
fpls-08-00575 April 12, 2017 Time: 16:12 # 1

ORIGINAL RESEARCH
published: 18 April 2017

doi: 10.3389/fpls.2017.00575

Edited by:
Daniel Pinero,

National Autonomous University
of Mexico, Mexico

Reviewed by:
Manish Kumar Pandey,

International Crops Research Institute
for the Semi-Arid Tropics (ICRISAT),

India
Mehboob-ur-Rahman,

National Institute for Biotechnology
and Genetic Engineering (NIBGE),

Pakistan

*Correspondence:
Yingyue Li

yingyueli@bjfu.edu.cn

†These authors have contributed
equally to this work.

Specialty section:
This article was submitted to

Plant Genetics and Genomics,
a section of the journal

Frontiers in Plant Science

Received: 24 December 2016
Accepted: 30 March 2017

Published: 18 April 2017

Citation:
Chen W, Hou L, Zhang Z, Pang X

and Li Y (2017) Genetic Diversity,
Population Structure, and Linkage
Disequilibrium of a Core Collection

of Ziziphus jujuba Assessed with
Genome-wide SNPs Developed by

Genotyping-by-sequencing and SSR
Markers. Front. Plant Sci. 8:575.

doi: 10.3389/fpls.2017.00575

Genetic Diversity, Population
Structure, and Linkage
Disequilibrium of a Core Collection
of Ziziphus jujuba Assessed with
Genome-wide SNPs Developed by
Genotyping-by-sequencing and SSR
Markers
Wu Chen1†, Lu Hou1†, Zhiyong Zhang2, Xiaoming Pang1 and Yingyue Li1*

1 National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry
University, Beijing, China, 2 Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding,
National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key
Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape
Architecture, Beijing Forestry University, Beijing, China

Chinese jujube (Ziziphus jujuba Mill) is an economically important fruit species native to
China with high nutritious and medicinal value. Genotyping-by-sequencing was used to
detect and genotype single nucleotide polymorphisms (SNPs) in a core collection of 150
Chinese jujube accessions and further to characterize their genetic diversity, population
structure, and linkage disequilibrium (LD). A total of 4,680 high-quality SNPs were
identified, of which 38 sets of tri-allelic SNPs were detected. The average polymorphism
information content (PIC) values based on bi-allelic SNPs and tri-allelic SNPs were
0.27 and 0.38, respectively. STRUCTURE and principal coordinate analyses based on
SNPs revealed that the 150 accessions could be clustered into two groups. However,
neighbor-joining trees indicated the accessions should be grouped into three major
clusters. Our data confirm that the resolving power for genetic diversity was similar
for the SSRs and SNPs. In contrast, regarding population structure, the resolving power
was higher for SSRs than for SNPs. The LD pattern in Chinese jujube was investigated
for the first time. We observed a relatively rapid LD decay with a short range (∼10 kb) for
all pseudo-chromosomes and for individual pseudo-chromosomes. Our findings provide
important information for future genome-wide association analyses and marker-assisted
selective breeding of Chinese jujube.

Keywords: jujube core collection, genotyping-by-sequencing (GBS), SNPs, SSRs, genetic diversity, population
structure, linkage disequilibrium (LD)

INTRODUCTION

Chinese jujube (Ziziphus jujuba Mill) is a diploid species (2n= 2x = 24; genome size: 437.65 Mb),
and is one of the most important fruit tree species native to China (Liu and Wang, 2009; Liu M.
et al., 2014). Jujube fruits are highly nutritious with medicinal properties. They are an excellent
source of vitamin C, phenolic compounds, carbohydrates and minerals (particularly potassium
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and iron), and cyclic AMP (Cyong and Hanabusa, 1980; Li et al.,
2007; Gao et al., 2013). Chinese jujube plants are distributed
throughout China, with the exception of Heilongjiang province,
and have been introduced to more than 30 countries so far (Wang
et al., 2014).

Information regarding genetic diversity and population
structure is important for characterizing the domestication
history and genetic relationships of Chinese jujube accessions.
It may also be useful for accelerating the development of highly
efficient breeding strategies. Many studies focused on Chinese
jujube genetic diversity and population structure have been
conducted because of advances in molecular marker techniques,
including the application of random amplified polymorphic
DNA markers (Liu et al., 2005), amplified fragment length
polymorphisms (Bai, 2008; Qiao et al., 2009), sequence-related
amplified polymorphisms (Bai, 2008), and simple sequence
repeats (SSRs) (Ma et al., 2011; Wang et al., 2014; Xiao et al.,
2015). However, all of these previous studies involved fewer
than 100 cultivars. Twenty-four SSR markers were recently used
to investigate 962 jujube accessions. The genetic diversity and
population structure of these accessions were estimated and a
core collection of 150 accessions was selected (Xu et al., 2016).
The non-random association of alleles at two or more loci [i.e.,
linkage disequilibrium (LD)] is crucial for plant breeding. LD has
been investigated in fruit species such as sweet cherry (Campoy
et al., 2016), apple (Kumar et al., 2012), and grape (Lijavetzky
et al., 2007). The distance over which an LD persists determines
the number and density of markers, and affects how association
analyses are conducted (Flint-Garcia et al., 2003). However, there
is currently no available information regarding LD in Chinese
jujube.

