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Endophytic plant growth-promoting bacteria have significant impact on the plant
physiology and understanding this interaction at the molecular level is of particular
interest to support crop productivity and sustainable production systems. We used
a proteomics approach to investigate the molecular mechanisms underlying plant
growth promotion in the interaction of Kosakonia radicincitans DSM 16656 with
Arabidopsis thaliana. Four weeks after the inoculation, the proteome of roots from
inoculated and control plants was compared using two-dimensional gel electrophoresis
and differentially abundant protein spots were identified by liquid chromatography
tandem mass spectrometry. Twelve protein spots were responsive to the inoculation,
with the majority of them being related to cellular stress reactions. The protein
expression of 20S proteasome alpha-3 subunit was increased by the presence of
K. radicincitans. Determination of proteasome activity and immuno blotting analysis
for ubiquitinated proteins revealed that endophytic colonization interferes with ubiquitin-
dependent protein degradation. Inoculation of rpn12a, defective in a 26S proteasome
regulatory particle, enhanced the growth-promoting effect. This indicates that the plant
proteasome, besides being a known target for plant pathogenic bacteria, is involved in
the establishment of beneficial interactions of microorganisms with plants.

Keywords: plant proteasome, plant growth-promoting bacteria, protein mass spectrometry, rpn12a,
two-dimensional gel electrophoresis

INTRODUCTION

Endophytic bacteria colonize the rhizosphere, phyllosphere and reproductive organs of plants
(Compant et al., 2010; Bodenhausen et al., 2013), with some of them being able to
stimulate plant growth [plant growth-promoting bacteria (PGPB)] and increase the plants
fitness (suppressive bacteria). In general, the physiological alterations within the plant and
the emerging phytostimulation provoked by PGPB are assigned to bacterial nitrogen fixation,
increased nutrient uptake, production of plant hormones and modulation of plant development
(van Loon, 2007; De-la-Pena and Loyola-Vargas, 2014). The plant root system has a vital
role in water and nutrient acquisition, as well as in signaling of environmental cues and
adaptation to altered conditions in the rhizosphere. Induction of root growth by PGPB is
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frequently observed and the enhanced nutritional plant status
is often associated with an increased root system. However, it
is largely unclear how morphogenetic processes shaping root
length and root surface area are influenced by microorganisms.
The microbial production of phytohormones is frequently
reported, especially auxin, but functional proof using knock-
out mutant strains is still scarce (Patten and Glick, 2002;
Sun et al., 2009). Recent studies used the model plant
Arabidopsis thaliana for dissecting the molecular background
of growth-promotion upon PGPB inoculation. The effect
of bacterial colonization on global plant gene expression
was analyzed for Bacillus subtilis FB17 (Lakshmanan et al.,
2013), Burkholderia phytofirmans PsJN (Poupin et al., 2013),
Pseudomonas thivervalensis MLG45 (Cartieaux et al., 2003),
Pseudomonas fluorescens strains (Verhagen et al., 2004; Wang
et al., 2005; van de Mortel et al., 2012; Weston et al., 2012)
and Pseudomonas sp. G62 (Schwachtje et al., 2011). Despite
the wealth of transcriptional data, only little attempt has
been made to characterize the observed transcriptional changes
on the proteome level to shed more light on the plants
adaptation to endophytic colonization (Jayaraman et al., 2012).
In order to elucidate gene function, the investigation of the
gene product, the protein, is inevitable. The proteome does not
only provide a complementary level to the transcriptome for
studying the plethora of responses between plants and PGPB,
proteins are also, together with metabolites, directly related to a
phenotypical manifestation of a physiological response (Feussner
and Polle, 2015). Enhancements in proteomic technology
related to protein separation and detection as well as mass
spectrometry-based protein identification have an increasing
impact on the study of plant responses to biotic interactions
(Mathesius, 2009; Cheng et al., 2010). Furthermore, post-
translational modifications of proteins, such as phosphorylation
or glycosylation, generate a great diversity, complexity and
heterogeneity of polypeptides (Nørregaard Jensen, 2004). To
date, more than 300 post-translational modifications are
known that control protein activity, interactions, localisation
and turn-over, and their analysis represents one of the
main challenges in proteomics. Recent studies indicate that
presence of PGPB alters components of plant primary and
secondary metabolism, thereby promoting plant growth and
increasing its resistance (Du et al., 2016; Kwon et al.,
2016).

