briefly, the total genomic DNA from 240 genotypes was isolated
with a Nucleopore DNA Sure Plant Mini Kit (Genetix Biotech
Asia). SNP detection was performed using the Infinium HD
Assay Ultra (Illumina, San Diego, CA, USA). SNP chips were
hybridized with 50 ng× 4µl DNA per sample. TheMaize SNP50
BeadChip was used to scan the 240 samples with 24 samples per
Sentrix Array Matrix (SAM). All 240 genotypes were genotyped
with an Infinium Maize SNP50 BeadChip (Illumina, San Diego,
California, USA) containing 56110 SNPs.

Phenotypic data under drought stress in three different
environments (IARI, New Delhi: 28◦N 77◦E; 229m AMSL),
ANGRAU, Hyderabad: 17◦N 78◦E; 536m AMSL and RRS,
Karimnagar: 18◦N 79◦E; 264m AMSL) during post-rainy seasons
of 2010/11 and 2011/12 generated earlier (Nepolean et al., 2014)
were used for predicting the GEBV in the current experiment.
The “mean data” obtained by pooling datasets of these 3 locations
was also included in the present experiment. All the drought
experiments was followed the alpha lattice design consists of 16
incomplete blocks, and each block comprised of 15 plots with 3
replicates. Drought trials were phenotyped for the anthesis-to-
silking interval (ASI, in days), the grain yield (GY, kilograms per
plot), the number of kernels per row (KR), the number of kernel
rows (KRN), the ear girth (EG, in centimeters), the ear length (EL,
in centimeters), and the 100-kernel weight (HKW, in grams).
Mean data across location for each genotype was calculated using
the restricted maximum likelihood (ReML) approach and the
best linear unbiased predictors (BLUPs) was used for further
analysis.
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Genomic Selection Models
Parametric models (RR, LASSO, EN, Bayes A, Bayes B), a non-
parametric model (RF) and a semi-parametric model (RKHS)
were used to estimate the genetic value of each genotype.
Common variance was considered for all the markers by the
ridge regression model (Meuwissen et al., 2001) and, therefore,
for each marker effect it constricts uniformly. Estimation of RR
βs was performed byminimizing the L2 panelized residual sum of
squares (Riedelsheimer et al., 2012), where RR shrinks all marker
effects toward zero rather than categorizing the markers as either
significant or as having no effect (Breiman, 1995;Whittaker et al.,
2000).

Another parametric model, LASSO, which estimates of the
number of βs, was obtained by minimizing the residual sum
of squares, and subjected to the constraint of L1-type penalty
on regression coefficients (Technow et al., 2012). EN is a more
generalized model that combines both the RR and LASSO
penalties. EN’s estimate of the number of βs was obtained
by minimizing the residual sum of squares subjected to the
constraints of both L1- and L2-type penalties on regression
coefficients.

EN simplifies to RR when α = 1 and to LASSO when α = 0.
For any other value of α (0< α <1), EN is used. The L1 part of EN
performs automatic variable selection while L2executes grouped
selection and stabilizes the solution paths with respect to random
sampling. Predictive accuracies and significant SNPs for all traits
were estimated through RR, LASSO, and EN with the use of an
R package “glmnet” with penalty parameters optimized via ten-
fold cross validation (Friedman et al., 2010). The significant SNPs
estimated on the basis of variable importance were compared
with the previous genome-wide association (GWA) results from
the water-stressed maize panels (Nepolean et al., 2014).

The other two parametric models, Bayes A and Bayes B
(Meuwissen et al., 2001) do not consider the common variance
across the effects of SNPs. The Gibbs sampler for 50,000
repetitions fitting the model was computed by discarding the first
5,000 samples as a burn-in and saving one of each of the ten
samples for computing the posterior means for parameters. The
Bayes Amethod assumes conditional distribution of each marker
effect (given its variance) to follow a normal distribution. If the π

value becomes zero, then the Bayes B model shrinks to Bayes A.
We used the “BGLR” R package for the implementation of both
Bayes A and Bayes B (De Los Campos et al., 2013).

