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Immunity, virulence, biofilm formation, and survival in the host environment are regulated

by the versatile nature of density dependent microbial cell signaling, also called quorum

sensing (QS). The QS molecules can associate with host plant tissues and, at times,

cause a change in its gene expression at the downstream level through inter-kingdom

cross talking. Progress in controlling QS through fungicide/bactericide in pathogenic

microscopic organisms has lead to a rise of antibiotic resistance pathogens. Here,

we review the application of selective quorum quenching (QQ) endophytes to control

phytopathogens that are shared by most, if not all, terrestrial plant species as well as

aquatic plants. Allowing the plants to posses endophytic colonies through biotization will

be an additional and a sustainable encompassing methodology resulting in attenuated

virulence rather than killing the pathogens. Furthermore, the introduced endophytes

could serve as a potential biofertilizer and bioprotection agent, which in turn increases the

PAMP- triggered immunity and hormonal systemic acquired resistance (SAR) in plants

through SA-JA-ET signaling systems. This paper discusses major challenges imposed

by QS and QQ application in biotechnology.
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INTRODUCTION

The use of synthetic broad-spectrum fungicides/bactericides in plant diseasemanagement results in
imbalances within the microbial community and the continuous evolution of multiple bactericide-
resistant strains. Microbes with the ability to produce quorum quenching enzymes, which can
degrade the wide-spread quorum sensing signals from pathogenic microbes, could be employed in
development of sustainable methods of suppressing virulence expression and abolishing bacterial
infection. Quorum quenching enzymes produced by endophytes have a more limited selection
pressure for microbial survival than biocide treatments (Cirou et al., 2012). Endophytic bacterial
growth in plants aids disease control and promotes plant growth (Nowak, 1998; Senthilkumar
et al., 2008; Jie et al., 2009; Cirou et al., 2012). Quorum quenching endophytic microbial inocula,
primarily bacteria, can be used as propagating priming agents for co-culturing with plant tissues
under in vitro conditions. This practice is an emerging trend in biotechnological approaches that
harbors unprecedented potential for efficient control over virulent pathogens.
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Microbial cell signaling is a precise mechanism involving
many factors in play. It is now clear that the transmission of
signals from synthesis to sensing depends and varies among
organisms and host environments. Virulence-contributing
factors like extrapolysaccharide (EPS), degradative exoenzymes,
horizontal gene transfer (HGT), (Seitz and Blokesch, 2013), and
effectors’ secretion are controlled in a cell density-dependent
manner in several plant pathogens (Helman and Chernin, 2015).
Quorum sensing control of these determinants prevents the
early production of factors like EPS, which could interfere with
other important processes that govern invasion, such as adhesion
(Koutsoudis et al., 2006).

Prokaryotes and eukaryotes have both coexisted and survived
for billions of years. During this time period, both were exposed
to various signaling molecules produced by each other (Shiner
et al., 2005; Hughes and Sperandio, 2008). Although the existence
of interkingdom signaling is predictable, the specificity of the
ligands and the functions that are regulated are unique to
each signaling circuit (Rampioni et al., 2014). Decoding the
language taking place between plants and bacteria will be a
major challenge for future research due to the numerous and
different associations and/or interactions taking place in nature.
This article gives a summary of advances in quorum quenching
microbial research with a focus on plant-microbe interactions
and the impact of QS signal molecules on the cells and tissues
of plants.

MAJOR GENE FAMILY INVOLVED IN
BACTERIAL QUORUM SENSING

QS-based microbial cell signaling aids pathogenicity of the
most of pathogens (Chevrot et al., 2006; Frederix and Downie,
2011) but also helps in plant growth promotion interaction
with plants (Brencic et al., 2005; Soto et al., 2006; Downie,
2010). Acyl homoserine lactone (AHL)-based quorum sensing
is present in pathogens as well as many beneficial microbes,
such as Methylobacterium (Poonguzhali et al., 2007a,b). Many
Gram-negative plant-associated bacterial pathogens have been
reported to regulate their virulence by AHL-based QS (Helman
and Chernin, 2015). These plant pathogenic bacteria fall within
a large number of species among the Pseudomonas and Ralstonia
(Mansfield et al., 2012) that cause severe damage to crops.