We described the gram negative strain Kosakonia radicincitans
(DSM 16656), formerly named as Pantoea agglomerans (Ruppel
et al., 1992) and Enterobacter radicincitans (Witzel et al., 2012),
which was isolated from the phyllosphere of winter wheat
under temperate conditions (Ruppel, 1988). Growth promotion
of root and shoot, along with increased yield, was conferred
by inoculation of numerous crop and model plant species
under controlled conditions or in the field (Höflich and Ruppel,
1994; Berger et al., 2013, 2015). Inoculation of A. thaliana
resulted in increased rosette diameter and seed production
(Brock et al., 2013). Scanning electron microscopy revealed that
K. radicincitans colonizes the root surface, intercellular spaces
of the root cortex, xylem vessels, and intercellular spaces of
the mesophyll of winter wheat (Remus et al., 2000). Some

indications on the biochemical background of observed growth-
promoting effect were gained using pure bacterial culture.
Biological nitrogen fixation was demonstrated (Ruppel and
Merbach, 1995), as well as the solubilisation of low soluble
phosphorous (Schilling et al., 1998). A possible interactive
role with plant phytohormone status implies the bacterial
production of auxins (indole-3-acetic acid, indole-3-lactic acid)
and cytokinins (Scholz-Seidel and Ruppel, 1992). While the
characterization of isolated PGPB using in vitro assays provided
valuable insights into potential mechanisms underlying plant
growth promotion, the mode of action in planta remains largely
unknown. Also, little attention has been paid to proteome
alterations in the host plant in response to colonization by
PGPB. Thus, the present study aims at dissecting the consequence
of K. radicincitans colonization on the protein complement of
A. thaliana roots. The choice of the host plant was governed
by recognition of available mutant libraries for A. thaliana
that allow for functional characterization of putative candidates.
Our intention was to identify differentially translated gene
products by comparative proteome analysis carried out by two-
dimensional (2D) gel electrophoresis. Emerging candidates from
this analysis were more deeply investigated. Our data show that
the host proteasome is affected by endophytic K. radicincitans
colonization. Protein degradation is a fundamental biological
process and in plants, proteolysis of misfolded, damaged and
ubiquitin-labeled proteins is governed by the 20S and 26S
proteasome. The 20S proteasome represents the catalytic core
particle with proteolytic activity and together with the 19S
regulatory particle, the 26S proteasome is formed (Kurepa and
Smalle, 2008). The 19S regulatory particle controls ubiquitin-
dependent protein degradation, while the free 20S proteasome
removes oxidized proteins generated by the presence of reactive
oxygen species. We used A. thaliana mutants deficient in
26S proteasome regulatory particles to unravel the effect of
K. radicincitans on ubiquitin-dependent proteolysis.

MATERIALS AND METHODS

Bacterial and Plant Growth Conditions
Kosakonia radicincitans DSM 16656 was cultivated overnight in
standard nutrient broth (Merck, Germany) (Ruppel et al., 2006).
The cells in the medium were pelleted by centrifugation. Cells
were then washed twice by centrifugation with autoclaved 50 mM
NaCl solution to remove medium components. Bacterial cells
were diluted with physiological buffer solution (sterile 50 mM
NaCl) to OD620 0.2, which corresponds to a concentration
of 109cfu mL−1 and further diluted to give 107 cfu mL−1.
A 10 mL aliquot or 10 mL 50 mM NaCl was poured over the
surface of each pot, and the plants were cultivated for a further
4 weeks.

Arabidopsis thaliana Oy-0, Col-0, rpt2a-2, rpt12a-1 were
grown on non-sterile standardized plant growth substrate
(Fruhstorfer Erde type P, Germany) with a pH of 6.0 in a
climate chamber under short-day conditions (8 h light/16 h
dark, 22◦C, 40–60% humidity). After 2 weeks, single plants
were transferred into sand filled pots and inoculated with
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K. radicincitans DSM 16656. As control treatment, 50 mM
NaCl was applied. Plants were watered with nutrient solution
as described by Gibeaut et al. (1997) and after four more
weeks, root tissue was harvested in liquid nitrogen. Plant
growth measurements were taken of the root length, and the
fresh weight of root and rosette of 20 plants, grown under
control conditions or inoculated with K. radicincitans, in three
independent experiments. Analysis for statistical significance
was done using Student’s t-test implemented in SigmaPlot 12.3
software (SPSS, Inc., USA).