A kernel function is used by the RKHS method to translate
datasets of markers into a square matrix to be used in a linear
model. There is a possibility that this method might capture non-
additive genetic effects because of its ability to perform non-linear
regression in a higher dimensional space. RKHS prediction was
performed using “BGLR” (Bernardo and Yu, 2007). The model
can be formulated as follows:

Y = Wµ + Khα + ε (1)

where ε can be defined as a vector of random residuals and
µ as a vector of fixed effects. The parameters α and ε have
independent distributions. The matrix Kh depends on a kernel
function with the smoothing parameter h, which measures the

“genomic distance” between genotypes and can be interpreted as
a correlation matrix. The “genomic distance” between genotypes
is measured by Kh, where h represents the smoothing parameter
and can be elucidated as a correlation matrix. Here, the Gaussian
kernel was used on the genetic distance. The decay rate of
correlation between genotypes is regulated by the h parameter.

Genomic prediction using parametric and semi-parametric
models RR, LASSO, EN, Bayes A, Bayes B, and RKHS was based
on 29,619 SNPs, while prediction using a non-parametric model
Random Forest (RF) was performed using 5420 SNPs that were
randomly selected from a set of 29,619 SNPs. The RF test uses a
random subset of predictors to form a collection of regression
trees on the basis of bootstrap samples of observations. This
model was implemented using the R package “RandomForest”
(Liaw and Wiener, 2002) where the number of trees was
adjusted to 1,000, keeping mtry at p/3. Prediction accuracy for
all agronomic traits was calculated through “Pearson correlation
coefficient” between observed and predicted value in all seven GS
models.

Validation
To compute predictive accuracies, a 10-fold cross-validation
(CV) scheme was applied and iterated 10 times. In each iteration,
10 disjoint subsets of genotypes were formed randomly where
one random subset was used as a validation set and the other
nine subsets were used as a training population to estimate
the parameters of the model used for prediction of excluded
genotypes in the validation set. The Pearson correlation between
observed and predicted values was calculated in each round.
This procedure was iterated 10 times to obtain 100 cross-
validation runs. The predictive ability was calculated as the
Pearson correlation coefficient between observations and cross-
validated GEBVs were thus referred for accuracy.

RESULTS

Mean Performance
Under drought condition, the performance of 7 agronomic
traits—ASI, GY, KR, KRN, EG, EL, and HKW were recorded in
all three locations. In summary, the mean data from all three
locations explained that ASI under drought varied from 2 to 12
days with a mean value of 6 days and standard deviation of 2.53.
GY had a range of 0.2–2.2 with an average of 1.7 and a standard
deviation 1.92. For KRN, the mean and standard deviation was
31 and 2.57, respectively. Other agronomic traits i.e., EL, EG,
KR, and HKW, the range varied from 7.8–17.5, 1.8–4.1, 10.9–18
and 15–32 with an average of 13.4, 3.3, 13, and 26 respectively
(Nepolean et al., 2014).

Prediction Accuracy of GS Models
Accuracy of the seven GSmodels was predicted for all seven traits
phenotyped for drought stress at the three locations (Table 1).
While comparing the prediction accuracies among these traits
and locations, we observed that the highest prediction accuracies
of 0.93, 0.91, and 0.92 were identified for ASI, EG, and HKW,
respectively, in Karimnagar, whereas for GY, Hyderabad and
Karimnagar provided the best results, and Karimnagar and
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TABLE 1 | Prediction accuracies of agronomic traits predicted by seven

GS models under drought stress in subtropical maize.

