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Abscisic acid (ABA) is a sesquiterpene signaling molecule produced in all kingdoms

of life. To date, the best known functions of ABA are derived from its role as a major

phytohormone in plant abiotic stress resistance. Different organisms have developed

different biosynthesis and signal transduction pathways related to ABA. Despite this,

there are also intriguing common themes where ABA often suppresses host immune

responses and is utilized by pathogens as an effector molecule. ABA also seems

to play an important role in compatible mutualistic interactions such as mycorrhiza

and rhizosphere bacteria with plants, and possibly also the animal gut microbiome.

The frequent use of ABA in inter-species communication could be a possible reason

for the wide distribution and re-invention of ABA as a signaling molecule in different

organisms. In humans and animal models, it has been shown that ABA treatment or

nutrient-derived ABA is beneficial in inflammatory diseases like colitis and type 2 diabetes,

which confer potential to ABA as an interesting nutraceutical or pharmacognostic drug.

The anti-inflammatory activity, cellular metabolic reprogramming, and other beneficial

physiological and psychological effects of ABA treatment in humans and animal

models has sparked an interest in this molecule and its signaling pathway as a novel

pharmacological target. In contrast to plants, however, very little is known about the

ABA biosynthesis and signaling in other organisms. Genes, tools and knowledge about

ABA from plant sciences and studies of phytopathogenic fungi might benefit biomedical

studies on the physiological role of endogenously generated ABA in humans.

Keywords: immunity, inflammation, host-microbe interactions,metabolic engineering, comparative biology, signal

transduction, natural product chemistry, systems biology

INTRODUCTION

Abscisic acid (ABA) is best known as a phytohormone regulating abiotic stress responses in plants,
but ABA biosynthesis has been observed in a phylogenetically wide range of organisms (Hartung,
2010), ranging from cultured cyanobacteria (Maršálek et al., 1992) to human cells (Bruzzone et al.,
2007). Although commonalities in ABA response between cells from diverse organism classes have
been observed (Huddart et al., 1986), this evolutionary ancient signaling molecule shows several
kingdom-specific features in both biosynthesis and signaling (Hirai et al., 2000; Hauser et al.,
2011). It is not known why this particular molecule is produced by so many different types of
organisms and why so many different types of organisms respond to ABA. Furthermore, ABA can
exist in four different possible stereoisomeric forms, but naturally occurring ABA is predominantly
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of a single form [(+)cis,trans-ABA]. There are no special
chemical properties that make ABA particularly useful as a
signaling molecule, compared to all other potential alternative
chemical structures. Despite the kingdom-specific signaling and
biosynthesis, there are also commonalities between plants and
animals where both plants and animals rely on intracellular
free ABA for activation of their receptors (Klingler et al., 2010;
Sturla et al., 2011). Intracellular ABA homeostasis is regulated
by several different mechanisms: biosynthesis/catabolism,
conjugation/deconjugation and export/import (Dong et al.,
2015). Many of the mechanisms regulating intracellular free
ABA homeostasis are however currently only known in plants.
The vast majority of all studies on physiological effects of
ABA to date are also focused on the role of ABA in plants.
Most notably among studies of ABA in other organisms,
several phytopathogenic fungal pathogens produce ABA as a
virulence factor (Mbengue et al., 2016), and some mutualistic
host-microbe interactions also rely on ABA (Stec et al., 2016).
ABA influences immune responses in animals, and also animal
pathogens can utilize this molecule as an effector molecule
(Wang et al., 2009). Apart from direct effects on immunity, ABA
also seems to influence metabolic control which might play a
role in its protective activity against diabetes. In addition to
endogenous biosynthesis, humans and other animals will also
have a constant exposure of ABA from nutritional sources, and
there are indications that a high ABA diet can have beneficial
physiological effects (Magnone et al., 2015). One possible reason
why ABA is so widely distributed among different types of
organisms and why biosynthesis, perception and signaling for
this molecule has been re-invented several times could be that
ABA often is used as a signaling molecule for communication
between different species. If that is the case, the role of ABA in
host-pathogen and mutualistic interactions would be ancient
and a universal theme among different organisms and organism
interactions. The physiological effects of ABA in animals,
especially related to immunity, inflammation and metabolic
control, have sparked an interest in utilizing this pathway as a
pharmacological target (Sakthivel et al., 2016), which has led to
several recent papers on ABA functions in animals. However,
the most famous plant hormone with pharmacological effects
in humans is salicylic acid (SA). Just like with ABA, humans
and other animals are constantly exposed to low doses of SA as
part of their diet, which can have physiological effects (Klessig
et al., 2016). Despite the well-documented effects of SA both in
plants and animals, it is not until recently that several molecular
targets have been identified (Manohar et al., 2014; Choi et al.,
2015a,b, 2016; Dachineni et al., 2016). Earlier molecular targets
of SA were often either only active at too high concentrations
to be physiologically relevant, or only inhibited by acetyl-SA
(i.e., Aspirin vs. COX-1 and -2). Interestingly, some of these
new molecular targets are common between plants and animals
(e.g., HMGB1 in humans and related plant homologs), and
there are some indications of an endogenous SA biosynthesis
pathway in humans (Klessig et al., 2016). This near-universal use
of certain molecular structures in many different organisms and
organism interactions, together with their interesting nutritional
and pharmacological effects calls for a highly multidisciplinary

approach in order to further elucidate the role and functions of
ABA and other plant hormones in non-plant organisms. Here
we will discuss what is known about the alternative “direct”
biosynthesis pathway of ABA in fungi, and the role of ABA
in immunity and inter-species communication. We will also
explore the possibilities to utilize genes and tools from plants
and phytopathogenic fungi for functional evaluation of the role
of ABA in animals.