Among the available molecular markers, SSR (i.e.,
microsatellite DNA) and SNP (i.e., single nucleotide
polymorphism) markers are useful for investigations of
plant population genetics (Hamblin et al., 2007; Würschum et al.,
2013; Filippi et al., 2015). Given the increasing use of SSR and
SNP markers, a comparison of their utility in analyses of genetic
diversity and population structure is warranted. Yang et al.
(2011), Emanuelli et al. (2013), and Filippi et al. (2015) reported
that the resolving power regarding genetic diversity was lower
for SNPs than for SSRs, which contradicted the conclusions of
Singh et al. (2013). In terms of population structure, Singh et al.
(2013) and Müller et al. (2015) determined that the resolving
power was higher for SNP markers than for SSR markers, while
Hamblin et al. (2007) and Yang et al. (2011) reported the opposite
conclusion. Nevertheless, Filippi et al. (2015) concluded that
SSR and SNP markers produce similar results under a Bayesian
approach.

The results of large scale studies revealed that genotyping-
by-sequencing (GBS) is useful for identifying high density SNP
markers and genotypes (Rocher et al., 2015; Torkamaneh and
Belzile, 2015). It is also relevant for genetic diversity and
population structure analyses (Burrell et al., 2015; Kujur et al.,
2015; Sehgal et al., 2015). GBS technology was recently used
to develop SNP markers, which were then used to construct a
jujube genetic map (Zhang et al., 2016). A similar study was
conducted based on restriction-site associated DNA technology

(Zhao et al., 2014). However, there are no reports describing the
development of SNP markers that were subsequently applied for
analyzing genetic diversity and population structure in several
jujube cultivars.

In the present study, we used GBS technology to study a
core collection of 150 Chinese jujube accessions. Our objectives
were to (1) detect and genotype SNPs at a genome-wide scale,
(2) compare the performance of SSR and SNP markers by
estimating the genetic diversity and population structure, and (3)
characterize the LD pattern. The data presented herein may be
useful for selecting appropriate SSRs and SNPs for different types
of jujube analyses. Additionally, our findings may facilitate future
genome-wide association studies and marker-assisted selective
breeding of Chinese jujube.

MATERIALS AND METHODS

Plant Materials
We used a core collection of 150 Chinese jujube accessions
previously characterized by Xu et al. (2016) (Supplementary
Table S1). Accessions were collected all over China and were
planted at the following two locations using standard cultivation
conditions: the National Chinese Jujube Germplasm Repository
located in Taigu County, Shanxi Province, China and the
National Foundation for Improved Cultivar of Chinese Jujube,
Cangzhou County, Hebei Province, China. Fresh healthy leaves
for each accession were collected (with permission) and then were
immediately frozen in liquid nitrogen and stored at -80◦C until
used.

DNA Extraction
Total genomic DNA was extracted from fresh leaves using
plant genomic DNA rapid extraction kit developed by Biomed
Gene Technology Co., Ltd., Beijing, China. The integrity, purity,
and concentration of the extracted DNA were determined
by 1% agarose gel electrophoresis and a Qubit Fluorometer
(Invitrogen).

Genotyping-by-sequencing Library
Preparation and Sequencing
We digested 100 ng genomic DNA with ApeKI. The resulting
samples were ligated to common and barcode adapters. The
ligated products were pooled in equal volumes and then purified
with the QIAquick PCR Purification Kit (Qiagen). Polymerase
chain reaction (PCR) amplifications were conducted using the
PCR Primer Cocktail and PCR Master Mix to enrich the adapter-
ligated DNA fragments. The amplicons corresponding to target
fragments were purified using the QIAquick Gel Extraction Kit
(Qiagen) following 2% agarose gel electrophoresis. The average
DNA fragment length for the final library was determined
using the Agilent DNA 12,000 kit and 2100 Bioanalyzer system
(Agilent). Quantitative real-time PCR with a TaqMan probe was
used to quantify the final library. We amplified specific DNA
fragments (180–480 bp) on the cBot instrument to generate DNA
clusters on a flowcell, after which 100-bp paired-end sequencing
was completed using the HiSeq 4000.
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Sequence Data Analysis and SNP
Genotyping
Raw Illumina DNA sequence reads were de-multiplexed
according to the barcodes, and the adapter/barcode sequences
were trimmed using a custom C script. Reads in which more
than half of the bases had quality values ≤5 and those able to
be mapped to multiple locations were discarded. The generated
clean data were then aligned against the jujube reference genome
sequence (Assembly version: ZizJuj_1.1; Liu M. et al., 2014)
using the Burrows–Wheeler Aligner (version 0.7.10) with default
parameters (Li and Durbin, 2009). The variants were called using
the GATK program (version 3.2.2) (McKenna et al., 2010) with
parameter settings below: Quality by depth < 2.0, mapping
quality < 40.0, read position rank sum test < −8.0, Fisher
strand > 60.0, haplotype score > 13.0, mapping quality rank sum
test < −12.5, while the genotype was called ultimately using a
custom perl script [filter conditions: missing data < 20%; minor
allele frequency (MAF) > 0.05].

