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This paper describes and summarizes approaches for visualization and statistical
analysis using data from Ralstonia solanacearum infection experiments based on
methods and concepts that are broadly applicable. Members of the R. solanacearum
species complex cause bacterial wilt disease. Bacterial wilt is a lethal plant disease
and has been studied for over 100 years. During this time various methods to quantify
disease and different ways to analyze the generated data have been employed. Here,
I aim to provide a general background on three distinct and commonly used measures
of disease: the area under the disease progression curve, longitudinal recordings of
disease severity and host survival. I will discuss how one can proceed with visualization,
statistical analysis, and interpretation using different datasets while revisiting the general
concepts of statistical analysis. Datasets and R code to perform all analyses discussed
here are included in the supplement.

Keywords: Ralstonia solanacearum, data analysis, linear mixed effects model, survival analysis, regression
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INTRODUCTION

The Ralstonia solanacearum species complex (Rssc) is the causal agent of bacterial wilt disease
and is one of the most devastating bacterial plant pathogens known (Mansfield et al., 2012).
Endemic in warmer climates and listed as a quarantine organism in other regions, the Rssc
exhibits a remarkably broad host range. Over 200 plant families have been reported as hosts
for R. solanacearum in the literature (Genin and Denny, 2012). R. solanacearum is a soil-borne
plant pathogen, and natural infections usually start with an invasion of the root and subsequent
colonization of xylem vessels, also in the aerial parts of the plant. Most compatible interactions
between R. solanacearum and a host end with the plant dying of bacterial wilt disease. As for most
xylem inhabiting plant pathogens, genetic resistances are scarce (Huet, 2014; Bae et al., 2015).

Research into how these pathogen species, initially described as “Bacillus solanacearum” (Smith,
1896), cause disease has been carried out for over a century and many aspects of bacterial wilt
disease are the subjects of active, experimental research. Experiments with R. solanacearum and
their plant hosts are usually aimed at assessing the performance of different strains or strain
genotypes on a single plant species. Alternatively, to identify genetic resources of resistance in
plant genotypes, a single bacterial strain can be assayed across multiple plant genotypes. To assess
the performance of a bacterial strain on a certain plant, the plant is infected using a pure culture.
After infection, the plant is monitored for the development of bacterial wilt disease and the disease
development is scored in regular time intervals. However, after conducting an experiment one is
faced with a new challenge: analyzing the collected data.
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Here, I will discuss and compare a range of statistical methods
which have been used in recent R. solanacearum literature. These
are either based on an analysis of the area under the disease
progression curve (AUDPC, used for example in Strange and
Scott, 2005; Wydra and Beri, 2006; Hadiwiyono et al., 2007;
N’Guessan et al., 2012; Lebeau et al., 2013; Meng et al., 2015),
the relationship of disease index and time in a linear framework
(Franks et al., 2008; Colburn-Clifford et al., 2010; Plener et al.,
2010; Jacobs et al., 2012; Monteiro et al., 2012; Le Roux et al.,
2015; Ailloud et al., 2016; Mori et al., 2016) or survival analysis
(e.g., Plener et al., 2010; Remigi et al., 2011; Poueymiro et al.,
2014; Wang et al., 2015) in the context of a biological dataset.
I will present and discuss the outputs of different analyses
performed on one dataset to provide some orientation regarding
the interpretation and applicability of specific approaches.

All analysis presented here can be repeated and explored
in more detail using the R scripts and corresponding datasets,
found in the Supplementary Files of this publication. The
scripts are provided in rmarkdown format that aims to provide
reproducibility in data analysis. In rmarkdown this goal is
achieved by generating a combination of free text, verbatim
analysis code and the code output, which can be plots, tables or
any other output produced by the R code in a single document
(Allaire et al., 2015). In the Supplementary Material, rmarkdown
files, the datasets analyzed and the output (in html format) are
provided.

This paper provides an entry-point into statistical analysis,
using disease assay data from R. solanacearum infection
experiments as examples, with an emphasis on reproducible
statistical reporting and including some guidelines on the
interpretation of model coefficients in the context of plant
disease. I will limit myself to analysis which can be derived
from the one definition of the Disease Index (see Material and
Methods), however, different definitions have been used in the
literature. For example, Katawczik et al. (2016) use a weighted
measurement of disease incidence and perform an analysis in a
generalized linear framework.

The analysis performed here on the disease index over time
assumes a linear relationship, but for some datasets use of logistic
models (as for example used here to study Verticilium wilt Ben
et al., 2013) may be more appropriate. Logistic regression is a
complex approach and interpretation of the model coefficients
can be challenging. Therefore, logistic regression models will
here only be discussed in the context of survival analysis but
not to assess differences in the relationship of disease index
and time directly. The core concepts and the rationale are
broadly applicable and described in a manner accessible to non-
mathematicians.

MATERIALS AND METHODS

Material
Recording Data and Quantifying Disease
The “Disease Index” (DI) is a commonly used measure to
quantify disease phenotypes. However, the DI is not formally
defined, and different definitions are used in the literature. I

will use a commonly used definition of the DI, where wilting
symptoms are quantified regularly over a defined time, based on
a scale of 0–4. Here, one whole number corresponds to a 25%
interval of total wilted leaves per plant.