Traits GS Models

RR LASSO EN RF RKHS Bayes A Bayes B

LOCATION: IARI, NEW DELHI

ASI 0.82 0.77 0.77 0.83 0.91 0.90 0.92

EG 0.69 0.71 0.71 0.85 0.89 0.87 0.89

EL 0.62 0.61 0.61 0.86 0.89 0.90 0.91

GY 0.60 0.53 0.63 0.84 0.89 0.88 0.87

HKW 0.86 0.84 0.83 0.85 0.90 0.88 0.90

KR 0.77 0.71 0.76 0.86 0.90 0.87 0.89

KRN 0.71 0.69 0.72 0.86 0.89 0.88 0.90

LOCATION: HYDERABAD

ASI 0.28 0.28 0.28 0.86 0.91 0.91 0.90

EG 0.78 0.78 0.75 0.85 0.89 0.88 0.90

EL 0.72 0.71 0.72 0.85 0.89 0.90 0.89

GY 0.64 0.63 0.61 0.83 0.89 0.90 0.89

HKW 0.69 0.70 0.68 0.89 0.89 0.88 0.90

KR 0.72 0.73 0.72 0.86 0.90 0.88 0.90

KRN 0.77 0.66 0.84 0.86 0.90 0.89 0.91

LOCATION: KARIMNAGAR

ASI 0.30 0.30 0.30 0.86 0.91 0.93 0.92

EG 0.78 0.70 0.79 0.87 0.90 0.89 0.91

EL 0.73 0.65 0.70 0.86 0.90 0.87 0.91

GY 0.56 0.56 0.61 0.85 0.89 0.89 0.90

HKW 0.66 0.69 0.71 0.88 0.89 0.89 0.92

KR 0.77 0.71 0.74 0.86 0.89 0.89 0.90

KRN 0.42 0.40 0.35 0.85 0.90 0.89 0.90

MEAN

ASI 0.91 0.92 0.92 0.84 0.98 0.97 0.97

EG 0.88 0.90 0.87 0.84 0.98 0.97 0.96

EL 0.90 0.90 0.88 0.84 0.99 0.97 0.97

GY 0.78 0.81 0.79 0.80 0.98 0.93 0.95

HKW 0.91 0.93 0.92 0.86 0.99 0.97 0.97

KR 0.91 0.93 0.90 0.86 0.98 0.96 0.96

KRN 0.94 0.92 0.91 0.85 0.98 0.95 0.96

IARI showed better results than Hyderabad for EL. The highest
prediction accuracy for KRN was identified in Hyderabad with a
value of 0.91. KR was the only trait in which all the 3 locations
provided consistent results. Across all traits, the maximum
prediction accuracy was found for ASI and the minimum for
KR. It was examined that among the 3 locations, Karimnagar
provided the best results.

Prediction accuracy and standard deviations ranged between
0.28–0.92 and 0.03–0.06 (Hyderabad), 0.53–0.92 and 0.02–0.06
(IARI), and 0.30–0.93 and 0.02–0.06 (Karimnagar), respectively,
across all traits and models. RKHS, Bayes A, and Bayes B showed
no difference in the prediction accuracy above 0.04, while RR,
LASSO and EN showed prediction accuracies above 0.03 for all
traits, except for KRN, which showed a difference of more than
0.07 at all locations. Bayes B estimated the highest prediction
accuracy for all traits except for EG and KRN. Bayes A and RKHS

provided the second best prediction accuracy with a drop of 0.01–
0.02 (Hyderabad); 0.01–0.03 (IARI), except for GY; and 0.01–0.04
(Karimnagar), except for ASI, respectively, compared to Bayes B.

A great fall in the prediction accuracies for certain traits (ASI,
GY, and KRN) under specific models over different locations was
observed. Ridge, lasso and EN models predicted ASI with less
accuracy (0.28) in Hyderabad. Similarly, in IARI, less prediction
accuracy was found for GY (0.6), whereas Karimnagar, ASI (0.3),
GY (0.56), and KRN (0.4) had less accuracy compared to the
other traits and locations. For GY, the best results (0.9) for
Hyderabad and Karimnagar were predicted by both Bayes A and
Bayes B, while for IARI, RKHS predicted the best value (0.89).
Overall, the prediction accuracy of the mean location was better
than that for individual locations.

In location-wise comparison, it was noticed that though the
results of RKHS, Bayes A and Bayes B were quite similar but the
highest prediction accuracy was obtained from the Bayes Bmodel
in all 3 locations namely Hyderabad, IARI and Karimnagar while
in the mean dataset RKHS was slightly better over the Bayes B.

SNPs Identified through Different Models
We had estimated the prediction accuracy for seven GS models.
From these models, the Bayes B model provided the maximum
accuracy for six of the seven traits across several environments. A
set of the top 100 SNPs with the highest marker effect observed in
each trait and environment was selected using the Bayes B since
it produced highest accuracy in all three locations. From this
exercise, a total of 2800 SNPs with the highestmarker effect across
several datasets (traits + environments) were identified. Out of
these SNPs, 1053 SNPs were unique (Supplementary Table S1).
These SNPs distributed across the genome, ranging from 52 SNPs
in chromosome 2–150 SNPs in chromosome 1 (Figure 1).