SSR Genotyping
A set of 24 SSRs distributed throughout the jujube genome
was used to genotype all 150 Chinese jujube accessions. Details
regarding the genotyping were previously described (Xu et al.,
2016).

Analysis of Genetic Diversity
The number of alleles and allele frequencies for SNP data
(bi-allelic and tri-allelic SNPs) were calculated using the VCFtools
program (Danecek et al., 2011). For SSR data, these parameters
were calculated using the GenAlEx program (version 6.5)
(Peakall and Smouse, 2012). The polymorphism information
content (PIC) values for the SSR and SNP data were calculated
using the following equation (Botstein et al., 1980):

PIC = 1−
n∑

i= 1

P2
i −

n−1∑
i= 1

n∑
j= i+ 1

2P2
i P2

j

Analysis of Population Structure
For the SSR genotyping data, a Bayesian clustering analysis
was implemented in the STRUCTURE program (version 2.3.3)
(Pritchard et al., 2000; Falush et al., 2003) to evaluate the
population genetic structure. An admixture model and correlated
allele frequencies were applied to estimate the ancestry fractions
of each cluster attributed to each accession. For each K-value
(range: 1–8), 20 independent runs were completed with a burn-in
period of 100,000, followed by 100,000 Markov chain Monte
Carlo repetitions. Parameters were set to default values, and all
accessions were considered to have unknown origins. The delta-K
method was implemented in the Structure Harvester program
(Earl, 2012) to determine the most probable K-value. Accessions
with membership probabilities ≥0.50 were considered to belong
to the same group. An unrooted neighbor-joining phylogenetic
tree (Nei’s genetic distance; 1,000 bootstrap replicates) was
constructed using the PowerMarker program (version 3.51)
(Liu and Muse, 2004).

For the genotyping data of 4,680 high-quality SNPs
(MAF ≥ 0.05; missing data: <20%), we used the method
described by Evanno et al. (2005) to determine the delta-K value.
Briefly, we plotted the mean likelihood [L(K)] value over 20
runs for each K-value (range: 1–8). We estimated delta-K using
the following formula: 1K = m(|L,(K)|)/s[L(K)] (Evanno et al.,
2005). The population genetic structure was determined using
the Frappe program according to the delta-K value (Tang et al.,
2005). An unrooted neighbor-joining phylogenetic tree was
constructed using the MEGA program (version 6.0) based on the
distance matrix, with 1,000 bootstrap replicates (Tamura et al.,
2013).

Genetic distances between pairs of accessions were calculated
and a principal coordinate analysis (PCoA) was completed for the
SSRs and SNPs using the GenAlEx program (version 6.5) (Peakall
and Smouse, 2012).

Estimation of Linkage Disequilibrium
The pairwise LD between 4,680 genome-wide SNPs for all
pseudo-chromosomes and individual pseudo-chromosomes in
150 Chinese jujube accessions was calculated based on the allele
frequency correlations (r2) using the PopLDdecay program1.
The LD decay was calculated when the r2 value decreased
below a threshold level (i.e., r2 < 0.1). Mean r2 values were
used to calculate the LD using a 100-kb sliding window-based
approach.

RESULTS

Genome-wide SNPs Discovery and
Genotype using a GBS Assay
A GBS assay of the sequencing of 96-plex ApeKI-digested
libraries constructed from 150 Chinese jujube accessions was
conducted using an Illumina HiSeq 4000. After the primary
quality filtering step, 144.0 Gb clean reads were generated
(2.3-fold sequencing depth), with an average of 0.99 Gb reads
(range: 0.208–3.32 Gb reads) per accession. BJFU-435 was
excluded because of a lack of sufficient clean data (Supplementary
Table S2). Using reference genome sequences approach, SNPs
were detected and genotyped by the GATK program (version
3.2.2) (McKenna et al., 2010). With a minimal set of initial
quality filters, a total of 105, 106 SNPs were identified. Restricting
the filter conditions to SNPs, the genotyping data considerably
decreased the number of SNPs to 91,702 (data not shown).
Furthermore, 4,680 high-quality SNPs were identified, including
38 sets of tri-allelic SNPs (Supplementary Table S3). Although
there was an insufficient amount of clean data for BJFU-435, a
genome-wide search identified 23 SNPs (Supplementary Tables
S2, S3). The average heterozygosity rate for all SNPs was 10.48%
(Supplementary Table S4). We determined that 74.94% of the
SNPs had a quality value of 998, while the remaining 25.06% had
an average quality value of 574 (Supplementary Table S5). These
values confirmed the authenticity of the 4,680 SNPs.