Formally, this DI is defined as:

DI =
w
t
∗ 4

where w is the number of wilted leaves, and t is the number
of total leaves of a single plant. This is multiplied by 4 and
rounded with a precision of either 1 or 0.5. One DI is recorded per
individual and time point. Independently of the infection method
used and the precise research question, one score is commonly
recorded per plant per day. Recovery from the infection (a
decrease in DI from one time point to the next) is not typical
for R. solanacearum infections and therefore not considered in
modeling. In experimental inoculations, the total observation
time is typically between 10 and 30 days.

Depending on the scientific question one aims to answer in the
analysis, the DI can either be used directly as a response variable,
or a more suitable response variable can be derived from it.

Response Variables
This section will explain how the disease index and time can be
used to analyze different aspects of disease. Figure 1 shows an
example disease index data set (Figure 1A) analyzed using the
three different methods (Figures 1B–D). These three methods are
the area under the disease progression curve, analysis of disease
indexes over time and survival analysis. Each of these measures
has specific biological implications, outlined in the subsequent
paragraphs and each analysis based on these different responses
should be interpreted differently, to be able to make conclusions
on the underlying biological phenomena. Conducting multiple
analyses using distinct measures and comparing their respective
outcomes can be a great aid in arriving at biologically meaningful
conclusions.

The three response variables, and respective analyses are
outlined below.

(I) Area under the disease progression curve (AUDPC):
AUDPC is a historically used and well-established measure of
disease in plant pathology and bacterial wilt research (Strange
and Scott, 2005; Wydra and Beri, 2006; Hadiwiyono et al.,
2007; N’Guessan et al., 2012; Lebeau et al., 2013; Meng et al.,
2015). Briefly, the disease progression is drawn, and then the
area defined by that curve and the x-axis is calculated. To
draw the disease progression curve, one takes the mean DI for
each time point, and then connects the dots. Once the disease
progression curve was drawn, the area under that curve can be
calculated. As the AUDPC will increase with time, reasonable
comparisons of AUDPC can only be made for experiments of the
same observation time (Figure 1B). As the AUDPC provides a
linked measure of disease incidence and time, one can consider
AUDPC a measure of disease severity, meaning it can be used to
summarize the disease progression over time in a single value.

(II) Disease indices over time: in this approach, the DI is
scored daily, based on the relative number of wilted leaves per
plant, as described above. Subsequently, the DI is used as a
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FIGURE 1 | Raw and processed data colored by strain. (A) Overview of the raw disease index recordings, individual data-points shaped by replicate.
(B) Disease progression curve, averaged across all plants for an individual batch. (C) Estimates of a linear mixed effects model of disease development per strain
(averaged across all replicates and individuals). (D) Kaplan-Meier survival estimates are shown in light colors with a stepwise display, with different linetypes indicating
experimental replicates. Solid, thicker lines show the survival regression fit to a lognormal distribution across all replicates. The event of interest was defined as a
disease index of 2.5.

response variable for the analysis. Treatment and treatment in
relation to the time that has passed since inoculation are used
as predictors (Figure 1C) (Franks et al., 2008; Colburn-Clifford
et al., 2010; Plener et al., 2010; Jacobs et al., 2012; Monteiro et al.,
2012; Ailloud et al., 2016; Mori et al., 2016). An analysis of disease
indices over time usually aims to describe the disease progression
curve itself as opposed to an analysis of the area encompassed
by that curve outlined above. Two different approaches may be
taken, either one can attempt to analyze the speed of disease
progression, while disease is still actively developing, this can
be done in a simple linear framework. However, an alternative
could be the application of logistic regression models (Ben et al.,
2013), which can accommodate the overall shape of the disease
progression curve. Here, I will use linear regression to analyze the
speed of disease progression, and more sophisticated, generalized
linear models are employed for survival analysis (see below).

(III) Survival: methods from Survival analysis aim to describe
the incidence of a certain event within a population over time.
In the eponymous situation, that event is “death,” and one is
interested in how long it takes until a certain fraction of the
population has died, for example to assess efficacy of a treatment.
However, any binary event of interest, such as symptomatic vs.
asymptomatic hosts or infected vs. uninfected hosts can be used.

For the purpose of survival analysis, disease severity is
transformed into a binary scoring, by defining a specific DI
value as the event of interest and then recording when each
individual reaches this DI value (Plener et al., 2010; Remigi et al.,
2011; Poueymiro et al., 2014; Wang et al., 2015). For simplicity,

I will continue here using host death as the event of interest,
however, in Supplementary Material IIB it is exemplified how
these methods can be used to analyze symptom onset.

To be suitable for survival analysis, the disease index dataset
needs to be turned into a survival dataset. In a survival dataset,
if an individual dies, the day of death is recorded, together with
a status indicating “dead.” If an individual survives until the end
of the trial, this is recorded as status “alive,” and the last day of
observation is recorded as date. Based on the number of subjects
in a cohort alive at a given time point, a Kaplan-Meier survival
estimate can be calculated and further, the survival over time
can be fitted to a specific distribution to proceed with parametric
testing (Figure 1D). Survival analysis provides a way to analyze
survival of populations upon bacterial challenge. Additionally,
survival analysis offers methods to estimate and compare the
hazard, which is the risk of dying at a given time point, different
populations are exposed to.

Data Tables
Statistical analysis is based on table calculations. Proper table
formatting is crucial to be able to properly interface with the
R framework of analysis and syntax. In the Supplementary R
scripts, formatting is done within R to generate data that conform
with the concepts of tidy data (Wickham, 2012).