DIFFERENT ABA BIOSYNTHESIS
PATHWAYS

ABA is a sesquiterpene (15 carbons) that can be found in many
different kinds of organisms which produce it by different means
(Hauser et al., 2011) (Figure 1). Plants synthesize their ABA
via their plastids (an organelle that does not exist in fungi
or animals) as a compound derived from large (40 carbons)
carotenoid precursor molecules generated via the plastidial 2-
C-methyl-D-erythritol 4-phosphate (MEP) pathway (Schwartz
et al., 2003; Finkelstein, 2013). Rhizosphere and endophytic
bacteria, such as Achromobacter, Bacillus and Pseudomonas,
have all been shown to produce ABA in axenic cultures
(Forchetti et al., 2007; Salomon et al., 2014). Also marine
Streptomyces isolates have been shown to produce ABA and
several other phytohormones without any obvious interaction
with plants (Rashad et al., 2015). No ABA biosynthesis
pathway is currently described in ABA-producing bacteria, but
Achromobacter, Bacillus and Pseudomonas are all known to
produce carotenoids, whichmakes it likely that also these bacteria
depend on a carotenoid-dependent pathway for generation
of ABA. Further underscoring this, in plants ABA synthesis
from carotenoids takes place in the plastids, cell organelles
thought to have originated from endosymbiotic cyanobacteria.
It is however possible that different prokaryotic species utilize
independently evolved carotenoid-dependent and -independent
ABA biosynthesis pathways. Several phytopathogenic fungi,
such as Cercospora rosicola (Assante et al., 1977), Botrytis
cinerea (Hirai et al., 1986) and Magnaporthe oryzae (Spence
et al., 2015) have been shown to produce ABA. In contrast to
the plant carotenoid-dependent “indirect” pathway, the fungal
ABA biosynthesis depends on a “direct” pathway with a 15
carbon (farnesyl diphosphate (FDP) or farnesyl pyrophosphate
(FPP)) precursor molecule generated via the mevalonate (MVA)
pathway (Hirai et al., 2000). FDP is a common and often rate-
limiting precursor for several metabolites synthesized through
the MVA pathway, including steroids, also in animals (Park et al.,
2017). Several genes critical for this “direct” ABA biosynthesis
have been identified in the broad host range phytopathogenic
gray mold fungus B. cinerea: the P450 reductase CPR1 (Siewers
et al., 2004) and a biosynthesis gene cluster (BcABA1-4) (Siewers
et al., 2006). The enzyme catalyzing the first committed step
in the fungal ABA biosynthesis pathway, the conversion of
FDP to allofarnesene and ionylideneethane, is however not
yet known (Siewers et al., 2006). Genetic and transcriptional
studies of ABA over-expressing strains of B. cinerea (Ding et al.,
2016) will hopefully result in the identification of genes for
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FIGURE 1 | A simplified overview of the direct ABA biosynthesis in fungi and the indirect biosynthesis in plants. Yellow background indicates cytosolic

compartment, and green background the chloroplast compartment. For more detailed biosynthetic pathways, see Siewers et al. (2006) for the direct pathway in fungi

and Finkelstein (2013) for the indirect pathway in plants. Molecular structures in scalable vector graphics (SVG) format were obtained from Wikipedia

(https://en.wikipedia.org) on 2017-02-08, and the images were licensed “public domain” by the original authors.

missing critical metabolic steps and a more complete general
understanding of the direct ABA biosynthesis pathway in various
phytopathogenic fungi. As a complementary strategy, defining
the phylogenetic distribution of fungal ABA biosynthesis could
further help to define and identify the genes responsible for
critical biosynthetic steps. Other fungal pathogens, such as the
rice blast pathogen M. oryzae, rely on the same biosynthesis
genes as in B. cinerea (Spence et al., 2015). Furthermore, an
NCBI BLASTp (Johnson et al., 2008) survey of homologs of
the protein sequences from the B. cinerea ABA biosynthesis
cluster easily identifies closely related proteins in many different
endophytic or pathogenic fungi (e.g., Alternaria, Aspergillus,
Aureobasidium, Colletotrichum, Dothistroma, Eutypa, Fusarium,
Leptosphaeria,Magnaporthe, Pyrenophora, and Verticillium) and
ABA has already been found in Aspergillus, Fusarium and many
other kinds of saprophytic or parasitic fungi (Crocoll et al., 1991;
Xu et al., 2008; Dörffling et al., 2014; Morrison et al., 2015;
Uzor et al., 2017). Taken together, this might indicate that there
is a conserved direct ABA biosynthesis pathway in fungi. It