1https://github.com/BGI-shenzhen/PopLDdecay
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Among the 4,680 high-quality SNPs, 4,005 (85.6%) were
physically mapped across 12 jujube pseudo-chromosomes, with
an average map density of 81.79 kb. A genome-wide SNP
density plot revealed that most SNPs were physically mapped on
jujube pseudo-chromosome 1 (12.29%, 575 SNPs). The average
marker density was 81.79 kb. The highest and lowest marker
densities were observed on pseudo-chromosome 7 (62.54 kb) and
pseudo-chromosome 3 (99.91 kb), respectively. The remaining
675 SNPs were physically mapped on unanchored scaffolds of
the jujube genome with a marker density of 169.27 kb (Table 1).
Transitions (2,896 allelic sites, 61.38%) were more frequent than
transversions (1,822 allelic sites, 38.62%), with a ratio of 1.59.
The A/G transitions and G/C transversions occurred at the
highest and lowest frequencies, respectively. The frequencies
of the two types of transitions were similar (i.e., A/G 31.07%
and C/T 30.31%), as were the frequencies of the four types of
transversions (i.e., A/C 9.81%, A/T 9.81%, G/C 8.97%, and G/T
10.03%) (Table 2).

Comparison of SSR and SNP Markers
Related to Genetic Diversity
The genetic diversity of 150 Chinese jujube accessions was
evaluated using 24 SSRs, 38 sets of tri-allelic SNPs, and 4,642
bi-allelic SNP markers. The PIC value, the number of alleles, and
the allele frequency spectrum were calculated.

A total of 209 alleles were generated from the 24 SSRs, with
an average of 8.92 per locus. The highest average PIC value
(0.59) was associated with the SSRs, followed by the tri-allelic
SNPs (0.38), and the bi-allelic SNP markers (0.27) (Table 3). The
allele frequency spectra were very different for the three data sets
(Figure 1). We determined that 78.95% of the SSR alleles were
present in the population at a low frequency (i.e., 0–0.2) (Table 3

TABLE 1 | Genomic distribution of 4,680 single nucleotide polymorphisms
(SNPs) physically mapped on 12 jujube pseudo-chromosomes and
unanchored scaffolds.

Pseudo-
chromosomes

Size
(Mb)of

pseudo-
chromosomes

Numbers
of SNPs

Percentage
of SNPs

Average
density

(kb)

1 41.01 575 12.29% 73.03

2 30.52 400 8.55% 78.13

3 29.56 303 6.47% 99.91

4 26.70 401 8.57% 68.19

5 26.70 274 5.85% 99.79

6 25.75 352 7.52% 74.91

7 24.80 406 8.68% 62.54

8 24.80 316 6.75% 80.35

9 22.89 269 5.75% 87.13

10 20.03 247 5.28% 83.03

11 20.03 253 5.41% 81.06

12 19.07 209 4.47% 93.45

Total 311.85 4,005 85.59% NA

Average NA NA NA 81.79

Unanchored
scaffolds

111.58 675 14.42% 169.27

TABLE 2 | Percentage of transition and transversion SNPs identified using
genotyping-by-sequencing (GBS) assay.

Transitions Transversions

A/G C/T A/C A/T G/C G/T

Numbers of
allelic sites

1,466 1,430 463 463 423 473

Percentage of
allelic sites

31.07% 30.31% 9.81% 9.81% 8.97% 10.03%

Total
(Percentage)

2,896 (61.38%) 1,822 (38.62%)

and Figure 1C). In contrast, 53.71% of the bi-allelic SNPs and
48.25% of the tri-allelic SNPs were present in the population at an
intermediate frequency (i.e., 0.2–0.8) (Table 3 and Figures 1A,B).
Among the alleles present in the population at a high frequency
(i.e., 0.8–1), the bi-allelic SNPs were the most abundant, followed
by the tri-allelic SNPs and then the SSRs (Table 3).

The cost of the consumable laboratory supplies for the
analyses of 150 jujube accessions using SSR markers and
GBS-SNPs, as well as the cost per polymorphic locus are provided
in Table 4 and Supplementary Table S8 (all costs are in US
dollars). The total cost of the GBS-SNP procedure was nearly
four times that of the SSR procedure. However, the estimated
cost of the genotyping supplies per polymorphic locus for the SSR
procedure was $118.33. The corresponding estimated cost for the
GBS-SNP procedure was $2.33. Therefore, the SSR procedure was
about 51 times more expensive than the GBS-SNP procedure (per
polymorphic locus).