Out of the 1053 SNPs, a set of 77 consistent SNPs identified
across several traits and locations (Table 2) were selected as a test
for understanding their functional relationships with drought-
tolerant genes. The maize gene models explained that these 77
SNPs distributed across the genome were mapped 10 drought-
responsive TFs within their 150 Kb region. CAMTA mapped
within 41 Kb region followed by bHLH (73 Kb), bZIP (92 Kb),
NF-YB (101 Kb), NF-YA (108 Kb), GRAS (120 Kb), WRKY (125
Kb), AP2-ERF (148 Kb), MYB (149 Kb), and NAC (149 Kb).
The AP2-ERF TF family was mapped close to the maximum
number of SNPs (30) on all chromosomes; whereas chromosome
9 had the most drought-responsive SNPs (6) and chromosome
3 contributed only one drought-responsive SNP. The MYB TF
family was mapped to 17 SNPs located on all chromosomes
except on chromosomes 1 and 10. The SNP PZE-109076471 on
chromosome 9wasmapped 2 Kb fromMYBTF. BothWRKY and
GRAS TFs mapped 10 unique and seven SNPs in their vicinity,
respectively. The BHLH TF family encompassed five SNPs on
different chromosomes, including an SNP (PZE-110088632) on
chromosome 10, which was located only 732 bp away from the
BHLH TF. The NF-YA (3), bZIP (2), NAC (1), CAMTA (1),
and NF-YB (1) TFs mapped 3, 2, 1, and 1 SNPs, respectively.
In addition, SNPs were also mapped close to more than one
TF family. The SNP SYN38859 on chromosome 2 was mapped
close to MYB and AP2-ERF at a distance of 2 and 116 Kb away,
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FIGURE 1 | Distribution of SNPs with higher marker effects mapped for different traits and locations from the Bayes B model; several SNPs were

associated with drought-related transcription factors and co-mapped with putative QTLs.

respectively, and another SNP (PZE-107128846) on chromosome
7 wasmapped at a distance of 54 and 108 Kb away from theGRAS
and NF-YA TFs, respectively.

The set of 1053 SNPs detected using the Bayes B model
were matched with the previously identified 67 significant SNPs
from GWAS models of GenABEL and GAPIT (Nepolean et al.,
2014). We found 10 SNPs which were commonly identified
by GS as well as GWAS models (Table 3). These SNPs were
mapped on different chromosomes i.e., chromosome 1 (7
SNPs), chromosome 3 (1 SNP), chromosome 4 (1 SNP), and
chromosome 10 (1 SNP). All these SNPs were associated with 13
maize gene models and had drought-related functions. Six SNPs
were annotated as transcription factors including MYB, bHLH,
NF-YA, and FAR1 while rest of them as chaperone protein dnaj
49-like, duf231 domain containing family protein, tubulin beta-1
chain, glutathione peroxidase, and NADP-malic enzyme.

DISCUSSION

Many studies have implemented GS to test the gains in
various genetic enhancement programs (Bernardo and Yu,
2007; Wong and Bernardo, 2008; Mayor and Bernardo, 2009;
Shengqiang et al., 2009). A high level of correlation between
true breeding values and the GEBV is found to be sufficient
for genomic selection based on marker data (Heffner et al.,
2009).

Different approaches have been used to determine breeding
values from GS models–penalized regressions (RR, LASSO, and
EN), Bayesian approaches (Bayes A and Bayes B), and non-linear
regressions (RKHS and RF) (Hayes et al., 2009; Heslot et al.,
2012; Nepolean et al., 2013). Non-linear regression models are
studied for higher prediction accuracy over penalized models. In
our study, we found higher prediction accuracy for both non-
linear models compared to penalized models, with a maximum
difference of 0.25 between non-linear models and penalized
models across all seven traits. Among several different GS
models, a better accuracy is found for non-linear models since
they can capture non-additive genetic effects (Technow et al.,
2012). However, if the additive genetic effects are solely included,
using nonparametric models may not yield the expected level of
accuracy.