A major bacterial intercellular signaling system in Gram-
negative bacteria is LuxI/R quorum sensing based on the
production (via the LuxI-family proteins) and detection (via the
LuxR-family proteins) of AHL signaling molecules. Schaefer et al.
(2013) screened many genomes in the Proteobacteria taxon for
the presence of LuxI and LuxR homologs. Though LuxI and LuxR
homolog pairs exist in Alpha-, Beta-, and Gammaproteobacteria,
many isolates having LuxI/LuxR were not found to produce
AHLs. LuxR proteins that have the same modular structure
as LuxRs but are devoid of a cognate LuxI AHL synthase are
called solos. LuxR solos have been shown to be responsible to
respond to exogenous AHLs and AHLs produced by neighboring
cells (Ferluga and Venturi, 2009; Gonzalez and Venturi, 2013).
The LuxR-like solo protein OryR transcriptional regulator of

Xanthomonas oryzae pv. oryzae interacts with an unknown rice
signal molecule (RSM) to activate plant virulence genes (Ferluga
and Venturi, 2009). Such LuxR-like solos function as messengers
of both interspecies and interkingdom signaling (Gonzalez and
Venturi, 2013).

INTERKINGDOM SIGNALING

Plants seem to respond differently to AHL-biomolecules, which
points to the existance of different receptors or signaling cascades
(Götz-Rösch et al., 2015). However, until now, no specific AHL-
receptor has been identified in plants. Perez-Montano et al.
(2013) reported the existence of AHL-mimic QS molecules in
diverse Oryza sativa (rice) and Phaseolus vulgaris (bean) plant
samples. These bimolecular analogs bind to signal receptors of
bacteria, but they fail to do the signaling activity of AHLs,
resulting in confusing bacterial populations. A thorough analysis
using biosensors carrying the lactonase enzyme showed that rice
and bean seed extracts contain biomolecules that lack lactones’
typical ring of AHLs. Although Götz-Rösch et al. (2015) believe
that the bacterial AHL molecule might positively influence
plant growth, evidence is lacking. However, plant-influenced
gene expression in the rice endophyte Burkholderia kururiensis
M130 was reported (Coutinho et al., 2015). Captivatingly, these
AHL-mimicking molecules specifically alter the QS-regulated
biofilm formation of two plant microbes, Sinorhizobium fredii
and Pantoea ananatis, suggesting that plants can enhance or
inhibit bacterial QS systems depending on the bacterial strain
(Perez-Montano et al., 2013). Further studies would contribute
to a better understanding of plant-bacteria relationships at the
molecular level.