R & R Packages
The R language and environment is maintained by the R
foundation and available from R-project.org (R Core Team,
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2014). RStudio (RStudio Team, 2015) is an integrated
development environment for R, free for academic researchers.

Many of the functions used in the Supplementary scripts
are not part of the R base installation. Instead, these are made
available through packages and development of new packages
and methods is an active area of research. R packages can be
retrieved from the Comprehensive R Archive Network (CRAN).

To be able to use the Supplementary R scripts the following
packages need to be installed.

For data manipulation and visualization: tidyr (Wickham,
2016c), dplyr (Wickham and Francois, 2016), ggplot2 (Wickham,
2009), modelr (Wickham, 2016a) and stringr (Wickham, 2016b)
[these and other helpful packages are part of the tidyverse
(Wickham, 2016d)].

Functions from the following packages are used for analysis:
MESS (Ekstrøm, 2016), survival (Therneau and Grambsch, 2009;
Therneau, 2015a), survcomp (Haibe-Kains et al., 2008; Schroder
et al., 2011), rms (Harrel, 2015, 2016), coxme (Therneau, 2015b),
lme4 (Bates et al., 2014), lmerTest (Kuznetsova et al., 2016),
multcomp (Hothorn et al., 2008), and rcompanion (Mangiafico,
2017).

To able to work with the Supplementary “R Markdown”
(.Rmd) files, the packages rmarkdown (Allaire et al., 2015) and
knitr (Xie, 2014, 2015, 2016) are required. Some additional table
output formatting is done using stargazer (Hlavac, 2015).

Datasets
The dataset used for Figure generation in this manuscript (S1)
is based on a modified version of the dataset published in
Wang et al. (2015) (S2) and both the modified and the original
datasets are available in the supplement. Specifically, Strain3 and
Strain4 were edited to exhibit an unusual behavior in terms
of disease development. While this may not be a biologically
probable behavior it is helpful in understanding the outcome of
different analysis methods. Datasets used in S3 were published
in Lowe et al. (2015) and Lowe-Power et al. (2016). The dataset
from Ravelomanantsoa & Prior (S4) has not been previously
published and is therefore only available in a pseudonymized
form. A summary of the dataset used in the main text is given
in Table 1.

Analysis Methods
Basic Principles of Regression Analysis
Many popular types of statistical analysis are based around linear
regression. As implied by the name, linear models assume that y
and x exhibit a linear relationship.

When performing a linear regression analysis, one sets out
to solve a linear function. A simple linear function, with one
response variable (y) and one predictor (x) can be written as:

y = a+ b ∗ x+ e

Here, “a” is the intercept, “e” is an error term and “b” is the slope.
In all linear models discussed and employed here, the part that
one aims to estimate and subsequently compare, corresponds to
a or b. The term fitting is used to mean “optimally solving the
formula for a, b and e given the values of x and y recorded.”
Assuming that y is a single summary measure of disease, and
x is used to denote treatments, we aim to estimate b for each
individual treatment.

One can estimate the value for b and a, that best fit to the
observed data. This “best fit” is optimized to exhibit the least
distances to the recorded data. These distances are known as
residuals. When a linear model for a single predictor (x) is solved
regarding a, one essentially performs a pairwise comparison of y
and x. Each distinct y is recorded paired to a single x value, and
these pairs are compared. This can be understood visually if x and
y are both continuous variables, one will be able to draw a line
that determines y based on x. If x is not a continuous variable,
but instead, for example different treatments, this becomes
harder to visualize as a line, instead this can be thought of
individual means that will be obtained for y depending on the
value x.

Linear models can be extended to include multiple predictor
variables. This leads to an introduction of additional “x”
predictors in the formula. Each predictor has its specific intercept.
In Figure 2B, estimated “a” for each strain (corresponding to x)
based on the AUDPC value (corresponding to y) is shown.

Linear regression models will attempt to estimate “a” for
each known x. Statistical analysis of linear regression models
can be used to assess if the estimated values for a and
more importantly differences between them, are well-supported
by the data. Inherently, linear models assume a normal
distribution of response variables. All calculations in a linear
model to estimate the true mean are performed based on this
assumption. An example of this is the use of the mean to
assess differences. The mean is not necessarily a useful measure
for the center of a distribution, if that distribution is not
normal.

Statistical analyses that assume a defined distribution and aim
to estimate a certain parameter of that specific distribution, for
example the mean in case of a normal distribution, are commonly
referred to as “parametric.”

TABLE 1 | Overview of the example dataset.

Variable name Type Range Comments

Strain Categorial predictor (fixed) 1–7 Sixty eight subjects per strain

Disease index Categorial response 0–4 One full number corresponds to 25% wilting

DPI Continuous predictor (fixed) 3–11 Days post-infection

Batch Categorial predictor (random) 5 Batches Hundred and twelve subjects in Batch A, 91 in the other

Subject Categorial predictor (random) 1–476 Each plant is assigned a unique subject identifier

AUDPC Continuous response 0–29.75 Calculated from DPI and DI
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FIGURE 2 | Analysis of area under the disease progression curve (AUDPC). (A) Disease progression curve as a line with error bars indicating standard error of
the mean. The area under the curve is shaded in a lighter color according to the legend. (B) Means (thick horizontal lines) and 95% confidence intervals (CIs) (shaded
boxes) of the AUDPC values as estimated by a linear mixed effects model (see material S1) colored by strain. Calculated areas for all individuals are plotted, with
symbols indicating different replicates. Letters above the strain names indicate the significance group.