also indicates that ABA as a fungal virulence or compatibility
strategy can be more common than currently appreciated.
Fungi are part of the Opisthokont group together with animals
(Steenkamp et al., 2006), which makes them closer related to
animals than plants are and it is thus more likely that fungi and
animals share a common ABA biosynthesis pathway. Of the four
known genes in the B. cinerea ABA biosynthesis cluster, three
(BcABA1, 2, and 4) have several homologs in the mammalian
genomes and are thus candidate endogenous biosynthesis genes
(Figure 2; Supplemental Texts 1, 2). In BLASTp surveys where
fungi are excluded, animal homologs of BcABA2 are the top
hits. BcABA3 homologs have a much narrower phylogenetic
distribution (fungi, Amycolatopsis and Streptomyces), and this
protein plays an unknown but critical biochemical role in B.
cinerea ABA biosynthesis (Siewers et al., 2006). In contrast
to what was previously reported (Spence et al., 2015), there
is an M. oryzae BcABA3 homolog (Genbank: ELQ43177.1).
Considering the long evolutionary distances between fungi and
metazoa, it is possible that a conserved metabolic pathway will
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A

B

FIGURE 2 | (A) Phylogeny of Botrytis P450 ABA biosynthesis proteins BcABA1 and BcABA2 (red) compared to all human P450 proteins (black). (B) Phylogeny of

Botrytis BcABA4 biosynthesis protein (red) compared to all human carbonyl reductase family members (black).

rely on unrelated proteins filling the same functions in animals
and fungi through convergent evolution. Two of the critical
ABA biosynthesis steps in Botrytis (BcABA1 and BcABA2)
are represented by P450 proteins, and only CYP51 and CYP7
proteins are found in both fungi and metazoa (Nelson et al.,

2013). It is however also possible that animals do not have a
conserved biosynthetic pathway in common with fungi, and that
they rely on carotenoid metabolites from nutritional sources
to generate ABA in a manner similar to the retinoic acid
biosynthesis pathway. Considering that humans lack the MEP

Frontiers in Plant Science | www.frontiersin.org 4 April 2017 | Volume 8 | Article 587

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Lievens et al. ABA as Immune Regulator

pathway and that human cells are able to produce ABA in culture
(Bruzzone et al., 2007), it is however more likely that animals rely
on an endogenous “direct” (MVA) biosynthesis pathway similar
to that of fungi. To distinguish between these two possibilities, it
would be interesting to investigate this further in animal cells,
for instance through isotope labeled metabolites, as previously
done for fungi and plants (Hirai et al., 2000). Alternatively could
ABA production from animal cells be investigated in presence of
different types of inhibitors, such as statins and bisphosphonates,
in order to determine the biosynthesis pathway.

ABA IN PLANT-MICROBE INTERACTIONS

The effect of ABA on plant pathogen resistance is complex
(Figure 3). Many pathosystems have demonstrated a negative
effect from ABA on plant pathogen resistance, such as the
Botrytis cinerea—tomato (Audenaert et al., 2002; Sivakumaran
et al., 2016), Ralstonia solanacearum—tobacco (Zhou et al.,
2008), Plectosphaerella cucumerina—Arabidopsis (Hernández-
Blanco et al., 2007; Sánchez-Vallet et al., 2012), andMagnaporthe
oryzae—barley (Ulferts et al., 2015) pathosystems. Emerging
evidence also indicate that ABA plays an important role
in compatible interactions in mutualistic plant-microbe
interactions (Stec et al., 2016). For example, ABA is promoting
infection and establishment of compatible interactions with
arbuscular mycorrhizal fungi (Herrera-Medina et al., 2007;
Charpentier et al., 2014; Fracetto et al., 2017) and several kinds
of root-associated bacteria produce ABA in the rhizosphere
(Salomon et al., 2014). Not only does ABA suppress immune
responses, but immune responses are also able to suppress
ABA signaling. For example can very early pathogen response
signaling negatively regulate ABA responses (Kim et al., 2011;
Desclos-Theveniau et al., 2012). In many diverse pathosystems,
ABA acts antagonistically against the SA pathogen disease
resistance hormone pathway (Audenaert et al., 2002; Jiang
et al., 2010). Plants need to prioritize between many different

FIGURE 3 | A simplified overview of synergistic and antagonistic

interactions between plant stress resistance hormone signaling

pathways. The simplified overview does not accurately describe the plant

hormone involvement in all plant pathosystems, where variations may occur.