Two-dimensional Gel Electrophoresis
and Protein Identification
Protein Extraction for 2-D Gel Electrophoresis
Proteins were extracted from one g of homogenized frozen root
material using phenolic extraction method (Faurobert et al.,
2007). Briefly, proteins were extracted using a buffer containing
500 mM Tris-HCl, 50 mM EDTA, 700 mM sucrose, 100 mM KCl,
2% (v/v) β-mercaptoethanol, proteinase inhibitor. One volume
of TE-buffered phenol was added and phase separation was
achieved by centrifugation step (10 min, 5,500 g, 4◦C). The
phenolic phase was mixed again with 1 volume of extraction
buffer. After centrifugation, proteins were precipitated from the
phenolic phase using 0.1 M sodium acetate in methanol over
night at−20◦C. The solution was centrifuged as described above,
the resultin protein pellets washed with 80% acetone and dried
in a vacuum centrifuge. Protein pellets were dissolved in 8 M
urea, 2% CHAPS, 20 mM DTT, 0.5% SERVALYTTM Carrier
Ampholytes pH 4–7 (SERVA Electrophoresis GmbH, Germany),
as described in Witzel et al. (2009). The protein concentration
was determined using the BradfordRED Kit (Expedeon, UK),
which is compatible with the 2D resolving buffer, according to
the manufacturer’s instructions.

2-D GE and Protein Staining
Protein extracts were subjected to isoelectric focusing (IEF)
and subsequent SDS-PAGE as described in Schlesier and Mock
(2006). A 300 µg sample was loaded by rehydration onto
immobilized pH gradient strip of 17 cm in length with a
pH gradient of 4–7 (IPG BlueStrip, SERVA Electrophoresis
GmbH, Germany). The separation on an PROTEAN

R©

i12TM

IEF System (Bio-Rad, USA) was performed with the following
parameters: 15 h rehydration, 30 min gradient to 250 V,
2 h gradient to 10,000 V and hold at 10.000 V to a
total of 50 kVh. Strips were equilibrated and electrophoresed
according to Witzel et al. (2009). Briefly, after IEF, strips
were equilibrated in buffer A (50 mM Tris/HCl, pH 8.8,
6 M urea, 30% v/v glycerin, 2% w/v SDS, 20 mM DTT,
0.01% bromphenol blue) and additionally in buffer B (50 mM
Tris/HCl, pH 8.8, 6 M urea, 30% v/v glycerin, 2% w/v SDS,
135 mM iodoacetamide, 0.01% bromphenol blue) for 15 min
each. The strips were then placed on top of an 11.25% SDS
polyacrylamide gel and covered with 0.5% agarose. Separation
in the second dimension was done by SDS-Page and afterward,
gels were washed in water for 5 min and stained with
colloidal Coomassie Brilliant Blue (InstantBlue, Expedeon, UK)
following the manufacturer’s instructions. Three independent

separations of each sample were performed to ensure technical
reproducibility.

Image Analysis and Statistical Analysis of
Two-dimensional Gel Patterns
Gel images were captured by a Perfection V700 Photo scanner
(Seiko Epson Corporation, Japan). SameSpots v4.5 (TotalLab,
UK) was used for image analysis. Gel images were automatically
aligned and manually checked. Subsequent analysis of the aligned
image set used algorithms implemented in the software to enable
spot detection, background subtraction, normalization, and spot
matching across experiments. One-way analysis of variance
(ANOVA), implemented in the software, was used for differential
expression analysis (p < 0.05).