Comparison of SSR and SNP Markers
Related to Population Structure
For the data sets of 4,680 SNPs and 24 SSRs, we observed a
clear delta-K peak at K = 2 (Figures 2A,B) when the accessions
were roughly divided into two major groups. Furthermore,
based on the results of the STRUCTURE analysis, the accession
with a score higher than 0.80 was considered to be a pure
one, while it with a score lower than 0.80 was considered to
be admixture one. For the SSRs, 33 accessions (19 pure and
14 admixture) were grouped into the green cluster and 117
accessions (90 pure and 27 admixture) were grouped into the
red cluster (Figure 3A). For the SNPs, 37 accessions (23 pure
and 14 admixture) were grouped into the green cluster, while
113 accessions (96 pure and 17 admixture) were grouped into
the red cluster (Figure 3B). The classification of accessions into
the two groups was consistent for the two marker types, with
only 18 accessions classified into different groups (data not
shown).

A PCoA based on the SSR and SNP markers revealed that
the 150 Chinese jujube accessions were clearly separated into
two broad groups across the first two axes (Figures 4A,B).
The proportion of genotypic variance explained by the first two
principal coordinates was higher for the SSRs (Figure 4B) than
for the SNPs (Figure 4A). The first three SSR axes explained
63.06% of the cumulative variation, while the SNP datasets
explained 20.83% of the variation (Table 5).
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TABLE 3 | Genetic Diversity calculated by simple sequence repeats (SSRs), Bi- allelic SNPs, and Tri-allelic SNPs.

Loci PIC Alleles Average alleles per loci Percentage of allele frequencies

0–0.2 0.2–0.8 0.8–1

SSRs 24 0.59 209 8.92 78.95% 20.57% 0.48%

Tri-allelic SNPs 38 0.38 114 3 42.98% 48.25% 8.77%

Bi- allelic SNPs 4,642 0.27 9,284 2 23.17% 53.71% 23.13%

FIGURE 1 | Allele frequency spectra for different sets of markers in the 150 Chinese jujube accessions. (A) 4,642 Bi-allelic single nucleotide
polymorphisms (SNPs), (B) 38Tri- allelic SNPs, (C) 24 simple sequence repeats (SSRs).
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TABLE 4 | Consumable laboratory supplies costs in USD ($) for major steps in SSRs and GBS-SNPs procedure.

Step for SSRs Cost for 150
accessions

(US$)

Cost of per
polymorphic
locus (USD)

Step for GBS-SNPs Cost for 150
accessions

(USD)

Cost of per
polymorphic
locus (USD)

(1) DNA extraction 109.2 4.55 (1) DNA extraction 109.2 0.02

(2) Primers synthesis 143.38 5.97 (2) Digestion 1,638 0.35

(3) PCR 143.54 5.98 (3) Adapter ligated 1856.4 0.40

(4) Capillary electrophoresis 2443.88 101.83 (4) Pooling and purification 2184 0.47

(5) PCR and purification 2511.6 0.54

(6) Sequencing 2620.8 0.56

Total 2,840 118.33 Total 10,920 2.33

Twenty-four polymorphic locus for SSR procedure and 4,680 polymorphic locus for GBS-SNPs procedure.

FIGURE 2 | Estimation of population using LnP(D) derived 1K with K
ranged from 1 to 8. (A) 4,680 SNPs, (B) 24 SSRs.

Neighbor-joining trees were constructed based on the SSR and
SNP markers. In the tree constructed using SSR data, the 150
Chinese jujube accessions were grouped into three major clusters
(Figure 5). The clusters labeled in green, blue, and red contained
51, 72, and 27 accessions, respectively. The jujube accessions were
also grouped into three major clusters in the phylogenetic tree
based on SNP data (Figure 6). The clusters labeled in green, blue,
and red included 50, 59, and 41 accessions, respectively. In both
trees, 23, 41, and 15 accessions were consistently classified into
the green, blue, and red clusters, respectively. These clustering
results provide evidence of the close genetic relationships among
the 150 jujube accessions.

Estimation of Linkage Disequilibrium
Linkage disequilibrium is an important consideration for marker-
assisted selective breeding and genome-wide association studies.
However, there are currently no reports regarding LD in Chinese
jujube. In this study, the distributions of r2 associated with
physical distance for all pseudo-chromosomes and individual
pseudo-chromosomes were determined based on genotyping
information for 4,680 genome-wide SNPs in 150 Chinese jujube
accessions. A rapid decline was observed with increasing physical
distance. The decrease was uniform for all pseudo-chromosomes
(Figure 7), but not for individual pseudo-chromosomes (data not
shown). All of the LD decays (i.e., r2 < 0.1) were estimated to a
physical distance of 10 kb (Supplementary Tables S6, S7). For all
pseudo-chromosomes, the estimated LD was very low, with few
instances of r2 > 0.5 (Figure 7).