environmental cues for an appropriate response, which could
explain some of the antagonistic effects between different
signaling pathways (Denancé et al., 2013; Vos et al., 2015;
Kissoudis et al., 2016). The pathogen resistance responses can
also be complex and multi-layered, where the effects of lesser
responses only are apparent when the major responses have
been disabled (Persson et al., 2009). Lately, complex interactions
between multiple plant hormones and the traditional pathogen
disease hormone [SA, jasmonic acid (JA) and ethylene (ET)]
signaling pathways has been unraveled, which further highlights
this inherent conflict between different plant responses
(Shigenaga and Argueso, 2016; Verma et al., 2016). Also the
different defense hormones play different mutually exclusive
roles. In a simplified generalization, SA is involved in resistance
against biotrophic pathogens and JA is involved in resistance
against necrotrophic pathogens or insects. A vast majority of
the studies of hormone interactions in disease resistance rely
on the Arabidopsis model system, and there are indications that
other plants may respond differently (De Vleesschauwer et al.,
2014). As part of the antagonism between resistance against
biotrophs and necrotrophs, SA suppresses JA responses at
multiple levels (Caarls et al., 2015). ET, on the other hand, can
enhance or influence both SA and JA responses (Broekgaarden
et al., 2015). While the antagonism between ABA and SA is
relatively clear in many models (de Torres Zabala et al., 2009;
Moeder et al., 2010), the ABA influence on JA signaling is
more complex where the JA/ABA branch regulates a different
set of JA responses compared to the JA/ET branch, and these
two branches are mutually exclusive (Anderson et al., 2004).
The JA/ET branch responses rely on the ERF transcription
factors, leading to expression of defensins and resistance against
necrotrophs (Müller and Munné-Bosch, 2015). The JA/ABA
branch responses, on the other hand, rely on the transcription
factor MYC2, which regulates wounding responses, insect
resistance and suppression of JA/ET-dependent innate immunity
against necrotrophs (Kazan and Manners, 2013; Goossens
et al., 2016). Interestingly, the transcription profile of genes
downstream of MYC2 might be influenced directly by ABA via
physical interactions with one of the intracellular ABA receptors
(Aleman et al., 2016). In addition to the immune suppressive
effects from ABA, it can also play a positive role in pathogen
resistance. One of the first indications of a positive influence
from plant ABA signaling on biotic stress resistance was the
reliance of ABA for a β-aminobutyric acid (BABA)-induced
priming for pathogen resistance (Ton and Mauch-Mani, 2004).
Endogenous ABA was later shown to play a positive role directly
in Brassica napus and Arabidopsis callose-dependent disease
resistance to the hemibiotrophic fungal pathogen Leptosphaeria
maculans (Kaliff et al., 2007). ABA is often a positive regulator
of the callose-dependent disease resistance responses (Ton and
Mauch-Mani, 2004; Flors et al., 2008; García-Andrade et al.,
2011; Oide et al., 2013). Callose is a rapidly formed β-glucan
barrier, which in turn also is in conflict with SA-dependent
disease resistance responses (Nishimura et al., 2003; Oide et al.,
2013). Also other kinds of physical barriers seem to interact
with ABA and influence plant disease resistance, for example
are Arabidopsis ABA-dependent resistance responses against

Frontiers in Plant Science | www.frontiersin.org 5 April 2017 | Volume 8 | Article 587

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Lievens et al. ABA as Immune Regulator

R. solanacearum constituitively up-regulated in certain cellulose
synthase mutants (Hernández-Blanco et al., 2007; Feng et al.,
2012). In a more classical signaling sense, ABA has also been
found to play a positive role together with JA in the resistance to
Sclerotinia sclerotiorum in Arabidopsis (Perchepied et al., 2010),
and the JA/ABA pathway has subsequently also been identified as
important for resistance against insects (Verhage et al., 2011; Vos
et al., 2013). An antagonistic action of ABA on ET-dependent
infection has also been suggested as a mechanism in rice
resistance against Cochliobolus miyabeanus (De Vleesschauwer
et al., 2010). That ET can act as a virulence-promoting signal
has been seen also in other pathosystems where ABA plays a
positive role in resistance (Persson et al., 2009; Groen et al.,
2013). In contrast, the ABA-ET antagonism is also important
for establishment of arbuscular mycorrhiza where ET suppresses
succesful colonization in ABA-deficient plants, most likely due
to activation of JA/ET-dependent disease resistance responses
against the invading fungus (Garrido et al., 2010; Fracetto et al.,
2017). As an alternative mechanism, ABA can also positively
influence disease resistance by regulating stomatal closure
in order to deny pathogens entry into the plant (Lim et al.,
2015). Interestingly, the JA-dependent pathway can sometimes
antagonize this ABA-induced stomatal closure, which provides
another example of opposing effects from ABA and other plant
disease resistance hormones. Pathogens such as Pseudomonas
syringae and various fungi can “hijack” the inherent antagonism
between different resistance pathways in order to promote
infection by using plant hormones or plant hormone-like
compounds as effector molecules (Goossens et al., 2016; Toum
et al., 2016).