Spot Identification
Selected protein spots were manually excised from the 2D
gel, digested with trypsin as described by Witzel et al. (2007)
and subjected to mass spectrometry. Briefly, after a washing
step of 5 min, spots were reduced with 10 mM DTT in
25 mM ammonium bicarbonate for 1 h at 55◦C under shaking
conditions. Afterward, the solution was replaced by 55 mM
iodoacetamide in 25 mM ammonium bicarbonate and the
spot was incubated for 45 min at room temperature under
shaking conditions in the dark. The gel plug was washed with
25 mM ammonium bicarbonate for 10 min, with 10 mM
ammonium bicarbonate/50% acetonitrile for 30 min and with
25 mM ammonium bicarbonate. After the final washing
step with 10 mM ammonium bicarbonate/50% acetonitrile
for 30 min the spot was dried and digested with trypsin
(Promega, USA), following the manufacturer’s instructions.
Protein identification using nanoLC-ESI-MS/MS was performed
by Proteome Factory (Proteome Factory AG, Germany). The MS
system consisted of an Agilent 1100 nanoLC system (Agilent,
Germany), PicoTip electrospray emitter (New Objective, USA)
and an Orbitrap XL (ThermoFisher, Germany). Protein spots
were in-gel digested by trypsin (Promega, Germany) and applied
to nanoLC-ESI-MS/MS. Peptides were trapped and desalted on
the enrichment column (Zorbax SB C18, 0.3 mm × 5 mm,
Agilent) for 5 min using 2.5% acetonitrile/0.5% formic acid
as eluent, then peptides were separated on a Zorbax 300
SB C18, 75 µm × 150 mm column (Agilent) using an
acetonitrile/0.1% formic acid gradient. MS/MS spectra were
recorded data-dependently by the mass spectrometer according
to manufacturer’s recommendations. Proteins were identified
using MS/MS ion search of the Mascot search engine (Matrix
Science, UK) and NCBI nr protein database (subset: Green
Plants; National Center for Biotechnology Information, USA).
Ion charge in search parameters for ions from ESI-MS/MS
data acquisition were set to “1+, 2+, or 3+” according to the
instrument’s and method’s common charge state distribution.
A 5 ppm peptide, 0.6 Da fragment tolerance, two missed
cleavages and variable oxidation (Met), deamidated (NQ), and
carbamidomethyl (Cys) were used as the search parameters. The
same protein spot was excised from the root protein profiles
of control and inoculated plants and only matching protein
identifications were accepted.
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Proteasome Activity Measurement
Determination of proteasome activity was performed as
described in Üstün et al. (2013) spectrofluorometrically using
the fluorogenic substrate suc-LLVY-NH-AMC (Sigma-Aldrich,
Germany). The same root material, as analyzed by 2DE, was used
for measurement. In short, proteins in 100 mg of ground frozen
root were extracted in 50 mM HEPES-KOH, pH 7.2, 2 mM ATP,
2 mM DTT, 250 mM sucrose. The total protein was quantified
by Bradford protein assay (Bio-Rad, USA) using bovine serum
albumin as a standard. Twenty-five µg of protein was mixed with
proteolysis buffer (100 mM HEPES-KOH, pH 7.8, 5 mM MgCl2,
10 mM KCl, 2 mM ATP) and the reaction was initiated by adding
0.2 mM suc-LLVY-AMC. Released amino-methyl-coumarin
(AMC) was measured using a fluorescence spectrophotometer
(FLX800, BioTek), with an excitation wavelength of 360 nm
and an emission wavelength of 460 nm. Analysis for statistical
significance was done using Student’s t-test implemented in
SigmaPlot 12.3 software (SPSS, Inc., USA).

Protein Gel Blot Analysis
For detection of protein ubiquitinylation, root proteins were
extracted as described for proteasome activity measurements.
Twenty µg of protein per sample were added to loading
buffer and proteins were separated on SDS-PAGE and

transferred to PVDF-membranes. The blots were probed
with the Arabidopsis UBQ11 antibody (Agrisera, Sweden) in
a dilution of 1:5,000. After probing with secondary antibody
horseradish peroxidase-labeled Goat anti-Rabbit IgG (H+L)
in a dilution of 1:10,000, immunodetection was carried out
using Pierce ECL Western Blotting Substrate (Thermo Fisher
Scientific). Chemiluminescence of blots was captured using
Octoplus QPLEX Fluorescence Imager (NH DyeAGNOSTICS,
Germany). Western Blot lane intensities were quantified using
ImageJ software1. Analysis for statistical significance was done
using Student’s t-test implemented in SigmaPlot 12.3 software
(SPSS, Inc., USA).