DISCUSSION

Genotyping-By-Sequencing has many key advantages including
low cost, reduced sample handling, few purification steps, no size
fractionation, efficient barcoding and easiness to scale up (Davey
et al., 2011; Elshire et al., 2011). These advantages make GBS
an ideal method for investigating genomic diversity (Lam et al.,
2010; Lu et al., 2013; Wong et al., 2015), constructing genetic
linkage maps (Ma et al., 2012; Poland et al., 2012; Liu H. et al.,
2014), and conducting genome-wide association studies (Singh
et al., 2013; Uitdewilligen et al., 2013; Lin et al., 2015) in plants.

Genome-wide SNPs Discovery and
Genotype Using a GBS Assay
The maximum and minimum numbers of clean reads
were obtained for BJFU-66 and BJFU-435, respectively
(Supplementary Table S2). Although there was an insufficient
number of clean reads for BJFU-435, 23 SNPs distributed
throughout the genome were detected which were effective
to achieve our study objective. The variation in the number
of reads recovered in GBS studies may be due to restriction
enzyme site variations and differences in methylation (Pan
et al., 2015). The number of high-quality SNPs identified
in a GBS experiment may be affected by genome size, the
sequencing depth, and the study objectives. For instance, to
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FIGURE 3 | Population structure (K = 2) inferred based on (A) 4,680 SNPs, (B) 24 SSRs.

construct a saturated genetic linkage map and to identify a
known quantitative trait locus related to apple skin color, 81
individuals from an F1 population segregating for skin color
were studied using GBS (6-fold sequencing depth). A total of
3,967 SNPs were finally identified (Gardner et al., 2014), which
is fewer than the number of SNPs detected in this study. In
a previous chickpea investigation, 93 diverse desi chickpea
cultivars were analyzed using GBS (∼30-fold sequencing depth)
to extrapolate the natural allelic diversity and domestication
patterns. Researchers identified 20,439 and 24,405 high-quality
SNPs in the desi and kabuli chickpea genomes, respectively
(Kujur et al., 2015), which were both higher than the number of
SNPs detected in this study. During a jujube study, Zhang et al.
(2016) combined three restriction enzymes (i.e., MseI, HaeIII,
and EcoRI) when preparing a GBS library. They ultimately
identified 2,540 high-quality SNP markers, which were used to
construct an integrated genetic linkage map. Zhang et al. (2016)
developed fewer SNP markers than we did in our study, which
involved a digestion step with ApeKI. Additionally, we identified
tri-allelic (0.80%) SNPs. Definitely, reducing DNA treatments
and applying stricter filter conditions during a GBS assay will
decrease the number of multi-allelic SNPs. Thirty-eight tri-allelic
SNPs were identified using the default parameters of the GATK
program. We detected a single position for each tri-allelic SNP,
which confirmed their validity (Supplementary Table S3). The
cost of next-generation sequencing platforms is much lower
than that of the Sanger sequencing technique (Frank et al.,
2013). Additionally, although the cost per polymorphic locus
is similar for GBS and genotyping-in-thousands by sequencing
(i.e., another next-generation sequencing approach) (Campbell
et al., 2015), GBS can detect nearly 25-fold more polymorphic

loci. This indicates that GBS is an efficient and cost-effective
genotyping approach (Pértille et al., 2016). The sensitivity of the
GBS technique to methylation enables more extensive cutting
in single-copy gene-rich genomic regions (Sonah et al., 2013).
Previous studies revealed that the distribution of SNP markers
is skewed in favor of gene-rich regions (Mayer et al., 2012;
Sonah et al., 2013) as well as centromeric and pericentromeric
regions (Poland et al., 2012). The genomic distribution of SNPs
is not homogenous, and regional differences in recombination
rates may be responsible for a substantial proportion of the
variability in nucleotide polymorphism levels (Nachman, 2001).
The existence of mutation hotspots is another possible reason
for the fluctuations in SNP density (Rogozin and Pavlov, 2003).
Furthermore, chromosomes may be affected by various selection
pressures that influence gene density (Barreiro et al., 2008).
In the jujube genome, the density of genes, repeats, and SSRs
was specific to each chromosome (Liu M. et al., 2014). Thus,
varying SNP frequencies on different pseudo-chromosomes of
approximately the same size were observed. Consistent with
previous studies involving jujube (Zhao et al., 2014), chickpea
(Agarwal et al., 2012; Jain et al., 2013), and rice (Parida et al.,
2012), we observed that transitions were more frequent than
transversions.