ABA AS PATHOGEN EFFECTOR IN PLANT
AND ANIMAL HOSTS

Several phytopathogenic fungal pathogens produce ABA and
other small molecule effectors in order to suppress plant immune
responses (Mbengue et al., 2016), and there are indications that
also human pathogens use ABA for a similar strategy (Wang
et al., 2009). Some pathogens, like P. syringae, indirectly utilizes
ABA as an effector molecule by modulating the endogenous
ABA biosynthesis and response pathways in the host plant (de
Torres-Zabala et al., 2007), which in turn indirectly modulates
mutually exclusive pathogen responses, like the antagonistic
relationship between SA- and callose-dependent responses (Oide
et al., 2013). Other pathogens have their own ABA biosynthesis,
most notably several phytopathogenic fungi such as B. cinerea.
Most studies on B. cinerea ABA biosynthesis focus on its
production in fermentation (Ding et al., 2015, 2016), and there
are unfortunately no studies that have established the effect of
altered B. cinerea ABA biosynthesis on virulence. The rice blast
fungusM. oryzae, which depends on the same ABA biosynthesis
pathway as B. cinerea (Spence et al., 2015), rely on ABA for
virulence and respond to ABA in order to form appressoria
for infection. The plastid-containing protozoan animal parasite
Toxoplasma gondii also utilizes ABA as a virulence factor to
suppress animal host responses by inducing autophagy (Wang

et al., 2009). In contrast, the related malaria parasite Plasmodium
produces SA to suppress animal host immunity, and ABA
treatment seems to reduce the virulence of this pathogen
(Matsubara et al., 2015; Glennon et al., 2016). Interpretations
of the role of ABA in Toxoplasma virulence must however
be made with caution, since Toxoplasma ABA production was
inhibited using the herbicide Fluridone which also seems to
affect ABA produced in mammalian cells (Magnone et al., 2013).
Because of this, it would be interesting with transgenic ABA
depletion studies by overexpression of an ABA catabolic enzyme
in Toxoplasma, similar to how SAwas depleted in Plasmodium by
overexpression of a bacterial salicylate hydroxylase (Matsubara
et al., 2015). Other pathogens, like the oomycete oyster parasite
Perkinsus marinus, also produce ABA but it does not seem to
influence its virulence (Sakamoto et al., 2016). ABA can also
directly influence pathogen growth and development, such as the
rice blast fungus M. oryzae (Spence et al., 2015) or the protist
animal parasite T. gondii (Nagamune et al., 2008). In this context,
the effect of ABA on pathogen development can fit into a much
broader observation of complex hormone interactions between
the host and the virulence of certain pathogens, like T. gondii
(Galván-Ramírez et al., 2014). The use of ABA and other plant
hormones as effector molecules or virulence factors on non-plant
hosts is still a relatively unexplored area, and it is possible that
more bacterial, protist, oomycete and fungal pathogens utilize
this strategy.

PHYSIOLOGICAL AND
PHARMACOLOGICAL EFFECTS OF ABA IN
ANIMALS

The presence of ABA in animal tissues has been known since
the 1980s (Le Page-Degivry et al., 1986; Li et al., 2011), but has
largely been ignored until recently. In early branchingmetazoans,
ABA has been associated to abiotic stress responses (Zocchi
et al., 2001) and nutrient-derived ABA has been suggested to
promote innate immunity in honey bees (Negri et al., 2015).
Administration of very high doses of ABA is well tolerated in
mice without adverse effects (Li et al., 2011), which makes ABA
treatments pharmacologically interesting. There are however
reports that long-term ABA exposure might have adverse effects
(Isik and Celik, 2015), which calls for caution. ABA treatment in
humans and animal models has been suggested to be beneficial
for type 2 diabetes (Guri et al., 2007; Bruzzone et al., 2015;
Magnone et al., 2015), inflammatory bowel disease (IBD) (Guri
et al., 2011; Viladomiu et al., 2013), atherosclerosis (Guri et al.,
2010), systemic sclerosis (Bruzzone et al., 2012c), glioma (Zhou
et al., 2016), depression (Qi et al., 2015b, 2016), and resistance
against hepatitis C (Rakic et al., 2006), influenza (Hontecillas
et al., 2013), malaria (Glennon et al., 2016), and mycobacteria
(Clark et al., 2013). In addition to being administered either
through nutritional sources or as a drug, there is also endogenous
production of ABA in many different types of mammalian cells—
such as stem cells, macrophages, microglia, granulocytes and
keratinocytes (Bruzzone et al., 2007, 2012b; Scarfì et al., 2008;
Bodrato et al., 2009; Magnone et al., 2009, 2012). Furthermore,
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endogenous induction of serum ABA in response to glucose
challenge has been shown to stimulate insulin release and is
impaired in patients suffering from type 2 diabetes (Bruzzone
et al., 2008, 2012a; Ameri et al., 2015). ABA has recently attracted
the attention of several research groups as a potential drug lead
(Bassaganya-Riera et al., 2010; Sakthivel et al., 2016) because
of these promising biological activities. One study has already
shown that fruits and vegetables with high ABA contents (such
as figs and apricots) are beneficial against hyperglycemia in both
rats and humans (Magnone et al., 2015), which makes ABA a
potential pharmacognostic drug or nutraceutical. Pharmaceutical
research on ABA currently focuses on generation of ABA
analogs that will be more stable or act as ABA antagonists
(Grozio et al., 2011; Bellotti et al., 2015). Similar approaches are
currently also pursued in the plant sciences where antagonistic
ABA analogs have been designed (Takeuchi et al., 2014), and
pyrabactin variants are utilized as more stable and chemically
unrelated ABA agonists (Overtveldt et al., 2015). An alternative
treatment approach is to manipulate ABA homeostasis indirectly
by targeting the different mechanisms that influence the levels
of free intracellular ABA (Todoroki and Ueno, 2010). A
conceptually similar approach has already been tried in animal
systems by treatments with a herbicide (Fluridone), which is
known to influence ABA levels in plants (Magnone et al., 2013).
At this moment, there are no reports describing an inhibition
of the “direct” fungal ABA biosynthesis by Fluridone. How
Fluoridone would influence ABA in mammalian cells is also
unclear since the molecular target is the carotenoid biosynthesis
protein phytoene desaturase (Chamovitz et al., 1993), which is
absent in animals. More knowledge of the ABA homeostasis
in humans and the molecular target of the herbicide is thus
needed before it can be applied as a true drug strategy. There
are however conflicting reports whether ABA plays a pro- or
anti-inflammatory role in specific cell models (De Flora et al.,
2014), but the over all pharmacological properties are anti-
inflammatory.

