
TECHNOLOGY REPORT
published: 04 May 2017

doi: 10.3389/fpls.2017.00686

Frontiers in Plant Science | www.frontiersin.org 1 May 2017 | Volume 8 | Article 686

Edited by:

Shrikant S. Mantri,

National Agri-Food Biotechnology

Institute, India

Reviewed by:

Gerhard Buck-Sorlin,

Agrocampus Ouest, France

Eva E. Deinum,

Wageningen University, Netherlands

*Correspondence:

Dirk De Vos

dirk.devos@uantwerpen.be

Gerrit T. S. Beemster

gerrit.beemster@uantwerpen.be

Specialty section:

This article was submitted to

Bioinformatics and Computational

Biology,

a section of the journal

Frontiers in Plant Science

Received: 07 September 2016

Accepted: 13 April 2017

Published: 04 May 2017

Citation:

De Vos D, Dzhurakhalov A, Stijven S,

Klosiewicz P, Beemster GTS and

Broeckhove J (2017) Virtual Plant

Tissue: Building Blocks for

Next-Generation Plant Growth

Simulation. Front. Plant Sci. 8:686.

doi: 10.3389/fpls.2017.00686

Virtual Plant Tissue: Building Blocks
for Next-Generation Plant Growth
Simulation
Dirk De Vos 1, 2*, Abdiravuf Dzhurakhalov 1, 2, Sean Stijven 2, Przemyslaw Klosiewicz 2,

Gerrit T. S. Beemster 1* and Jan Broeckhove 2

1 Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium,
2Modeling of Systems and Internet Communication, Department of Mathematics and Computer Science, University of

Antwerp, Antwerp, Belgium

Motivation: Computational modeling of plant developmental processes is becoming

increasingly important. Cellular resolution plant tissue simulators have been developed,

yet they are typically describing physiological processes in an isolated way, strongly

delimited in space and time.

Results: With plant systems biology moving toward an integrative perspective on

development we have built the Virtual Plant Tissue (VPTissue) package to couple

functional modules or models in the same framework and across different frameworks.

Multiple levels of model integration and coordination enable combining existing and new

models from different sources, with diverse options in terms of input/output. Besides the

core simulator the toolset also comprises a tissue editor for manipulating tissue geometry

and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is

available to study parameter dependence of simulation results by distributing calculations

over multiple systems.

Availability: Virtual Plant Tissue is available as open source (EUPL license)

on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website

https://vptissue.bitbucket.io.

Keywords: modeling, simulation, software, growth, development, coupling, modular

INTRODUCTION

Driven by experimental advances during the last decade, plant biology has witnessed the emergence
of simulation models that complement and enrich our conceptual understanding of elementary
processes in plant development (Mjolsness, 2006; De Vos et al., 2012; Hodgman and Ajmera,
2015). Models explaining basic characteristics of phyllotaxis, leaf venation, primary, and lateral
root growth, and so forth are becoming more sophisticated but remain predominantly restricted to
localized and simplified descriptions in time and space. Various plant spatial modeling frameworks
or tools have been reported aimed at modeling isolated systems at the cellular scale and tissue
scale such as VV (http://algorithmicbotany.org/papers/smithco.dis2006.pdf), CellModeller (Dupuy
et al., 2008), VirtualLeaf (Merks et al., 2011) and CellZilla (Shapiro et al., 2013; Cellerator:
https://sourceforge.net/projects/cambium). The chemical and mechanical properties of the flower
bud have beenmodeled in 3D at cellular resolution with SOFA (Boudon et al., 2015). Other software
primarily targets the organ to whole plant scale and beyond, such as L-systems (Prusinkiewicz,
2004; Allen et al., 2005), GroIMP (Hemmerling et al., 2008; Kniemeyer, 2008) OpenAlea (Pradal
et al., 2008), CrossTalk (Draye and Pagès, 2007) and Organism (http://dev.thep.lu.se/organism).