Genetic Diversity, Population Structure,
and Linkage Disequilibrium of the 150
Chinese Jujube Accessions
According to Botstein et al. (1980), the PIC value is equal or
greater than 0.5 which suggested high informative with a SSR
marker loci. The PIC values for bi-allelic SNP markers range from
0 to 0.5, whereas for multi-allelic SSR markers, the PIC value can
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FIGURE 4 | Scatter plot from a principal coordinate analysis (PCoA). PCoA of the 150 Chinese jujube accessions based on for the following sets of markers.
(A) 4,680 SNPs, (B) 24 SSRs.

be as high as 0.5–1.0. Therefore, our calculated PIC values for
SSRs (0.59), tri-allelic (0.38), and bi-allelic (0.27) SNPs implying
that the 150 Chinese jujube accessions were highly genetically
diverse. Based on the sharp peak for the delta-K value and the
results of the PCoA, the 150 jujube accessions were classified
into two groups. However, in our previous studies, 962 Chinese
jujube accessions (including the 150 Chinese jujube accessions
analyzed in this study) were grouped into three clusters based on
the delta-K value and PCoA related to 24 SSRs (Xu et al., 2016).
This discrepancy may be due to the magnitudes of the Chinese
jujube accessions. Similar results were observed in rice, where the
population was classified into three groups by Zhao et al. (2009)
while it was classified into seven groups by Jin et al. (2010), more
groups with the latter is primarily due to the higher number and
diverse set of germplasm (Jin et al., 2010).

TABLE 5 | Percentage of variation explained by the first three axes.

SNPs SSRs

Axis 1 2 3 1 2 3

% 11.71 5.19 3.93 39.37 15.46 8.23

Cum % 11.71 16.90 20.83 39.37 54.82 63.06

The distance over which LD persists determines the number
and density of markers. It also clarifies the experimental
design needed for an association analysis. Our Chinese jujube
study revealed a relatively rapid LD decay within a short
range (i.e.,∼10 kb) for all pseudo-chromosomes and individual
pseudo-chromosomes. The LD level in plants can be affected
by reproductive systems (Arunyawat et al., 2012). The LD
decay estimated in this study was lower than that of sorghum
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FIGURE 5 | Neighbor-joining dendrograms based on a simple matching dissimilarity matrix representing the grouping of the 150 Chinese jujube
accessions for 4,680 SNPs.

(Morris et al., 2013) and rice (Mather et al., 2007), which are
self-pollinated species. These observations were consistent with
the expected results. LD decays more rapidly in cross-pollinated
species than in self-pollinated species because recombination
is less effective in the latter species type (Flint-Garcia et al.,
2003). In cross-pollinated species, the LD level can be affected
by population size as well as by domestication and breeding
during evolution. The extent of the LD decay for all Chinese
jujube pseudo-chromosomes was lower than that of other fruit
tree species, such as sweet cherry (Campoy et al., 2016) and
apple (Kumar et al., 2012), while it was higher than that of grape
(Lijavetzky et al., 2007). These results are likely because of the
effects of genetic drift, which can lead to the loss of rare allelic
combinations in small populations (Flint-Garcia et al., 2003). The
low r2 values observed in this study may have been affected by the
use of markers with low genome coverage, similar to what was
observed in a sorghum study (Morris et al., 2013). Low values
of r2 in this study may be also affected by using low genome
coverage of markers. These results may serve as an important
foundation for future applications of genome-wide association
studies and marker-assisted selective breeding of Chinese jujube.

Comparison of SSR and SNP Markers
Related to Genetic Diversity and
Population Structure
Different mutational processes govern allelic variations at SSR
and SNP loci, with lower mutation rates for SNPs than
for SSRs (Guichoux et al., 2011). Additionally, differences in
generated mechanisms (i.e., replication slippage for SSRs vs. point
mutations for SNPs) influence the variability in marker utility
during diverse analyses (Singh et al., 2013).

In terms of genetic diversity, the highest PIC value among the
three data sets was associated with the SSRs. The PIC values based
on SSRs and bi-allelic SNPs were higher in this study than in a
previous study involving rice (Singh et al., 2013), while they were
lower than the values for maize (Yang et al., 2011). The PIC value
is likely influenced by many factors, such as the breeding behavior
of the species, genetic diversity in the collection, size of the
collection, sensitivity of the genotyping method, and the genomic
locations of markers. Single nucleotide polymorphism markers
with relatively low mean PIC values may be more informative
than SSR markers with high mean values (Singh et al., 2013).
Therefore, the average PIC value (0.59) in this study, which was
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FIGURE 6 | Neighbor-joining dendrograms based on a simple matching dissimilarity matrix representing the grouping of the 150 Chinese jujube
accessions for 24 SSRs.

calculated based on the SSRs, tri-allelic SNPs (0.38), and bi-allelic
SNPs (0.27), indicates that the two types of markers exhibit a
similar resolving power.