The best studied proposed receptor for ABA in animals is
the intracellular protein LANCL2, which is attached to the
cell membrane by myristoylation (Sturla et al., 2009; Fresia
et al., 2016). LANCL2 is homologous to the earlier proposed
ABA receptor in plants: GCR2 (Liu et al., 2007; Chen and
Ellis, 2008) and bacterial LanC lanthionine synthesis proteins.
However, the mammalian LanC-like homologs do not show any
evidence of having a conserved role in lanthionine biosynthesis
(He et al., 2017). It is not yet known whether a currently
unknown catalytic activity of LANCL2 could contribute to
ABA signaling. GCR2 was proposed as a G-protein coupled
receptor (GPCR) for ABA, but this was later challenged (Gao
et al., 2007; Chen and Ellis, 2008) and an entirely different
protein family (PYR/PYL/RCAR) of intracellular receptors is
now thought to be the dominant ABA receptors in plants
(Ma et al., 2009; Miyazono et al., 2009; Park et al., 2009).
Signaling of ABA via the PYR/PYL/RCAR intracellular receptor
family and its associated PP2C phosphatases is however a land
plant-specific innovation with no animal homologs (Hauser
et al., 2011). Despite the apparent low importance of GCR2
in plant ABA responses, the human LANCL2 seem to work