After model fitting the model can be explored regarding
its goodness of fit, effectively assessing how close the model
is to the data. Briefly, a model that has the least amount of
assumptions (predictors) is preferred over one that does not
provide a significantly better explanation but includes more
assumptions. Model testing and selection, however, are beyond
the scope of this manuscript.

In a linear model with a single predictor the estimated value
of a for each level of the predictor is the mean of y across all
observations for that predictor, relative to a baseline (see next
section) (Table 2).

The term “estimate” often causes confusion. One reason why
one has to estimate, as opposed to precisely calculate the true
mean, is that one should assume that the model is incomplete
and the data one has in hand is a random sample of the
true population. In every experiment and in every replicate,
despite best efforts to control as many factors as possible,
there are things that are beyond the experimenters control.
The fact that these are not controllable, does not exclude these
have an influence. Hence, statistical analysis will always aim to
provide a measure of certainty that what one measures is due
to a change of known treatment, and not the consequence of
other, uncontrolled, factors. Since it is not possible to know the
influence of unknown factors, one should estimate the influence
of the known treatment, with a specific level of certainty. This
is related to significance testing, and is explored below in more
detail.

TABLE 2 | Estimated coefficients of the analyses performed.

Wilting analysis Survival

AUDPC Disease development CoxME Lognormal fit

Mean Slope y-Intercept Hazard ratio exp(Location)

Strain1 23.6 0.84 −2.2 NA(∗) 5.38

Strain2 7.6 0.54 −3.5 0.07A 10.30

Strain3 8.3 0.05 0.9 0.01A 16.02

Strain4 15.9 0.04 1.9 0.01 14.46

Strain5 22.4 1.06 −3.6 0.72 5.81

Strain6 20.4 0.93 −3.4 0.44 6.40

Strain7 20.9 0.92 −3.2 0.58 6.03

ADataset violates the proportional hazards assumption; hazard ratios may not be
reliable. (∗) Not applicable as Strain1 is the reference for ratio calculation.

Relationship between Linear Models and Analysis of
Variance (ANOVA)
Analysis of variance (ANOVA) is a specific case of linear
models, where the means of individual treatments, are compared
to the “grand mean.” The grand mean is calculated across
all treatments. Subsequently, all treatments are compared to
the grand mean. In the language of linear models, this is
termed effect coding of the predictor variable, as it compares
the effect of each individual predictor relative to the grand
mean.
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Linear models allow for other types of coding of the predictor
variable(s), which may be easier to interpret. I will make use of
linear models, where the influence of each strain is analyzed in
relation to a reference strain (treatment coding).

Analysis Using Linear Mixed Effect Models
Similar to classical linear models, linear mixed effect models
(LMM) attempt to fit the observed data to a linear function.

In contrast to classic linear models, LMMs account for
two types of predictors, also called effects, those of interest
(fixed effects) and those that are not of direct interest (random
effects).

One can use an LMM to analyze disease by using a measure of
disease as the response variable. Depending on the experimental
design and research hypothesis possible fixed effects could for
example be: bacterial strain, plant genotype, soil type, competitor
strains, or fertilization status.

The accompanying script and dataset provides examples,
where LMMs with the AUDPC or repeated measurements of the
disease index as response variables are used to assess the influence
of different strains on disease development.

Survival Analysis
The term survival analysis unites a range of methods which aim
to characterize time-to-event data across different populations.
Classically the event of interest is death of an individual, or failure
of a product.

Survival analysis: Kaplan-Meier estimates
Kaplan-Meier estimates are specific for survival analysis and are
used to estimate survival times. Based on time, and amount
of living individuals at a given time point, it is possible to
generate a curve that describes the relative survival at any
given time point. The commonly used display is the Kaplan-
Meier estimate of survival (Figure 1D). After the first time
point with an event, the number of survivors for the later time
points needs to be estimated, as the population is no longer
the same as in the beginning. Kaplan-Meier estimates calculated
for different treatments can be compared using pairwise testing,
e.g., using the Log-rank test (Altman and Bland, 1998; Bland
and Altman, 1998, 2004). While the log-rank test loses power
if the proportional hazards assumption is violated, it is not
necessarily inappropriate. The “survival” R package allows for
two variants of log-rank tests (Therneau, 2015a). The “log-
rank” test is more powerful in detecting late differences while
the Peto & Peto modification of the Gehan-Wilcoxon test
has greater power in detecting early differences (Therneau,
2015a).

Kaplan-Meier estimates can also be analyzed using parametric
regression models. The R package “survival” (Therneau, 2015a)
allows for parametric analysis using four different distributions.
These are the logistic distribution, lognormal distribution,
Gaussian distribution, and Weibull distribution.

Survival analysis: Hazards
Hazards in survival analysis, describe the probability of
experiencing an event at a given time point. If the hazards
for the individual groups receiving different treatment can be

described relative to each other by a constant these hazards are
called “proportional hazards.” More visually, groups exposed
to proportional hazards will usually generate non-crossing
Kaplan-Meier estimates. Depending on whether the hazards are
proportional different statistical methods apply.