The least prediction accuracy was observed for regularized
linear models in this study. This model can be supported by
the presence of epistatic interactions which may lower the
performance of linear models (Ogutu et al., 2012). Among the
penalized models, we observed better prediction accuracy for EN
and RR than for LASSO. These results were in agreement with
a previous study where EN outperformed LASSO in terms of
consistency of model selection and prediction accuracy (Zou and
Hastie, 2005).

Bayes B is a variable selection operator, and identifies a
subset of markers with larger effects particularly those controlled

Frontiers in Plant Science | www.frontiersin.org 5 April 2017 | Volume 8 | Article 550

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Shikha et al. Genomic Selection for Drought Tolerance in Maize

TABLE 2 | A set of 77 consistent SNPs identified through Bayes B mapped drought-responsive transcription factors within the 150 Kb region.

SNP Gene model Chr SNP

Position

Gene Start Gene End Annotation

PZE-101127875 GRMZM2G039112 1 162280117 162426395 162428231 EREB168

PZE-101152541 GRMZM2G309731 1 195764754 195878179 195878689 EREB119

SYN28647 GRMZM2G003466 1 20132877 20094963 20096296 EREB101

SYN2521 GRMZM2G144744 1 266030836 266094769 266097836 GRAS8

SYN32645 GRMZM2G110067 1 71014176 71022756 71024504 GRAS27

PZE-101135368 GRMZM2G008250 1 174834248 174845979 174849344 NF-YA2

SYN122 GRMZM2G030272 1 52861261 52919938 52921358 WRKY32

PZE-101205664 GRMZM2G070211 1 253475788 253502280 253505400 WRKY102

SYN37966 GRMZM2G068967 2 10684223 10786158 10786914 EREB97

SYN38859 GRMZM2G028969 2 20125223 20096078 20097002 EREB185

SYN29038 GRMZM2G475678 2 20642295 20563651 20564721 EREB61

SYNGENTA13688 GRMZM2G174917 2 5693114 5562976 5564647 EREB47

SYN6387 GRMZM2G038722 2 13208848 13298750 13300526 MYB13

SYN38859 GRMZM2G105137 2 20125223 20122023 20123440 MYB104

SYN33932 GRMZM2G040349 2 210814330 210788762 210792895 NF-YA3

SYN456 GRMZM2G071907 2 11850510 11753531 11755126 WRKY50

SYN36398 GRMZM2G117851 3 212101837 212179339 212194812 bZIP99

PZE-103120110 GRMZM2G060216 3 176807786 176800215 176808889 bZIP11

PZE-103008756 GRMZM2G133168 3 4686561 4660985 4665930 EREB103

PZE-103093412 GRMZM2G082387 3 150730803 150830511 150832666 GRAS4

SYN31097 GRMZM2G051256 3 54498010 54469147 54472943 MYB40

PZE-103149619 GRMZM2G167829 3 201971540 201931089 201932734 MYB151

PZE-104099837 GRMZM2G018398 4 175944355 176036953 176039523 EREB14

PZE-104078796 GRMZM2G072926 4 152168462 152162187 152163244 EREB176

PZE-104105965 GRMZM2G029323 4 181089587 181057725 181059564 EREB17

PZE-104000308 GRMZM2G018254 4 609379 513060 515231 GRAS48

PZE-104079825 GRMZM2G098800 4 153293870 153196436 153199541 GRAS80

PZE-104115471 GRMZM2G017268 4 196944239 197071819 197073073 MYB63

PZE-104028583 GRMZM2G157306 4 34490747 34467629 34474170 MYBR92

PZE-104108817 GRMZM2G063216 4 184552967 184639458 184643071 WRKY16

PZE-105044893 GRMZM2G024871 5 31776003 31857938 31858460 EREB74