RESULTS

Beneficial Plant Growth Responses
In this study, we aimed at dissecting the molecular adaptive
processes during the stable establishment of K. radicincitans in
A. thaliana Oy-0. This accession was isolated from a previous
screen of A. thaliana genotypes and was found to be most
responsive to the colonization of K. radicincitans (not shown).
The growth-promoting activity of K. radicincitans on leaves of

1https://imagej.nih.gov/ij/index.html

FIGURE 1 | The growth-promoting effect of Kosakonia radicincitans on Arabidopsis thaliana (A). (B) The effect of colonization on leaf and root biomass.
(C) Root length of differential treated plants. Values represent the mean ± SE (n = 20) and the asterisk indicate statistical differences between non-inoculated and
inoculated plants (p < 0.05). Bar = 2 cm.
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A. thaliana Col-0 has been shown earlier (Brock et al., 2013).
In Oy-0, the leaf and root biomass was, respectively, 37 and
28% greater compared to non-inoculated plants 4 weeks after
inoculation (Figure 1B). A beneficial effect of the inoculation was
found also for root length, which increased by 10% (Figure 1C).
Figure 1 displays the outcome of one representative experiment
out of three performed ones.

Comparative Proteome Analysis
The applied bacteria enter the host plant via roots and the
endophytic establishment is likely to affect root physiology.
Therefore, a proteome analysis of root tissue was conducted to
characterize root proteins in response to endophytic colonization
with K. radicincitans. Root samples from three independent
experiments were separated on 2D gels and each sample was run
in technical triplicates. Approximately, 1,700 protein spots were
matched on 2D gels between biological and technical replicates.
The comparative image analysis identified 12 differentially
expressed spots between root samples of control and inoculated
plants that were manually excised from 2D gels for tryptic
digest and subsequent mass spectrometry-based identification
(Figure 2). Identification was successful for all selected spots
and was confirmed by analyzing spots from gels of control
and inoculated root samples (Table 1). Detailed information on
de novo sequencing data is provided in Supplementary Table S1
and detailed spot information is given in Supplementary
Table S2. In two cases (spots 516 and 1751) more than one
protein was found in the excised spots. Since quantification
of non-separated proteins is not reliable, these spots were
not further investigated. The theoretical isoelectric point and
molecular weight of identified proteins matched to the respective
spot position on 2D gels to a great extent indicating that full-
length polypeptides were identified by the comparative proteome
analysis.

The function of six of the remaining spots was related
to stress responses. Increased expression in roots colonized
with K. radicincitans was found for spots 555 (Heat shock
70 kDa protein 14), 1670 (T14P8.5, a Heat shock 20 kDa-like
chaperone), 1812 (Glutathione S-transferase F7) and 2247
(a universal stress protein), while decreased expression was
observed for spots 693 (Heat shock 70 kDa protein 10) and 2239
(Lipase/Lipooxygenase). Two differentially expressed spots were
involved in protein metabolism, one was identified as Elongation
factor 1-beta 2 (spot 1619) and reduced in spot intensity in
inoculated roots, and the other one was a 20S proteasome
alpha-3 subunit (spot 1746) that accumulated in response to
the treatment. The remaining two spots were both reduced
in expression. Fructose-bisphosphate aldolase (spot 1491) is
involved in glycolysis, while Ferredoxin-nitrite reductase (spot
972) is involved in nitrogen assimilation.

Endophytic Colonization Interferes with
Ubiquitin-Dependent Protein
Degradation
Most of the identified differentially abundant proteins were
involved in cellular stress response. Among those, the 20S

FIGURE 2 | Two-dimensional protein map of A. thaliana roots,
indicating the position of spots identified by mass spectrometry.
Sample loading, protein separation, and visualization were as described in
Section “Materials and Methods”.

proteasome alpha-3 subunit (spot 1746) was further investigated.
The proteasome is a central hub in protein turn-over, regulating
also plant stress and immune responses; however, no correlation
to presence of PGPB was drawn in plants so far. Hence,
a subsequent analysis of protein degradation properties was
carried out to functionally test the observed induction of spot
1746, identified as 20S proteasome alpha-3 subunit. The 20S
proteasome represents the core particle of the 26S proteasome.
The free 20S proteasome degrades mainly oxidized proteins
and RNA, while together with the 19S regulatory particle, the
26S proteasome is formed to degrade proteins in a ubiquitin-
dependent manner (Sadanandom et al., 2012). Hence, the
accumulation of 20S proteasome alpha-3 subunit could point
to an enhanced degradation of oxidized proteins. A second
possible explanation for increased levels of 20S proteasome
alpha-3 subunit could be a general inhibition of 26S-based
protein degradation since it has been shown that the blocking
of 26S-related protein degradation results in the accumulation of
proteasome subunits (Book et al., 2010; Kim et al., 2013). To test
the latter hypothesis, total proteasome activity was determined
using a fluorogenic substrate (Suc-LLVY-AMC). Presence of
K. radicincitans in A. thaliana roots led to a 40% inhibition of root
proteasome activity as compared to control plants (Figure 3A). In
order to evaluate the effect of decreased proteasome activity on
ubiquitin-mediated protein turnover, immunoblotting analysis
using an anti-ubiquitin antibody was performed on total protein
extracts of control or inoculated roots. An accumulation of
ubiquitinated proteins in roots inoculated with K. radicincitans
was apparent indicating a disturbed degradation of ubiquitinated
proteins in those plants (Figures 3B,C).
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TABLE 1 | Differentially abundant proteins in Arabidopsis thaliana cv. Oy-0 roots identified by mass spectrometry.