as expected from an ABA receptor, since independent drugs
targeting this protein result in effects similar to those seen
by ABA treatment (Bissel et al., 2016). ABA is suggested to
act through a LANCL2-PPARγ axis for its anti-inflammatory
functions (Guri et al., 2008; Sturla et al., 2009, 2011) and
through a GPCR—like signaling for pro-inflammatory responses
(Bruzzone et al., 2007, 2012b; Sturla et al., 2009; Fresia et al.,
2016). Interestingly, ABA worsened the inflammation in models
of IBD when PPARγ was absent from T cells (Guri et al., 2011;
Viladomiu et al., 2013), indicating that ABA indeed plays a dual
role and acts both pro- and anti-inflammatory. Apart from its
inflammation-modulating functions, ABA signals via LANCL2
have also been linked to metabolic reprogramming of adipocytes
into brown fat cells (Sturla et al., 2017), which can be especially
beneficial in the context of diabetes where a dual direct effect
on immune cells and metabolism could contribute to reduced
inflammation (Ray et al., 2016). One possible mechanism
for the metabolic reprogramming is an effect of LANCL2
on the Akt/mTORC2 pathway, where LANCL2 influences
insulin-dependent Akt phosphorylation (Zeng et al., 2014). The
metabolic reprogramming and inflammation-modulating effects
of ABA can however also be two sides of the same coin, since
there is significant cross talk between inflammatory signaling
pathways and metabolism in innate immune cells (Kelly and
O’Neill, 2015). An increased oxidative metabolism through
ABA signaling should promote the alternatively activated and
often anti-inflammatory macrophages. Inspired by the protective
effects of ABA, LANCL2 has been proposed as a drug target,
especially for treatments of IBD (Lu et al., 2011, 2014; Basson
et al., 2016). Apart from the proposed GPCR-like signaling and
the PPARγ mediated signaling, LANCL2 has some interesting
potential direct signaling effects. For example, binding of ABA
causes nuclear translocation of LANCL2 (Fresia et al., 2016),
and nuclear LANCL2 has already been shown to influence
transcription factor activity (Park and James, 2003). On the
other hand are there no spontaneous phenotypes reported
for LANCL2 deficient mice (Leber et al., 2016). The lack of
spontaneous phenotype in LancL2 knock-out mice is also not due
to redundancy with the other mammalian LanC-like proteins,
since the LancL1-3 triple knock-out mice still are viable and
do not show any gross abnormalities (He et al., 2017). The
downstream PPARγ is known to be required for alternative (M2)
activation of macrophages (Odegaard et al., 2007). Macrophages
can be activated (polarized) in two different ways: the classically
activated pro-inflammatory M1 macrophages, and different
kinds of alternatively activated M2 macrophages that often
act anti-inflammatory and are important for tissue repair
(Mantovani et al., 2002). The PPARγ–mediated M2 polarization
could explain the anti-inflammatory role of ABA. Consistent with
the proposed LANCL2-PPARγ ABA signaling pathway, LancL2
full-body or myeloid-specific knock-out mice show an impaired
development of regulatory anti-inflammatory macrophages in
response to Helicobacter pylori infection, which results in a
stronger immune response but also greater tissue damage
(Leber et al., 2016). It will be important to evaluate these
LancL2 knock-out mice or the triple knock-out mice for ABA
responses in models that have already shown clear effects from
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ABA—including models where other ABA receptors have been
proposed. One such alternative pathway suggests that ABA acts
as an agonist to the retinoic acid nuclear receptors (Zhou et al.,
2016). ABA stimulation through cross-reactivity with the retinoic
acid receptors could also cause anti-inflammatory effects, since
retinoic acid has been shown to be protective in inflammatory
models of rheumatoid arthritis (Kwok et al., 2012). Surveys of
other ABA-binding human proteins have also identified HSP70
family members as ABA-binding (Kharenko et al., 2013), and
ABA-mediated megakarocyte survival has been suggested to
rely on both LANCL2 and HSP70 (GRP78) interactions with
ABA (Malara et al., 2017). The possible role of HSP70 family
members in ABA signaling is another intriguing parallel with
plant ABA signaling, where overexpression of HSC70 caused an
ABA-hypersensitive phenotype in Arabidopsis (Clément et al.,
2011). ABA seems to bind many potential receptors (Figure 4)
and seems to perform several physiological functions (Scarfì
et al., 2009; Wang et al., 2009; Kharenko et al., 2013; Pydi et al.,
2015; Qi et al., 2015a). Whether LANCL2 is the major ABA
receptor in humans is thus still not entirely certain.

An intriguing indirect alternative effect of ABA is its role in
inhibiting the bitter taste receptor, which is known to influence
the gut microbiome and glucose responses (Dotson et al., 2008;
Pydi et al., 2015; Latorre et al., 2016). This could explain many

physiological effects of ABA, especially its protective effects in
colitis and diabetes, and possibly also some psychological effects
via the gut-brain axis. Gut bitter taste receptors would also
be located at a primary site for nutrient-derived ABA, but it
can also mean that microbe-generated ABA is an important
signal between the gut microbiome and the host since gut
microbes produce many complex metabolites (Lee and Hase,
2014; Palau-Rodriguez et al., 2015). Cultures of bacteria found
in the animal gut (Escherichia coli, Klebsiella pneumonia and
Proteus mirabilis) can produce low levels of ABA and other plant
hormones (Karadeniz et al., 2006), but there are currently no
reports on whether ABA or other plant hormones are present
in the endogenous gut microbiome metabolome and if levels
and presence of these compounds correlate with different host
physiological states.

Being an endogenously generated anti-inflammatory
secondary metabolite puts ABA in the same category as the
glucocorticoids and other anti-inflammatory steroids, but with
the important difference that we know very little about the
function and regulation of ABA in humans. It is possible that
the mammalian ABA receptor(s) are equally elusive as they used
to be in plants prior to the discovery of the PYR/PYL/RCAR
receptor family, with several ABA-binding proteins being
proposed as receptor candidates (Klingler et al., 2010). It is also

FIGURE 4 | An overview of proposed signaling pathways for ABA in animal cells. Regulation of intracellular free ABA homeostasis by biosynthesis/catabolism,

export/import and conjugation/deconjugation are currently unknown in animals. Different ABA receptors have been proposed for ABA, such as the bitter taste

receptor (T2R4), LANCL2, retinoic acid receptors (RARs), and HSP70 (GRP78).
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possible that many molecular targets of ABA will hit a gray
zone where the question whether they should be considered
receptors turns into a matter of semantics, similar to the current
situation with SA (Klessig et al., 2016). It is however likely
that there will be analogies between plant and animal ABA
receptors. Intracellular receptors are for example likely, and
since ABA cannot pass the cell membrane at physiological pH
(Kuromori and Shinozaki, 2010), active transport is needed for
signaling. Recently, two different ABA importers were identified
in mammals (Vigliarolo et al., 2015, 2016), and this family of
importers will most likely play an important role in regulating
the ABA responsiveness of different cells. There could also be
different receptor- and signal systems to respond to intracellular
and extracellular ABA, which perhaps could explain some
discrepancies between results suggesting an anti-inflammatory
role of ABA and results where depletion of extracellular ABA
with antibodies resulted in reduced activation of macrophages
(Magnone et al., 2012). It is however also possible that ABA,
just like in plants, plays a complex role in animal immunity
where some immune responses are promoted whereas others are
inhibited.