THE INTERPLAY BETWEEN
QUORUM-SENSING MOLECULES AND
PHYTOHORMONES

The problem of increasing pathogens resistance to
antibiotics/pesticides has prompted the search for
phytometabolites with anti-QS activities (Nazzaro et al., 2013;
Tan et al., 2013). However, plants have the capacity to produce
secondary metabolites in smaller amounts. The considerable
amount of natural anti-microbial molecule production in plants
is achieved through various methods like the suspension hairy
root culture and concentrations of such produced compounds
were found to be sufficient for virulence suppression (Ahmad
et al., 2014). Similarly, a monoterpenoid phenol carvacol
demonstrated QS inhibition in bacteria, which limited biofilm
formation and/or chitinase production (Borges et al., 2013;
Kerekes et al., 2013; Burt et al., 2014). Phytohormones change
plant-microbe interactions by orchestrating host immune
responses and modulating microbial virulence traits (Xu et al.,
2015). AHLs have evolved to act as interkingdom signals; many
plants have been shown to respond to AHLs, which influence and
alter plant gene expression (Schuhegger et al., 2006; Ortiz-Castro
et al., 2008; Von Rad et al., 2008; Schikora et al., 2011; Schenk
and Schikora, 2015; Schikora, 2016). These AHLs promotes
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plant growth in part by causing a shift in the hormonal balance
between indole acetic acid and cytokinin. Long-chain AHLs that
are unsubstituted at position C3 have been implicated in the
modulation of root development and/or root hair formation;
however, the exact mechanisms involved in recognition of
microbial and/or synthetic AHLs by plant receptor proteins
needs to be functionally validated. AHLs with long lipid chains
that are substituted at position C3 with either a ketone or a
hydroxyl have been implicated in the induction of resistance
against microbial pathogens. Plants have also evolved the ability
to affect bacterial AHL-QS systems given that they produce low
molecular weight compounds that interfere by acting as agonists
or antagonists (Adonizio et al., 2006; Degrassi et al., 2007).

METHODS FOR INCREASING THE
SURVIVAL RATE OF PLANTS DURING
PATHOGENIC ATTACK

Self-Defense Mechanisms in Plants
Innate immunity in plants is triggered by PAMPs (pathogen-
associated molecular patterns) in response to microbial
infection. PAMPs are common in pathogens, non-pathogens,
and saprophytes (Jeworutzki et al., 2010; Thomma et al.,
2011; De Freitas and Stadnik, 2012; Vidhyasekaran, 2014).
Bacterial PAMPs [e.g., certain proteins in bacterial structures
and flagella, lipopolysaccharide components, muropeptides,
and sugar backbone structures in peptidoglycans, the elf18
epitope in elongation factor Tu (EF-Tu), the CSP22 cold-shock
protein, the Ax21 sulfated protein, rhamnolipids, superoxide
dismutase (SOD), bacterial DNA, and NEP1-like proteins];
fungal PAMPs [e.g., chitooligosaccharides, ergosterol, the EIX
protein, cerebrosides, and NEP1-like proteins]; and oomycete
PAMPs [e.g., PEP-13, elicitins, cell wall glucans, the cell wall
glycoprotein CBEL with CBD motifs, and NEP1-like proteins]
are non-self-response signaling molecules recognized by plant
pattern-recognition receptors (PRRs; Nicaise et al., 2009; Tsuda
and Katagiri, 2010). Most PRRs are receptor-like kinase (RLK)
proteins with a receptor and a signaling domain in the same
molecule. In response to PAMPs, PAMP-triggered immunity
(PTI) is activated (Bigeard et al., 2015), except when pathogens
deliver effector proteins that interfere with PTI signaling to the
host plasma membrane. In turn, plants use unique resistance
(R) proteins to sense the presence of these effectors in microbes,
which triggers effector-triggered immunity (ETI) (Bigeard et al.,
2015).

Other intracellular signaling pathways contribute to plant
immunity as well. The calcium ion, a regulator of gene
expression in plants, is an intracellular second messenger
involved in various defense signaling pathways in plants (Galon
et al., 2010). Calcium molecules are mainly recognized by
calcium sensors, which transduce calcium-mediated signals into
downstream events (Hashimoto et al., 2012; Wang et al., 2012).
Guanosine triphosphate (GTP)-binding proteins (G-proteins)
act as molecular switches in the signal transduction system
(Yalowsky et al., 2010; Zhang et al., 2012). Reactive oxygen
species (ROS) and nitric oxide (NO) are highly diffusible second