Spot number ANOVA (p) Fold change Normalized volumes Protein
accession

Protein
description

Protein pI
(theor./exp.)

Protein MW
(theor./exp.)

Control Inoculated

516 0.038 −1.4 8.40E+06 6.07E+06 gi| 15233349 Aconitate hydratase 1 [A. thaliana] 6.0/6.2 98.1/105

gi| 6056373 Elongation factor EF-2 [A. thaliana] 5.9/6.2 94.2/105

555 0.042 +1.9 5.17E+05 9.87E(+05 gi| 1495251 Heat shock 70 kDa protein 14
[A. thaliana]

5.2/5.2 91.7/100

693 0.009 −1.5 1.14E(+07 7.63E(+06 gi| 15242459 Heat shock 70 kDa protein 10,
mitochondrial [A. thaliana]

5.6/5.5 72.9/83

972 0.041 −1.3 6.96E(+06 5.31E(+06 gi| 15226573 Ferredoxin-nitrite reductase
[A. thaliana]

6.0/5.9 65.5/71

1491 0.019 −1.4 2.05E(+06 1.50E(+06 gi| 15231715 Fructose-bisphosphate aldolase,
class I [A. thaliana]

6.1/5.8 38.5/40

1619 0.037 −1.2 1.89E(+07 1.59E(+07 gi| 30687350 Elongation factor 1-beta 2
[A. thaliana]

4.4/4.2 24.2/32

1670 0.009 (+1.4 1.32E(+07 9.45E(+06 gi| 3193303 T14P8.5 [A. thaliana] 4.4/4.1 27.9/29

1746 0.02 (+1.4 4.91E(+06 6.98E(+06 gi| 15233268 20S proteasome alpha-3 subunit
[A. thaliana]

6.6/6.8 27.4/28

1751 0.04 −1.4 2.95E(+06 2.17E(+06 gi| 21553809 Unknown [A. thaliana] 4.4/4.0 19.1/26

gi| 15230476 Nascent polypeptide-associated
complex subunit alpha-like protein
1 [A. thaliana]

4.3/4.0 21.9/26

1812 0.033 +1.4 6.82E+06 9.40E+06 gi| 15218639 Glutathione S-transferase F7
[A. thaliana]

6.1/6.8 23.6/24

2239 0.031 −1.3 5.71E+06 4.51E+06 gi| 15236014 Lipase/lipooxygenase
[A. thaliana]

5.0/4.0 20.1/18

2247 0.042 +1.7 3.22E+06 5.40E+06 gi| 18401345 Universal stress protein family
protein [A. thaliana]

6.4/6.8 17.7/18

The table gives the spot number, statistical significance of differential expression, the fold change between groups of control and inoculated samples, protein abundance
on 2D gels, the NCBI Viridiplantae database hit and, theoretical and experimental isoelectric points (pI) and molecular weight (MW).