PERSPECTIVES: HOW PLANT SCIENCE
AND STUDIES OF PHYTOPATHOGENIC
FUNGI CAN HELP BIOMEDICAL SCIENCE

The near universal presence of ABA and its intriguing
physiological effects in different organisms calls for a highly
multidisciplinary approach to further understand its endogenous
functions in the different organisms as well as its pharmacological
potential (Bohlin et al., 2010). Similar approaches might also
be fruitful for studies of other signaling molecules from plants
and phytopathogenic fungi that have been found to show
pharmacological effects in animals, like for example gibberellins
(Hedden and Thomas, 2012; Annand et al., 2015; Bannon et al.,
2015; Reihill et al., 2016) and SA (Klessig et al., 2016). Since
no genes are known that regulate intracellular ABA homeostasis
in animals, utilizing proteins and pathways known in plants
and phytopathogenic fungi could help defining the physiological
role of ABA in animals. The plant P450 (CYP707A) enzymes
that degrades ABA to phaseic acid (Umezawa et al., 2006)
could be used to deplete endogenous ABA (or intracellular
ABA from other sources) in transgenic animals or animal cells.
CYP707As are active in presence of animal P450 reductases, but
expression of the Arabidopsis P450 reductase ATR1 (At4g24520)
results in 70% higher activity (Saito et al., 2004). A transgenic
approach comparing at least 2 different inactivation pathways
is also important, since metabolic engineering carries a risk of
phenotypic artifacts from the degradation products (van Wees
and Glazebrook, 2003). Recently, the CYP707AABA degradation
product phaseic acid was found to be active in both mammalian
and plant cells, which could cause such phenotypic artifacts
(Hou et al., 2016; Rodriguez, 2016; Weng et al., 2016). This
means that future ABA depletion studies relying on CYP707A
activity should most likely also express the phaseic acid reductase
(PAR, Arabidopsis ABH2: At4g27250) to avoid one potential

side effect. One alternative ABA inactivation pathway is a
UDP-dependent glycosyl transferase (UGT71C5, Arabidopsis:
At1g07240), which inactivates free ABA by conjugating it to
glucose (Liu et al., 2015). However, overexpression of this enzyme
in plants gives a much lower level of ABA insensitivity compared
to CYP707A overexpressing plants. Other alternative ABA
inactivation strategies are overexpression of intracellular small
single chain antibody (scFv) against ABA (Genbank: Z29480.1)
(Artsaenko et al., 1995) or overexpression of an ABA exporter
(ABCG25, Arabidopsis: At1g71960) protein (Park et al., 2016).
The general concept of translating tools from plant sciences
to animal models could also be applicable for other signaling
molecules. For example, since there are indications that there is
an endogenous SA biosynthesis pathway and basal SA levels from
nutrition in animals (Paterson et al., 2008; Klessig et al., 2016),
a bacterial salicylate hydroxylase nahG (NCBI: NC_007926.1)
transgenic (Gaffney et al., 1993; Matsubara et al., 2015) animal
model to deplete endogenous SA (and intracellular SA from other
sources) could give interesting insights on the physiological role
of the basal levels of SA in animals. As with the ABA depletions,
keeping in mind that also the SA degradation product catechol
can have biological functions (van Wees and Glazebrook, 2003).
Because of this, an alternative inactivation mechanism, like
for example overexpression of SA carboxyl methyltransferase
(AtBSMT1: At3g11480) (Liu et al., 2009), would be advisable
as a complementary approach. Apart from ABA depletion by
using plant proteins, it might also be possible to enhance ABA
production in animal cells using genes from phytopathogenic
fungi if the biosynthetic pathway is conserved (Ding et al., 2015).
Plant science has also provided us with several methods to
measure ABA. ELISA assays for ABA originally developed for
plant science have already been used in many studies of ABA
produced in animals. Unfortunately, the commercial kits are
quite expensive which might act as a barrier to entry for many
biomedical research groups that are not specifically working on
ABA. The recently described production of recombinant small
single chain (scFv) anti-ABA antibodies (Badescu et al., 2016)
and the recent development of anti-ABA aptamers (Grozio et al.,
2013) might however significantly simplify the generation of in-
house ELISAs or lower the prices of commercial kits in the near
future, which would make it a viable standard assay for clinical
samples. Another very exciting novel development is the ability to
measure intracellular free ABA concentrations in real-time using
ABA FRET biosensors (Jones et al., 2014; Waadt et al., 2014).
Expression of such biosensors in mammalian cells might help us
to understand under which signaling conditions free intracellular
ABA is produced in the cell, andmight help us to more accurately
investigate the regulation and dynamics of free intracellular ABA
in mammalian cells.
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