messengers that act in cellular signal transduction pathways. Also
mitogen-activated protein kinases (MAPKs) form important
signaling cascades, which act as a second line of defense in
concert with PAMP. MAPKs modules are major pathways
downstream of sensors/receptors that transduce extracellular
stimuli into intracellular responses in plants (Hettenhausen
et al., 2012). In addition to PAMP and MAPK, plant hormones
such as salicylic acid (Mukherjee et al., 2010; Dempsey et al.,
2011), jasmonate (Sheard et al., 2010; Bertoni, 2012), ethylene
(Nambeesan et al., 2012), abscisic acid (Yazawa et al., 2012), auxin
(Fu and Wang, 2011), cytokinin (Choi et al., 2011), gibberellins
(Qin et al., 2013), and brassinosteroids (Vleesschauwer et al.,
2012) play an important role in defense signaling against
various pathogens (Vidhyasekaran, 2014). Although microbes
employ various defense mechanisms to counter the pathogen
attack, these mechanisms fail when pathogens reach a maximum
population size.

Inhibiting AHL Production
An effective defense strategy is to block cell-signaling pathways
in pathogens to arrest their growth in the host environment.
The LuxI and AinS families of Acyl-HSL synthase produce AHL
signals using SAM and Acyl-Acp as substrates (Gilson et al.,
1995; Parsek et al., 1999). SAM analogs and the SAM biosynthesis
inhibitor cycloleucine can inhibit AHL production (Hanzelka
and Greenberg, 1996; Parsek et al., 1999). Mutations in AHL
biosynthesis genes have direct effect on signal synthesis and
biofilm formation. Mutant P. aeruginosa lasI, failing to synthesize
3OXOC12-HSL, forms a flat, unstructured biofilm in a flow cell.
Likewise, many other mutants (e.g., B. cenocepacia K56-2 cepI,
J2315 cepI, and cciI) are defective when grown in biofilms (Huber
et al., 2001; Hentzer and Givskov, 2003; Tomlin et al., 2005;
McCarthy et al., 2010; Udine et al., 2013).

Inhibiting Rgg Pheromone Receptors to
Arrest QS in Gram-Positive Bacteria
Rgg-class proteins are transcriptional regulators on the
cytoplasmic membrane that act as receptors for intracellular
signaling peptides. They are found in low-G+C-content,
Gram-positive bacteria (Firmicutes) communication mediated
by peptide molecules (Chang et al., 2011). Domain architecture
prediction in Rgg proteins has revealed domains similar to that of
another family of regulators (RNPP: Rap, NprR, PlcR, and PrgX)
that is responsible for peptide interaction (Cook and Federle,
2014). Recently, cyclosporine, a cyclic peptide compound, was
found to curb the activity of Rgg peptide receptors (Parashar
et al., 2015). Though they remain crucial windows into peptide-
based signaling in Gram-positive bacteria, the synthesis, and
processing of Rgg peptides have not been well-studied. Further
attention to this field may result in the discovery of new, effective
quenching molecules against these peptide receptors.

Autoinducer-2 Inhibitors:
Anti-Quorum-Sensing Molecules
Autoinducer AI-2 is a common signaling molecule used in
both intra- and interspecies communication. It is a furanosyl
borate diester molecule, unique due to the presence of boron
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in its structure (Pereira et al., 2013). Quenching of the AI-2
molecule helps in broad-spectrum control of pathogens (Zhu
and Li, 2012; Guo et al., 2013; Pereira et al., 2013), as this
molecule acts as a universal language for bacterial interaction.
Quenching can be accomplished either by inhibiting signal
biosynthesis or by inhibiting signal detection by microbes
(LaSarre and Federle, 2013). Different bacterial species sense
the AI-2 molecule in different forms, so a single inhibitor
cannot be used widely; however, targeting the LuxS protein—
which is wholly responsible for the synthesis of AI-2—results
in defective signaling and is more effective in controlling a
wide range of pathogens. 5’-methylthioadenosine nucleosidase
(MTAN) inhibitors play dual roles as quorum quenchers in AI-2
and AHL biosynthesis (LaSarre and Federle, 2013). Halogenated
furanoes, such as brominated furanoes derived from the red alga
Delisea pulchra, have a direct role in inhibiting AI-2 quorum
sensing (Lennen, 2007). Increasing the concentration of in vitro-
produced AI-2 has a negative impact on biofilm density (Auger

et al., 2006). Several diol-containing compounds (including
pyrogallol), boronic acids, and sulfones have been shown to be
potent antagonists of AI-2-LuxP binding (Lowery et al., 2005,
2009; Frezza et al., 2006, 2007; Ni et al., 2008, 2009; Peng et al.,
2009).