26S Proteasome Regulatory Particle
RPN12a Mutant Shows a High
Responsiveness toward K. radicincitans
The accumulation of ubiquitinated proteins could indicate that
the 26S proteasome is affected by the bacterial colonization,
rather than the 20S proteasome. In order to unravel the
involvement of ubiquitin-dependent or -independent proteolysis
in this plant-bacteria interaction, two A. thaliana mutants
defective in the 26S proteasome regulatory particles RPT2a
and RPN12a have been employed to study growth responses
upon application of K. radicincitans. In those mutants, 26S
proteasome activity is strongly reduced, while 20S proteasome
levels are increased and the ubiquitin-independent proteolysis
is preferentially performed (Kurepa et al., 2008). The effect
of bacterial inoculation on plant biomass was tested 4 weeks
after inoculation and compared to the Col-0 wild type.
The moderate increase in Col-0 biomass production is
in agreement with previous observations (Brock et al.,
2013). Leaf biomass increased significantly by 24 and 44%
in Col-0 and rpn12a-1, respectively, compared to non-
inoculated plants (Figure 4). In roots, a significant effect
was observed only for rpn12a-1 where biomass increased
by 58% as compared to the control treatment. This increase
is twice as much as found for inoculated Oy-0 roots (see
Figure 1B). The root and leaf biomass in rpt2a-2 was increased

upon the inoculation. However, those changes were not
significant.

DISCUSSION

The application of PGPB as growth promoters represents a
promising strategy in sustainable crop production. However,
the modes of physiological alterations provoked by PGPB
in plants are less understood. In this work, molecular plant
responses to PGPB are investigated to understand adaptation
processes resulting from bacterial colonization of the model
plant A. thaliana. The comparative proteome analysis of plant
roots revealed a relatively low number of differentially abundant
protein spots between control and inoculated roots with regard
to the strong increase in biomass provoked by the bacterium.
Most of the identified proteins are involved in cellular stress
response. Heat shock proteins are a diverse and complex family
of proteins functioning in plant development and in response to
environmental stresses, and managing protein folding, cellular
trafficking and proteasome targeting (Huang and Xu, 2008;
Waters, 2013). The increased abundance of chaperones in
roots colonized by K. radicincitans indicates a higher demand
for protein folding, repair or degradation (McDonough and
Patterson, 2003). In this context of protein degradation, a
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FIGURE 3 | Presence of the endophyte K. radicincitans influences ubiquitin-related protein degradation in A. thaliana roots. (A) Proteasome activity in
total protein root extracts was inferred from breakdown of the fluorogenic peptide Suc-LLVY-AMC. Values represent the mean of three independent experiments
(±SD). (B) Accumulation of ubiquitin conjugates in plant roots upon bacterial colonization. Ubiquitinylated proteins were detected via immunoblotting using an
anti-ubiquitin antibody. Equal protein loading was confirmed by Amido-black staining of the western blot membrane. Root protein extracts of three independent
experiments (E1–E3) of control and inoculated plants are shown. (C) Relative quantification of Western Blot lane intensity using ImageJ. Asterisks indicate statistical
significance of differences (p < 0.05).

further protein spot with increased abundance in inoculated
roots was identified as 20S proteasome alpha-3 subunit. The
plant proteasome has been recognized as major target of
pathogenic effector proteins (Üstün and Börnke, 2014; Banfield,
2015), but with regard to growth-promoting endophytic bacteria,
there are currently no reports that endophytic colonization
affects proteasome activity in some way. The manipulation of
the host proteasome is an evolutionary conserved virulence
mechanism of microbial pathogens that inject effector proteins
into the host cell and interfere with proteasome activity in
order to suppress immune responses (Üstün et al., 2013,
2014). The relevance of modulating the host proteasome system
for non-pathogenic endophytic microbes was demonstrated
recently by identifying Syringolin A, a bacterial proteasome
inhibitor, in a Rhizobium strain isolated from the endosphere
of poplar roots (Dudnik et al., 2014). We demonstrated in our
study that the colonization of A. thaliana by K. radicincitans
lead to an accumulation of ubiquitinated proteins and is
accompanied by a decline in proteasome activity, indicating
that the proteasome might be a target for beneficial bacteria
as well. Ubiquitination of protein substrates represent the
initial step in its proteasome-mediated degradation, induces
protein relocalisation or endocytosis. Ubiquitin is a small protein
that is covalently linked to a substrate, thereby coordinating
phytohormone-related developmental processes, abiotic stress
responses and plant immunity (Sadanandom et al., 2012;
Banfield, 2015). The increased abundance of chaperones on 2D
gels of inoculated roots is correspondingly associated with the

disturbed proteolysis, aiming at maintaining cellular processes
under K. radicincitans colonization. However, no Syringolin
A biosynthesis genes or type III secreted effector proteins
are present in the K. radicincitans genome (Witzel et al.,
2012), indicating the possible incidence of other yet unknown
effectors.