To analyze the effect of using difference treatments, the
analysis of (log transformed) hazard ratios can be used. Hazard
ratios, are a ratio of the hazards of two experimental groups.
If the hazard ratio is close to or exactly 1 one can assume that
these hazards are equal. Hazard analysis can also be performed
in a mixed model framework (Therneau, 2015b). However,
comparison of hazard ratios will only yield reliable results if those
hazards are proportional. In the case of non-proportional hazards
other methods may be preferable for data-analysis.

The proportional hazards condition is not necessarily met
in R. solanacearum infection studies. While this is a mere
observation across multiple datasets, it may be helpful to
remember what the classical application survival analysis is,
namely to monitor survival across separate populations. It should
be noted here, that this is a sensible approach if both populations
are expected to decline similarly within the observation period.
For example, a classical application for survival analysis is
comparing medical or surgical intervention on patients that
suffer from a medical condition. In this case, intervention is
intended to prolong life.

In experimental infections with R. solanacearum this may not
be the case. Presumably, without treatment none of the individual
plants would die within the observation time. Depending on
the strains used and their precise, probably not completely
understood, individual interactions with the given host the
disease progression may be drastically different. This may lead to
a violation of the proportional hazards assumption. One should
consider if, depending on the experimental design and research
hypothesis, non-proportional hazards for, e.g., different strains
constitutes a relevant finding.

Statistical Significance Testing
The choice of statistical analysis used should be made
based on the underlying research hypothesis. If one is
interested in the steepness of the disease progression curve,
e.g., because one assumes that treatments will change the
speed of disease development, linear regression of repeated
DI recordings may be a useful approach. If however, one
is interested in the fraction of survivors per timepoint,
for example when comparing different plant cultivars in
field trials, survival analysis may prove more powerful and
relevant. Throughout this manuscript and the supplement I
will largely employ generalized linear hypothesis testing, while
adjusting for multiple comparisons using Tukey’s method,
to assess statistically significant differences (Hothorn et al.,
2008).

Useful and informative statistical analysis requires a clear
hypothesis that describes the expected outcome. Usually the
research hypothesis is that a (specific) change of treatments will
lead to a (specific) change of outcome. Statistical testing attempts
to lend credence to the research hypothesis via falsification
of the null hypothesis. A null-hypothesis matching to the
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research hypothesis above would be: a change of treatment
will lead to no change of outcome. One indicator whether
the null hypothesis is true, is the p-value. For the purpose of
significance testing one needs to define alpha, the significance
threshold. Commonly used is an alpha of 0.05 (5%). If a
p-value below alpha is obtained, this is taken as an indication
that the null hypothesis is wrong and usually the research
hypothesis is accepted instead. But, how does one get a
p-value?

To arrive at a p-value, one assumes the null hypothesis to be
true. Then, one estimates the true mean for each treatment. Next,
one compares the estimated mean to whatever is stated in the
null hypothesis. Usually the null hypothesis states either that the
true mean is a specific value, or alternatively that the difference
between two means obtained for two different treatments is zero.
A difference in means is also called an effect.

Based on the difference in means (or the difference from
a single mean to a defined value, corresponding to the mean
under the null hypothesis), the degrees of freedom and test-
specific calculations one arrives at a certain value, known as the
test statistic. This test statistic is compared to the distribution
of the test statistic. The p-value describes the region of the
test distribution, where the obtained test statistic is located. For
example, a p-value of 0.01 indicates that 1% of area of the
test distribution are further away from the center of the test
distribution than the calculated test statistic. In other words,
the p-value describes the probability of observing an event
as extreme or more extreme than the experimental outcome
assuming the null hypothesis and all test specific assumptions
were fulfilled.

If the obtained p-value is below alpha, one can reject the
null hypothesis. Usually, the research hypothesis is accepted.
p-Values are sensitive to a number of factors for example,
larger sample sizes will usually decrease the calculated p-value,
even if the observed effect is the same, because it is assumed
that with more observations, an estimation of the true mean
is more precise. Alpha and sample size should be defined
before conducting the experiment to minimize the chance of
wrongly rejecting the null hypothesis (type I error) and to
maximize the chance of finding a true effect (i.e., minimizing
the type II error). Power analysis is beyond the scope of
this manuscript, but a starting point is the R package “pwr”
(Champely, 2016).

Interpretation of the p-value is not necessarily easy and may
be confounded by test-specific assumptions. A low p-value does
not necessarily indicate a large difference in means; it should
be understood to imply that one is unlikely to observe that
outcome assuming the null hypothesis was true. Often this
is not of direct interest, but instead what is more important
is to know the difference in means. A significant test result
for a comparatively small effect does not necessarily imply
biological significance, but significance within the model used for
analysis.

To combine the display of (difference in) means while
providing a way to visually assess certainty of the estimate, I will
make use of estimated means, and 95% confidence intervals (CIs).
In such a display, if the mean of one treatment is not within the

95% CI of another, those two treatments are different assuming a
significance level of 0.05 (Krzywinski and Altman, 2013).

Additionally, I will make use of “compact letter displays”
to indicate groups of statistical significance. Treatments that
are assigned to the same “letter” group are not significantly
different. Treatments that are assigned different letters using
this method, display a significance difference. For example, a
treatment in group “ab” is different from one in group “c.” A
treatment in group “ab” is not different from those in group
“a” or “b.” However, treatments that are assigned only group
“a” are different from those in group “b.” For the purpose
of inferring treatment specific differences from a model that
includes an interaction and covariates, the treatment coefficients
are averaged.