Biotization in Plants and Future Prospects
Cross-kingdom interaction leads to specific adjustments and
physiological adaptations in colonized eukaryotes (Hartmann
and Schikora, 2012). The process by which non-native microbes
are introduced into a plant environment is termed biotization.
Biotization in the rhizosphere region helps plants obtain more
transition metals through siderophore production, which in
turn increases plant immunity against phytopathogens. Other
evidence also shows that plants with hyper-accumulation of
metal have increased resistance to pathogens (Fones and Preston,
2013). In order to successfully colonize a host, microbes undergo
several modifications. R. solanacearum appears to alter its

TABLE 1 | Quorum quenching endophytes that have been identified in plants with experimental evidence.

Phylum Host plant Endophytic organisms Disrupts QS of pathogens References

Firmicutes Cannabis sativa L. Bacillus licheniformis, Bacillus

megaterium, Bacillus pumilus,

Brevibacillus borstelensis,

Bacillus subtilis

C. violaceum Kusari et al., 2014

Ventilago madraspatana Bacillus cereus VT96 Pseudomonas aeruginosa PAO1 Rajesh and Rai, 2016

N. tabacum Bacillus sp., Lysinibacillus sp. Tobacco pathogens Ma et al., 2013

** Paenibacillus, Staphylococcus Xanthomonas campestris pv.

campestis

Newman et al., 2008

Pterocarpus santalinus Bacillus firmus PT18 Pseudomonas aeruginosa PAO1 Rajesh and Rai, 2014

** Staphylococcus sp. S. marcescens, P. aeruginosa,V.

harveyi, C. subtsugae

Chu et al., 2013

Proteobacteria Pterocarpus santalinus Enterobacter asburiae PT39 Pseudomonas aeruginosa PAO1 Rajesh and Rai, 2014

N. tabacum Acinetobacter sp., Serratia sp. Tobacco pathogens Ma et al., 2013

Oryza sativa Burkholderia sp.

KJ006–engineered with Aii gene

of Bacillus thurungiensis

Burkholderia glumae,Erwinia

carotovorum

Cho et al., 2007

** Pseudomonas(Mutants of carAB) Xanthomonas campestris pv.

Campestris

Newman et al., 2008

Actinobacteria ** Streptomyces sp. Pectobacterium carotovorum ssp.

Carotovorum

Chankhamhaengdecha et al., 2013

** Microbacterium Xanthomonas campestris

pv.campestris

Newman et al., 2008

Colonization of plant surfaces Arthrobacter, Mycobacterium

Nocardioides, Rhodococcus,

and Streptomyces

N-oxododecanoyl-L-homoserine

lactone, N-hexanoyl-L-homoserine

lactone

Polkade et al., 2016

Basidiomycota Saccharum officinarum Rhodotorula yeasts Chromobacterium violaceum CV026 Bertini et al., 2014

Ascomycota Ventilago madraspatana Fusarium graminearum and

Lasidiplodia sp.

Chromobacterium violaceum CV026 Rajesh and Rai, 2013

Marine endophytic fungi Sarocladium (LAEE06), Fusarium

(LAEE13), Epicoccum (LAEE14),

and Khuskia (LAEE21).