PZE-105109854 GRMZM2G016434 5 166412867 166319262 166321982 EREB129

PZE-105169336 GRMZM2G021369 5 210395726 210273738 210275023 EREB136

SYN908 GRMZM2G024973 5 11663525 11781976 11784448 GRAS44

SYN14867 GRMZM2G161512 5 41641428 41686328 41688450 MYB150

PZE-105064380 GRMZM2G145041 5 64074058 64117509 64120689 MYBR96

PZE-105133279 GRMZM2G170049 5 188960849 188916348 188920991 MYB26

PZE-105031680 GRMZM2G095239 5 17158383 17104261 17116833 MYBR27

PZE-105156453 GRMZM2G011789 5 204435442 204332560 204333737 NF-YB6

SYN4309 GRMZM5G846057 6 165411234 165487861 165489392 EREB34

PZE-106026281 GRMZM2G380377 6 62617003 62553730 62555335 EREB56

PZE-106018957 GRMZM2G089636 6 38316669 38422614 38424509 GRAS60

PZE-106065562 GRMZM2G048910 6 117930951 117954549 117956404 MYB106

SYN28345 GRMZM2G171569 7 21261412 21149818 21151267 EREB64

PZE-107069244 GRMZM2G052667 7 120468208 120351650 120354724 EREB102

PZE-107128846 GRMZM2G169636 7 165104257 165156675 165158312 GRAS81

PZE-107135434 GRMZM2G150841 7 168141869 168289381 168291477 MYB23

SYN4566 GRMZM2G056407 7 167528708 167607978 167609967 MYB94

PZE-107101710 GRMZM2G172327 7 150099406 150087003 150088438 MYB14

PZE-107128846 GRMZM2G038303 7 165104257 164991494 164995805 NF-YA3

(Continued)
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TABLE 2 | Continued

SNP Gene model Chr SNP

Position

Gene Start Gene End Annotation

PZE-108077632 GRMZM2G700665 8 131963205 132044001 132047428 EREB110

PZE-108069655 GRMZM2G174347 8 121038497 120960110 120961302 EREB92

SYN4110 GRMZM2G044077 8 27006540 26881888 26883485 EREB96

PZE-108048529 GRMZM2G120401 8 81105160 80979479 80980774 EREB194

PZE-108106293 GRMZM2G129154 8 159110821 159017496 159019119 GRAS2

SYN17469 GRMZM2G136887 8 140339489 140378673 140386322 MYBR101

PZE-108108473 GRMZM2G134073 8 160576714 160424732 160426914 NAC9

PZE-108127850 GRMZM2G029292 8 170252297 170359322 170386361 WRKY35

PZE-109019740 GRMZM2G073982 9 20041676 20112432 20114447 EREB33

PZE-109016273 GRMZM2G301860 9 16227362 16252231 16253405 EREB122

PZE-109046027 GRMZM2G073047 9 75456354 75472705 75473919 EREB39

PZE-109005418 GRMZM5G852704 9 5954786 5876876 5877925 EREB31

PZE-109019829 GRMZM2G073982 9 20238182 20112432 20114447 EREB33

PZE-109016446 GRMZM2G301860 9 16395239 16252231 16253405 EREB122

PZE-109076471 GRMZM2G098179 9 119314448 119310947 119312449 MYB52

PZE-109076511 GRMZM2G098179 9 119414197 119310947 119312449 MYB52

PZE-110057129 GRMZM2G152661 10 109538261 109572710 109580177 CAMTA5

PZE-110058576 GRMZM2G023708 10 112403513 112305177 112306206 EREB125

PZE-110102744 GRMZM2G076602 10 145455965 145350317 145352828 EREB212

PZE-110083667 GRMZM2G173429 10 135747046 135800932 135802925 GRAS22

PZE-110036061 GRMZM2G090594 10 68581754 68725531 68726795 WRKY67

PZE-110068347 GRMZM2G031963 10 124790354 124659347 124664396 WRKY59

TABLE 3 | High marker effect SNPs from the Bayes B GS model matching with the previous GWAS models.