RESULTS

Choice of Response Variable and
Predictors
Once a response variable has been collected, or the collected data
has been transformed into a suitable response variable, the data
analysis can be conducted. Already in the choice of the response
variable one may be guided by a specific hypothesis. However,
this hypothesis now needs to be formulated more explicitly. For
a mixed model analysis one has to define which of the possible
experimental factors are of interest, and which are considered
not of interest. A standard example would be assessing the
performance of different strains. “Strain” is then a fixed effect,
as one is interested in seeing if there is a difference between the
different strains. However, at the same time, one may be aware of
another factor that one assumes to have influenced the outcome
of the experiment. For example, individual variation or variation
on pan-individual scales from seed batches or replicates may
influence the outcome of the response variable through random
sampling from the true population. If one is aware of such an
influence, but not explicitly interested, probably because one is
assuming that its influence is not systematic in its contribution
to the outcome, this predictor can be treated as a “random
effect.” An alternative way to distinguish fixed and random
effects is by their presumed reproducibility. Strain effects should
be reproducible, meaning that the differential performance of
known strains should not change from replicate to replicate. I
will treat replication as a random effect in most models, as it
usually influences the outcome in most datasets, but is not of
direct interest.

Using a response variable and one or more effects, which can
be either fixed, or random, one can fit the data to a LMM, which
can then be investigated regarding the influence of fixed effects
on the response variable.

Analysis of AUDPC Using an LMM
Once one has calculated the AUDPC value for each individual
in the experiment, one can use these data to fit a linear mixed
effects model. As the AUDPC contains information on time
and the DI, the only possible predictors left are strain and
replicate. In Figure 2A, the averaged AUDPC values are shown
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for each individual strain. In Figure 2B, the AUDPC values
calculated for each individual are shown in a scatterplot, colored
and separated by strain and shaped according to the replicate
they belong to. Thick horizontal bars and translucently shaded
boxes are used to show the estimated mean and corresponding
95% CIs, as estimated by an LMM. Below each boxplot a letter
indicating significance group of each strain in an analysis of
AUDPC as a response variable, with Strain as a fixed and
Batch as a random effect is given. In Figure 4A, the pairwise
difference in means is plotted, with a 95% CI. Here, if the pairwise
difference with CI contains 0, this comparison is not significantly
different.

Figure 2A also contains an example of one of the weaknesses
of AUDPC analysis. As can be seen for Strain2 and Strain3,
the AUDPC is not significantly different between those strains
(Figure 2). However, one may be inclined to think that those
strains behave differentially, by looking at the average disease
index over time (Figure 2).

This highlights that AUDPC does not provide a good
measure of disease development over time. It instead provides an
approximate measure of disease severity over an aggregate time
period.

Analysis of the Disease Development
Using LMMs
Since AUDPC based analysis appears to sometimes perform
poorly although differential disease development is observed,

other methods are necessary to identify differences in disease
development. Disease development here is taken to mean that
one is interested in the disease index in relation to time and
treatment. Repeated-measure ANOVA can be used to analyze
DI and time per treatment (Jacobs et al., 2013; Lowe-Power
et al., 2016). However, when using repeated measure ANOVA one
should be aware that the arrow of time is not considered in this
analysis. In a repeated-measure ANOVA one compares strains
per time point.

In a LMM used to analyze disease development, it is possible
to include the arrow of time. To properly account for differential
disease development over time, an interaction between treatment
and time is included. To analyze only the duration where disease
is still developing, I suggest cleaning the dataset before fitting
the data, as it may contain data that is not of interest for
this specific analysis. In biological terms, a disease index of 4
reflects a plant that wilted completely. Those plants will not
recover or die further, but a linear model assumes continuous
relationships between y (here, the disease index) and x (here,
time). To effectively analyze only those time points where disease
is still developing and partially remove the categorical character
of the disease index, one could simply remove all observations
for an individual, after that particular plant has reached a
disease index of 4. After doing so, one is effectively only using
those observations to fit a model that actually reflect disease
development. The effect of removing re-observations before
model fitting is shown in Figure 3 (black vs. red line). As can be
seen from Figure 3, removing re-observations of dead individuals

FIGURE 3 | Effect of removing recordings before disease onset and dead individuals from the dataset before model fitting when analyzing disease
development. (A) Averaged curve for individual strains, colored by strain based on all datapoints. Red and black lines show averaged linear fits. Red line:
predictions from a model fit to the dataset without removing dead individuals, black line: predictions from a model fit to the dataset after removing recordings that do
not reflect disease development. (B) Raw data across all experimental replicates. Red dots indicate observations that were removed, as they constitute either
re-observations of already dead individuals or recordings that occurred before phenotypic disease development began. Gray dots indicate observations that were
retained. Line coloring is the same as in the left panel. Strain4 is omitted as, similar to Strain3, disease index recordings are not affected by the above criteria.
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will in most cases lead to a fit that better reflects the average
increase in DI over time, and therefore has an increased slope
compared to a fit calculated using the full dataset.