Chromobacterium violaceum CVO26 Martin-Rodriguez et al., 2014

Plant rhizosphere Ascomycota and Basidiomycota C6HSL and 3OC6HSL Uroz and Heinonsalo, 2008

**Indicates non-native plant endophytes but experimentally proved to have quorum quenching activity.
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FIGURE 1 | Behavior and interactions of quorum quenching endophytes with pathogens in both biotized and non-biotized plants. (A) The flow chart

explains various methods employed by natural, and/or synthetic quorum quenching molecules to disrupt the bacterial cell signaling (left side) and potential benefits to

the plants by introducing non-native endophytes (right side). (B) Interactions of pathogens with biotized plant tissue. The phenomenon explains the virulence activity of

pathogens, and antagonistic effect of endophytes over pathogens in pre-biotized and non-biotized plants.

membrane architecture in complex ways during adaptation to
life in the xylem (Poussier et al., 2003; Brown and Allen, 2004).
Thus, culturing of beneficial microbes with plant cells in in
vitro conditions can be used for endophytic colonization in
plants (Senthilkumar et al., 2008). In plants, endophytes have an
advantage over epiphytes, in that they are protected from external
growth-limiting factors such as temperature, UV radiation, and
osmotic potentials.

Various quorum quenching endophytes that have been
identified in plants with AHL-ase activity are presented in
Table 1. The main advantage of the artificial introduction of
quorum quenching bacteria into plants is that introduced
bacteria will occupy most of the intercellular spaces without
leaving space for later-invading pathogenic bacteria, as shown
in Figure 1. Also, biotization prevents soil bacteria entering into
plant tissue (Kung and Almeida, 2014). Though a few pathogenic
bacteria enter into the plant system, they remain as avirulent
strain due to quorum quenching activity. Virulence-expressing
factors are suppressed by AHL-degrading enzymes (Figure 1).
Absence of endophytes in the tissues of culture-propagated plants
may be related to increased disease severity, an idea supported by
Jie et al. (2009).

Barriers in Successful Biotization
So far there are no universal QQ bacterai to be used for all plants.
Also, biotization has been shown to be limited by the absence of
AHL-based quorum sensing in Gram-positive bacteria, instead
inhibition of Rgg pheromone receptors could be employed (Cook
and Federle, 2014). Research has shown that there is a chance that
bacteria can evolve resistance to QS-disruption-related control
methods (Defoirdt et al., 2010). Hence, a deep understanding

of plant-microbe interactions in both biotized and non-biotized
plants should be the goal of future research. The challenges of in
vitro biotization are summarized in Figure 1.

Endophytes as Microbial Fertilizers
Biotization helps at various physiological and developmental
stages in plants. It enhances induced biotic and abiotic stress
resistance (Badosa and Montesinos, 2008; Lugtenberg and
Kamilova, 2009; Senthilkumar et al., 2011). Endophytes improve
plants’ health mainly through siderophore production, thereby
enabling biological nitrogen fixation (Ngamau et al., 2012),
phosphate solubilization (Andrade et al., 2014), and effective
transport of iron (Fe) and zinc (Zn) from the rhizosphere region
by ZIP transporters (Krithika and Balachandar, 2016).

CONCLUSION

The quorum quenching mechanism can serve as a potential
target for developing new antimicrobials to overcome microbial
pathogenesis. Quorum quenching endophytes will attenuate
virulence factors rather than kill the microbes, a feature that
should hugely reduce the selective pressures associated with
bactericidal agents that have led to the rapid emergence
of resistance. Before engineering the quorum sensing
pathway in native endophytes, it is important to ensure the
presence of naturally available beneficial mechanisms in the
host environment. The key to improving plant resistance
to bacterial diseases in a changing environment may lie
in creating biotized plants. Pesticide poisoning has been
acknowledged as a serious problem in many agricultural
communities of low- and middle-income countries. Efforts to
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develop a systematic and a sustainable approach to prevent
and manage pesticide poisoning remain inadequate. Thus,
the novel possibility of exploiting the quorum quenching
endophytes may serve as a sustainable tool for plant disease
management.
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