Common SNPs in

GS and GWAS

Chr Position (in bp) Gene model Annotation Drought-related function

PZE-101100942 1 96540960 AC197099.3_FGT005 MYB-related (TF) Stomatal regulation

PZE-101125101 1 157957977 GRMZM2G418217 Protein far1-related sequence 5-like ABA-signaling

PZE-101130083 1 166240443 GRMZM2G570020 bHLH (TF) Stomatal regulation

PZE-101130084 1 166240542 GRMZM2G570020 bHLH (TF) Stomatal regulation

PZE-101130213 1 166556661 GRMZM2G071385 chaperone protein dnaj 49-like Homeostasis

PZE-101130292 1 166625734 GRMZM2G038855 duf231 domain containing family protein Water uptake

PZE-101135368 1 174834248 GRMZM2G008250 Nuclear transcription factor y subunit a-2 Stomatal regulation

PZE-103046076 3 47639590 GRMZM2G133802 Tubulin beta-1 chain Root development

PZE-104061181 4 119441233 GRMZM2G009275 tpa: hlh dna-binding domain superfamily

protein

Stomatal regulation

SYNGENTA14972 10 138496646 GRMZM5G822829 bhlh domain protein Stomatal regulation

SYNGENTA14972 10 138496646 AF466202.2_FGP007 tpa: rna recognition motif containing

family protein

Plant growth and development under drought

SYNGENTA14972 10 138496646 GRMZM5G884600 glutathione peroxidase ROS homeostasis

SYNGENTA14972 10 138496646 AF466202.2_FGP001 NADP-malic enzyme Ion homeostasis

by a few large QTLs. In our study, the Bayes B approach
provided better prediction accuracy across all data (location +

trait) compared to other GS models. Previous studies have also
reported the better performance of Bayes B as compared to
other GS models (VanRaden et al., 2009; Daetwyler et al., 2010;
Jannink et al., 2010). We also observed that RKHS showed the
highest prediction accuracy but was restricted to a few datasets.

The variation in prediction superiority for RKHS has also been
observed in previous results (Shengqiang et al., 2009; Crossa et al.,
2010). The Bayesian model incorporates additive genetic effects,
while RKHS captures complex epistatic interactions (Gianola and
Van Kaam, 2008). Therefore, one would expect the Bayesian
method to perform well in traits where additive effects play a
central role and RKHS to perform well in traits where epitasis
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is more relevant. This also implied that both additive and non-
additive components play significant role in trait expression in
variable magnitude depending upon the genetic architecture of
the traits (Crossa et al., 2010).

Our results showed the presence of variation in predicting
the breeding values in different locations which explained that
breeding values are shaped up by the environment. The results
were also in coherent with our previous GWAS results (Nepolean
et al., 2014) where location-specific SNPs were identified. It is also
interesting to note that several SNPs were consistent in across
locations as well as across traits in the GWAS study.

Genotype× Environment (G× E) interaction is an important
component of genetic variability (Crossa et al., 2010, 2011).
Various genomic selection studies have included G × E effect
while predicting the values in across environments (Heffner et al.,
2011b; Resende et al., 2011), within environments or group of
environments (Burgueño et al., 2012; Dawson et al., 2013; Ly
et al., 2013; Heslot et al., 2014) or using marker-by-environment
predictions (Jarquín et al., 2014; Lopez-Cruz et al., 2015).

In our experiment, the Bayesian models out-performed
the RR and LASSO models, and this result may be because
Bayesian models utilize marker-specific shrinkage of effects,
while RR and LASSO equally penalize entire marker effects
(Meuwissen et al., 2001). This effect was evident in this study
where Bayesian models out-performed the BLUP model by a
difference of 0.25 in prediction accuracies. The latter model
considers equal variance in all markers, and does not require
preliminary information on the variance of marker effects.
However, this information is required in Bayesian approaches to
estimate prediction accuracies. In addition, RR also incorporates
familial relationships and is hence inferior to Bayesian method
(Habier et al., 2007). Since the Bayes B method estimates higher
prediction accuracies for six of seven traits, it was selected for
further validation of SNPs associated with drought tolerance.

Functional Mechanisms of Selected Top
SNPs
The SNPs selected based on their marker effects were found to
be associated with 10 droughts responsive TFs. The collective
role and the interaction of those SNPs with various stress-related
mechanisms at a functional level are discussed below.