According to theoretical expectations, the distribution of allele
frequencies differed between the SNP and SSR markers. The SSR
loci were more common in the population at low frequencies,
whereas the tri-allelic and bi-allelic SNP loci were more abundant
at intermediate frequencies in this study. These results are
consistent with those of previous studies (Laval et al., 2002; Vignal
et al., 2002). SSRs are often dominated by rare alleles, while SNPs
with a MAF < 0.05 were discarded in this GBS-SNP study, which
may be the two important considerations to explain it.

The cost per polymorphic locus for the SSR procedure was
higher than that for the GBS-SNP procedure. However, fewer
SSR markers were required for examining the genetic diversity
and population structure of the jujube core collection. Thus,
the total cost of the SSR procedure was much lower than the
corresponding cost for the GBS-SNP procedure. The cost per
polymorphic locus for the SSR procedure was higher than that
for the GBS-SNP procedure. However, fewer SSR markers were
required for examining the genetic diversity and population
structure of the jujube core collection. Thus, the total cost of the
SSR procedure was much lower than the corresponding cost for
the GBS-SNP procedure.
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FIGURE 7 | Linkage disequilibrium decay for all pseudo-chromosomes. Pairwise correlations between 4,680 SNPs are plotted against the physical distance
(Kb) between in base pairs. The curves indicate the non-linear regressions of r2 onto the physical distance in base pairs. The black plot shows the density
distribution of r2 values and the blue line indicates the derived threshold for linkage disequilibrium (LD) due to linkage.

In terms of population structure, based on the analysis of
PCoA and neighbor-joining trees for the two marker types,
the 150 Chinese jujube accessions were grouped into same
numbers of clusters with similar broad patterns, however, the
number of accessions grouped into the clusters differed. These
findings were not surprising because a broad grouping pattern
is expected regardless of the marker types used in investigations
of genetic relatedness. Similar findings were reported in rice
(Courtois et al., 2012; Singh et al., 2013). The low percentage
of admixture accessions revealed by the STRUCTURE analyses
based on the two marker types suggests that there were relatively
few domestication or breeding events during evolution since
admixture is the representation of diverse parents. Although
cluster differentiations were apparent, there was no geographical
isolation for the analyzed Chinese jujube accessions, possibly
because of frequent transfers of accessions between the two sites
(Cangzhou and Taigu). The percentage of admixture accessions
determined during STRUCTURE analyses and the proportion
of cumulative variation in PCoA analysis were higher for the
SSR markers than for the SNP markers. These results indicate
that the resolving power for population structure was higher for
SSR markers than for SNP markers. This conclusion is consistent
with the findings of previous studies (Hamblin et al., 2007;
Li et al., 2010; Yang et al., 2011). Li et al. (2010) explained that
the disparity between the two markers is related to the number
of observed alleles. The resolving power for clustering increases
as the number of observed alleles increases. However, in this
study, the SSR markers exhibited better clustering power, with
209 observed alleles for the SSRs compared with 9,398 observed
alleles for the SNPs.

Although the number of clusters differed among the PCoA,
STRUCTURE, and neighbor-joining tree analyses, the same

clusters were obtained using SNP- and SSR-based methods for
each analysis. This indicted the clusters generated in this study
for the 150 accessions were real. Similar results were reported by
Li et al. (2010) and Singh et al. (2013).

Several studies concluded that many SNPs are required to
obtain the same information as SSR markers (Laval et al., 2002;
Yu et al., 2009; Van Inghelandt et al., 2010). In this study,
although there were nearly 195-times more bi-allelic SNPs than
SSRs, the two types of markers performed inconsistently during
analyses of genetic diversity and population structure. Thus, our
findings suggest the resolving power of the two marker types is
unrelated to the number of SNPs and observed alleles. Instead,
it is associated with the characteristics of the markers and the
studied species.

CONCLUSION

Genome-wide SNPs for diverse jujube germplasm were identified
in this study. They were subsequently applied to assess the
genetic diversity, population structure, and LD of Chinese jujube
accessions. This is the first report describing the LD pattern in
Chinese jujube. We revealed that GBS technology is a powerful
tool for identifying and genotyping SNPs at a genome-wide scale.
The PIC values calculated based on the SSRs and SNPs suggest
the 150 Chinese jujube accessions are highly genetically diverse.
The two markers exhibited similar resolving power regarding
genetic diversity. However, the resolving power of the SSRs was
higher than that of the SNPs in terms of population structure.
Our findings may help researchers select suitable SSRs and/or
SNPs for various analyses of Chinese jujube. They may also serve
as a useful source of genetic information relevant for future
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genome-wide association studies and/or marker-assisted selective
breeding.
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