To perform statistical significance testing on the linear
mixed effects model, one performs pairwise comparisons of the
estimated mean per strain. Such analysis can also be performed
visually, for example by plotting the pairwise difference in slope
between strains with the 95% CI. Unlike the p-value itself, an
assessment of the pairwise difference with CIs actually allows for
an approximation of the true difference. The absolute difference
from 0 reflects the absolute difference in estimated means, and
hence can be used to assess if there is a strong or weak difference
relative to the other comparisons. Alternatively, one can compare
the estimated means with CIs. If the mean of one treatment is
not within the CI of the other those treatments are significantly
different.

It is evident from Figure 4, that while linear mixed effect
models using the AUDPC as the response (Figure 4A) and those
based on repeated measures of the disease index (Figures 4B,C)
sometimes agree, certain comparisons differ quite drastically
between the two analyses. For example, Strain2 and Strain3 are
not identified as different in the AUDPC analysis (Figure 4A),
while they exhibit a great difference in both intercept and slope
estimated by an LMM used to analyze disease development
(Figures 4B,C). This again emphasizes the impact of the choice
of both response variable and predictor on the outcome of the
analysis.

Survival Analysis
Background and Data Type
The two types of analysis discussed previously are both based
on the disease development of an individual plant. However, if
a sufficiently large number of individuals are analyzed as part of
an experiment, these may be viewed as a population and disease
can be analyzed per population.

Before being able to start with survival analysis, the disease
index scorings need to be converted to a survival table. To
generate a survival table one needs to check which of the repeated
observations for one individual is the first to cross a threshold
that defines an event. This time point is recorded, together
with a binary status indicator set to the state of “dead.” If an
individual never passes the threshold, the last day of observation
is recorded together with the status “alive.” Subjects that leave
the study before the last day of observation can be recorded as
alive on that day, known as right censoring. All variables that
specify a fixed or random effect such as Strain, Plant or Batch,
should be retained in the survival table. Based on such a table
one can now analyze how a population survives over time, and,
e.g., compare the impact of different strain treatments on the
survival.

The threshold of event generation has to be set by
the user, and should not be done without inspecting the
data first. As exemplified in Figure 5 changed survival
threshold can have dramatic impact on the resulting survival
estimates.

FIGURE 4 | Estimated (difference in) means of the coefficient(s) within one linear mixed effect model. Dots indicate the estimated (difference in) means
and horizontal error-bars indicate the 95% CI of the estimate. Dots and error bars are colored based on their distance from 0, where a dark color indicates a value is
close to 0, while lighter colors indicate a larger difference from 0. (A) Pairwise difference in means using AUDPC as a response. (B) Estimated strain specific
y-intercepts of the LMM used to analyze disease development. (C) Estimated strain specific slopes from the same LMM as in (B).
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FIGURE 5 | Consequence of threshold settings on survival estimates. (A–D) Kaplan Meier estimates of survival for Strain1 (red), Strain3 (green), and Strain4
(blue) illustrating the different outputs depending on cutoff for an event. (A) Estimated survival if event is defined as a disease index recording of > = 1. (B) Event
defined as DI > = 2, (C) event defined as DI > = 3, (D) event defined as DI > = 4 (death).

Survival Analysis
In the example dataset used here, different types of survival
analysis can be explored. For all explorations below, the event
of interest was defined as a disease index of > = 2.5. Pairwise
log-rank comparisons of the Kaplan-Meier estimates can be
performed, however, one should be aware that multiple pairwise
comparisons are performed, which should be adjusted for
(in Table 3 Bonferroni adjustments were used). Generally,
for multiple comparisons it is more advisable to perform a
mixed effect analysis and subsequent comparison of estimated
coefficients.

For this particular event, Strain2 and Strain3 significantly
violate the proportional hazards relative to Strain1. Hazard ratios
can however still be obtained from a Cox-Mixed effect model and

can be used to compare strains, although this may in this case be
unreliable.

Alternatively, the use of parametric survival regressions
is a common practice. Here, the Kaplan-Meier estimate is
fitted to a certain distribution (see Material and Methods).
As it is a parametric fit, two parameters of the distribution
are estimated for the model. One of them is the scale
of the model, the other is referred to as location or
shape, which is the center of the distribution. Naturally, the
formula of these distributions are more complex than those
of a linear model. As the dataset used here produced the
best survival regression fit when the lognormal distribution
was used, this distribution will be used in the subsequent
example.

TABLE 3 | Results of significance testing for the different analysis and tests.

Wilting analysis Survival

Strain AUDPC Disease development Log-rank p-valueA CoxME log(HR)∗ Lognormal fit

Strain1 A A - A A

Strain2 B B <1 E-10 CA C

Strain3 B C <1 E-10 DA D

Strain4 C D <1 E-10 D D

Strain5 AD A 0.112 AB AB

Strain6 D DE 4.5 E-06 B B

Strain7 D E 0.015 B AB

Mean coefficients are given in Table, Strains which are assigned to the same group are not significantly different. Ap-values obtained by pair-wise testing against Strain1
(adjusted for multiple comparisons); ∗Proportional hazard assumption violated; HR, hazard ratio.
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FIGURE 6 | Kaplan-Meier estimates of survival and fits produced by survival regression analysis for Strain1–Strain6. Strain7 is not significantly different
from Strain5 and therefore was omitted in this display. Different colors are used for the survival estimates of the individual strains shown. Different line-types are used
for different replicates for Kaplan-Meier estimates. Regression analysis was performed across all replicates and the resulting fits are plotted with a black curve. The
distribution for fitting were: (A) Weibull distribution, (B) Logistic distribution, (C) Gaussian distribution, and (D) Lognormal distribution.