Hormone Signaling
Abscisic acid (ABA) is a phytohormone stimulated in response
to developmental and environmental stimuli. Early stages in
ABA signaling involve ABA receptors, phosphatases, and kinases
that control the regulation of their targets (Soon et al., 2012).
The binding of ABA molecules to their receptors stimulates
the inhibition of proteinphosphatases (PP2Cs), which, in turn
activates SNF1-related protein kinase 2 (SnRK2) (Ng et al.,
2011; Soon et al., 2012). SnRK2 is an important signaling
molecule that phosphorylates its downstream targets, including
the transcription factors NAC, bZIP, HSF, MYB, WRKY, and
RAV1 (belonging to AP2-ERF family; Furihata et al., 2006; Fujita
et al., 2009; Kim et al., 2012; Feng et al., 2014). ABA-inducible
bZIP transcription factors containing ABA-responsive elements

(ABRE) regulate HSFs in a drought-responsive manner (Yoshida
et al., 2010; Bechtold et al., 2013).

Under drought stress, ABA is accumulated in guard cells
where the closing of stomata is dependent upon H2O2 synthesis
produced in the ABA-signaling pathway (Bright et al., 2006).
Drought-inducible transcription factors WRKY (Ren et al.,
2010), NF-YA (Gao et al., 2015), MYB (Seo and Park, 2009),
CAMTA (Pei et al., 2000; Chen et al., 2004; Pandey et al., 2013),
C2H2 (Huang et al., 2009) and bHLH (Abe et al., 2003; Seo et al.,
2011) trigger stomatal closure under the effect of ABA alone in
drought stress. ERF is another drought-responsive transcription
factor stimulated under the effect of ABA but is also integrated
with other two hormones—jasmonic acid and ethylene—which
induce the closing of stomata (Cheng et al., 2013). The ERF
transcription factor mapped close to three SNPs, distributed on
chromosomes 5, 7, and 8 was co-localized with quantitative trait
loci (QTLs) mapped for EL, GY, ASI, and KRN in earlier studies
(Guo et al., 2008; Messmer et al., 2009; Nikolić et al., 2012;
Figure 2).

Gibberellic acid is another plant hormone that promotes
growth and cellular elongation; however, its impact on
drought stress is not completely understood. GA-responsive
transcription factors such as SCARECROW (belonging to
GRAS family) are studied for their involvement in cellular
differentiation in the Arabidopsis root meristem (Sabatini et al.,
2003; Ma et al., 2010). These plant hormones constitute a
signaling network that involves various receptors, phosphatases,
kinases, calcium-binding signaling molecules, and transcription
factors.

Photosynthesis
Maintenance of photosynthesis is an adaptive trait that
contributes to an improvement in grain yield in drought stressed
plants. The transgenic maize with an increased NF-YB activity is
studied for drought tolerance with a maintained photosynthetic
rate and high yield (Nelson et al., 2007). These plants also showed
good stomatal conductance and high chlorophyll index in water
stressed conditions. In addition, the NF-YB transcription factor
mapped close to an SNP on chromosome 5 and was co-localized
with a QTL for GY, which was previously identified by Nikolić
et al. (2012). Another transcription factor CAMTA is identified as
a regulator of the photosynthetic machinery, where the T-DNA
insertion line of AtCAMTAs has low photo system II efficiency
under drought stress (Pandey et al., 2013).

Root Development
A deeper root system is capable of accessing all soil moisture
in a drought-stressed plant system. Root development due to
drought tolerance has been observed in SNAC1-overexpressing
transgenic cotton plants (Liu et al., 2014), and root enlargement
has been observed in root-overexpressing OsNAC10 drought-
stressed rice plants (Jeong et al., 2010). However, the inhibition
of lateral root development is an adaptive response to drought
stress (Xiong et al., 2006), whereas reduced lateral root
formation and improved drought tolerance have been found in
Arabidopsis MYB96-overexpressing mutant plants (Seo and Park,
2009).
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FIGURE 2 | The marker effect of a consistent SNP PZE-104079825 associated with the ROS scavenging GRAS transcription factor mapped on

chromosome 4 from various traits and locations.
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CONCLUSION

Our results showed that Bayes B is superior to the other GS
models in predicting the genomic values of the studied genotypes.
Using Bayes B, we found 77 SNPs that are significant by their
marker effects and are related to drought-responsive TFs. We
also identified common SNPs from current GS model and
previous GWAS models. These significant SNPs are related to
many functions, such as stomatal closure, root development,
hormonal signaling and photosynthesis. As these SNPs are
drought-related and involved in various molecular functions,
they can be further used for the development of drought-tolerant
hybrids.
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