Currently, opposing observations are discussed in the
literature about the abundance of 20S proteasome levels and the
ubiquitin-dependent degradation. Using Arabidopsis mutants
deficient in regulatory subunits of the 19S regulatory particle,
RPT2a and RPN12a, it has been demonstrated, that the reduction
in ubiquitin-dependent proteolysis is accompanied by increased
levels of 20S proteasome (Kurepa et al., 2008). On the contrary,
increased 20S proteasome subunit levels were accompanied by
elevated degradation of ubiquitinated proteins was, as shown
for the alpha-2 subunit in rice (Li et al., 2015). In our
study, the proteasome perturbations induced by K. radicincitans
were further characterized using mutants deficient in 19S
regulatory particle subunits. RPT2a is a triple ATPase involved in
gametogenesis, sugar response, root and shoot apical meristem
maintenance, and histone dynamics (Kurepa et al., 2009; Lee
et al., 2011; Ueda et al., 2011; Sun et al., 2012). RPN12a
has no ATPase activity and acts as a negative regulator of
cytokinin signaling (Ryu et al., 2009). Both mutants exhibit a
decrease in 26S proteasome activity (app. 30% in rpt2a and
50% in rpn12a-1) but an increase in 20S proteasome activity
(Kurepa et al., 2008). The different response of the two mutant
genotypes to inoculation with K. radicincitans indicates that
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FIGURE 4 | Impact of K. radicincitans presence on phenotype (A), and
leaf (B) and root (C) fresh mass of Col-0, rpt2a-2 and rpn12a-1. Values
represent the mean ± SE of three independent experiments, each consisting
of 25 plants, and the asterisk indicate statistical differences between
non-inoculated and inoculated plants (p < 0.05). Bar = 2 cm.

inhibition of proteasomal turnover per se is not sufficient to
increase plant biomass in the presence of the bacterium. This
could be due to the different extent of proteasome activity
inhibition in the mutants. Our own measurements indicate that
proteasome activity upon K. radicincitans inoculation decreases

by app. 50%, which is similar to what was observed in the
rpn12a-1 mutant (Kurepa et al., 2008). Possibly a lower degree
of inhibition as in the rpt2a-2 mutant is not sufficient to trigger a
growth response upon bacterial inoculation. Another explanation
could be a functional specialization of the regulatory particle
subunits under study. The massive biomass accumulation in
rpt12a upon endophyte colonization, which was even higher
than in Oy-0, could be indicative that a strong reduction of
26S proteasome activity is beneficial for K. radicincitans-induced
plant growth promotion. Although both mutants display a
general inhibition of proteasomal protein turnover, they display
different phenotypes. Thus, it has been suggested that some
subunits recognize a distinct subset of targets, and are therefore
responsible for the regulation of a specific developmental or
hormonal pathway (Smalle et al., 2002, 2003; Ueda et al.,
2004). Hence, another explanation for the different response
to colonization of the two mutant phenotypes could be that
a defect in RPN12a specifically inhibits processes or pathways
that have a negative effect on bacterial colonization or supports
bacterial growth promotion by enhancing specific cellular
processes which are required for the growth promoting effect
of K. radicincitans. Whether the bacterial-induced manipulation
of the host proteasome functioning is causal for the growth
promotion effect or if it is a prerequisite for successful plant
colonization needs to be verified in future studies. While for plant
pathogens numerous effector proteins as well as their host target
are described, information for beneficial endophytes is scarce.
The genome of K. radicincitans comprises of several genes coding
for components of types I, II, IV, and VI secretion system and
it is likely that bacterial proteins are targeted to the plant cell
cytosol. Generation of functional knock-outs of putative effector
proteins will provide more information on the molecular basis of
perturbations in the host ubiquitin system.

CONCLUSION

By comparing the root proteome of inoculated and non-
inoculated plants, we have been able to identify the plant
proteasome as essential for establishing a beneficial interaction
between K. radicincitans and A. thaliana. Influencing cellular
protein degradation is an efficient virulence strategy of plant
pathogens, but it is yet unclear whether this also applies to
beneficial plant-bacteria interactions or if proteasome activity
is influenced by other factors. Future studies will focus on
identifying the mechanistic basis of how proteasome function is
altered by K. radicincitans, e.g., by identifying effector proteins,
and whether this is necessary to overcome plant defense during a
successful colonization or whether it can be related to the growth
promoting effect of the bacterium.
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