A survival fit to a lognormal distribution returns two
parameters, a global scale parameter (in this model 0.261),
which applies to all treatments, and a treatment specific shape,
or location, parameter. Usually, the shape parameter indicates
the center of the distribution, e.g., for a normal distribution
shape is the mean. In the case of the lognormal distribution,
the shape parameter indicates the turning point of the curve,
on a ln(x) scale. Therefore, exp(shape) is informative, as it
gives the time-point where 50% of the population are estimated
to have experienced the event (Figure 6 and Table 3). It
should be noted that the parametrization of survival regression
depends on the distribution used for fitting and therefore the
relationship between the estimated parameter and the center of
the distribution may change if other distributions are used.

Different methods may result in different interpretations
of the dataset. In Table 2, relevant estimated mean model
coefficients are provided, and Table 3 provides an overview
of the inferred statistical differences, per strain, for each
analysis.

DISCUSSION

Reproducibility is not only important in experimental
procedures, but is also crucial when it comes to data analysis.
Without a detailed explanation of the conducted analysis, it
is nearly impossible for others to assess whether the analysis
was appropriate and, perhaps more importantly, follow the
reported conclusions. A common, unified nomenclature and

analysis methods within a specific field of research will make
cross-comparisons within that field more straight-forward,
and may prove useful in achieving an over-arching scientific
objective.

However, already in the field of statistics, the meaning
of a certain word is not always unambiguous. Hence,
rmarkdown (Allaire et al., 2015) facilitates the generation of
standardized reports containing analysis code, code output and
explanatory text. All analysis discussed here can be found in the
accompanying document S1 with the original data. Using the
code in S1, a complete analysis of the S1_data.csv dataset can
be performed and can be easily adapted to other datasets. How
this can be transferred, and how different analysis perform on
other datasets is explored in Supplementary Documents S2, S3,
and S4.

The three different measures of disease used here as examples
each have different properties. The AUDPC measure reduces DI
and time to a single value per individual, and therefore some
information is lost. It is possible that distinct curves return
very similar AUDPC values, as seen for Strain2 and Strain3
in Figure 2B. Both belong to significance group “a,” meaning
that there is no statistically significant difference between those
treatments regarding the AUDPC. However, if one inspects the
actual shape of the curve (Figure 2A) one may be inclined
to think that these strains are quite different in their disease
development. Indeed, when the same dataset is analyzed using
a linear mixed effects model based on repeated measures of
the disease index, these strains exhibit a significant (α = 0.05)
difference in means (Figure 4).
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The linear mixed model for disease development employed
in the analysis shown here, specifies a fixed interaction between
treatment and time. By specifying an interaction between strain
and time, it is assumed that the change in disease incidence over
time is strain specific.

Methods from survival analysis require a survival table. If a
survival table is generated based on a certain DI threshold value,
the results are likely to differ depending on the value used to
determine an event. As can be seen from Figure 5, transforming
DI into event data can result in rather different Kaplan-Meier
estimates for the same treatments. This will further influence all
other analyses that are performed based on the survival table and
its derivatives, like log-rank testing, estimation of hazard ratios
or regression analysis. Therefore, the transformation from DI to
survival should be done carefully and should be kept in mind
when interpreting the results of the analyses.

As a guide to overall interpretation of the analysis presented
here: AUDPC provides a measure in overall disease incidence. By
using disease index and time as response variable and predictor,
respectively, LMMs can also be used to analyze strain specific
differences in disease development. Survival analysis provides a
sensitive way to analyze time-to-event. Diverse events can be
analyzed using survival analysis, such as disease or symptom
onset or disease end. Other events, not based on the DI, could
be bacterial presence in an individual, or bacterial populations
crossing a certain density during colonization.

Finally, by combining different analyses and comparing their
result, one may be able to gain insights into the biology.
For example, in Supplementary Material 3-II, the two strains
compared exhibit no overall statistically significant difference
in AUDPC or disease development. However, when the disease
development LMM is inspected more carefully, one finds that
the intercepts do not change significantly, while the slopes are
different. An increase in disease index of about 0.32 per day is
estimated for the wild-type strain, while the mutant is estimated
to wilt its host with a speed of about 0.24 disease indices per
day. Those same strains are also significantly different when
the disease onset is analyzed using survival analysis, or when
disease incidence is analyzed using a repeated measure ANOVA,
as presented in Lowe et al. (2015). Taken together this indicates,
that: overall disease severity (approximated by AUDPC) does not
change, estimated disease onset (intercepts do not change, but
disease development is affected (slopes).

Combining this with the findings of the analysis of population
wide disease onset using survival analysis further indicates that
the fraction of the population that shows symptoms per time
point is slightly lower when the mutant strain is used compared
to the wild-type. This can be seen from non-parametric log-rank

testing, parametric survival regression, and by the hazard ratio
test. In summary it appears that the mutant strain is slower in
causing symptoms, but not in overall disease severity (AUDPC).

This could be taken to indicate a delay in host colonization.
As can be seen Figure 5 of Lowe et al. (2015) this indeed the
case, here it is shown that the population size in root tissue differs
significantly at 3 DPI but not at 6 DPI.

In summary, a combination of different statistical analysis
methods can be used to understand specific differences between
treatments. Once the specific differences have been identified,
these can be used to develop a new research hypothesis.
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