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
https://doi.org/10.3389/fpls.2017.00686
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2017.00686&domain=pdf&date_stamp=2017-05-04
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:dirk.devos@uantwerpen.be
mailto:gerrit.beemster@uantwerpen.be
https://doi.org/10.3389/fpls.2017.00686
http://journal.frontiersin.org/article/10.3389/fpls.2017.00686/abstract
http://loop.frontiersin.org/people/138786/overview
http://loop.frontiersin.org/people/434296/overview
http://loop.frontiersin.org/people/416585/overview
http://loop.frontiersin.org/people/27583/overview
https://bitbucket.org/vptissue/vptissue
https://vptissue.bitbucket.io
http://algorithmicbotany.org/papers/smithco.dis2006.pdf
https://sourceforge.net/projects/cambium
http://dev.thep.lu.se/organism

De Vos et al. VPTissue for Modular Plant Growth Simulation

Plant growth regulators are known to be subjected to
long-range, inter-organ transport, and the same molecular
signals play an often subtly different role during successive
developmental stages (Kalve et al., 2014). A “grand unified
model” approach could in principle accommodate such
complexity, but presents itself as a task with a prohibitive
computational and developmental cost. Future advances
in high performance computing will likely improve the
outlook on that issue. However, the coupled simulation of
existing models, although it presents important issues with
interoperability and still requires careful matching and fine-
tuning of models is arguably a better strategy. With different
models developed by different groups in diverse frameworks
in the systems biology landscape, cross-language operability is
crucial to avoid duplication of work. Despite the availability of
several frameworks, with varying degrees of modularity and
potential for coupling individual models, to our knowledge
cellular resolution tissue models have not been coupled yet.
Here, we present a software package originally based on the
VirtualLeaf framework but completely re-engineered for a
modular approach that conserves functional units (sub-models
or models), enabling reuse of existing (sub-) models and
provides sufficient performance and flexibility to allow mutual
communication and coordinated time evolution of such models.

METHODS

Virtual Plant Tissue can be considered an offspring to VirtualLeaf
(Merks et al., 2011), yet represents an entirely new codebase.
Concerning language conformance, the forward perspective
was taken, aiming to make the code base last as long as
possible. Virtual Plant Tissue is written in C++ 11, using
familiar design patterns (Gamma et al., 1995) and using the
cppcheck tool (cppcheck.sourceforge.net) to analyse the code
for design deficiencies. The Model-View-Controller (MVC)
design was used to make the simulator more transparent.
Adding and changing output features is now more flexible and
extensible. Another design choice was to not only mold biological
concepts in well-defined classes (Mesh, Cell, Wall, Edge, Node)
but also algorithmic entities like CellDivider, NodeInserter or
the various time evolution schemes. Figure 1 represents one
possible scheme (see Results). Some code elements (classes
and functions) crucial in determining different simulation
modes/options are presented in Figure 2. Both command line
and graphical runs are possible: via the CliController or
AppController class, respectively. The latter can operate on a
single simulation (Sim) object or on a CoupledSim object for
internally coupled simulations. All running modes converge
on a central TimeStep() function that organizes the selection
and execution of the different model components that define
one model or two coupled models. TimeStep() is also available
for external C++, Python, and Java programs via a wrapper
class.

In the case of internally coupled simulations (Figure 3) each
single simulation time step is subdivided into time slices in which
chemical levels evolve independently (similar to the Reaction

FIGURE 1 | Basic control flow diagram. First the slower biological

processes such as the reactions, transport, cell division, regulation of turgor

pressure and wall yielding are performed. Then iteratively all nodes are

attempted to be displaced and [this is called one Monte Carlo (MC) step]. The

MC steps are repeated until the system converges to its equilibration state,

i.e., a sufficient balance between the turgor pressures and cell walls’

resistances. At the end of each MC step the energy change is typically

evaluated by: −
∑

nodes

1Ei < Eth, where Eth represents the tolerance of the

|
∑

1Ei | convergence. If the system does not satisfy this criterion the

complete cycle is repeated until equilibration. Other termination options, such

as a sliding window criterion (Dzhurakhalov et al., 2015a), can be specified via

the input data file.

& transport step in Figure 1). After each coupling time slice
interacting boundary cells of the coupled simulations exchange
information on their respective chemical concentrations. This
step is executed by the Coupler class. After n iterations the
simulation time step finishes by independent evolution of both
simulations in terms of cell mechanics and cell division.

If an external program needs access to the TimeStep() it
does so via a C++ SimWrapper class which defines a set of
basic interaction functions. In case a Python or Java program
wants to call a Virtual Plant Tissue simulation the required
glue code needed for interoperability is provided as well (see
src/main/swig_sim/swig_interface). In the specific
case implemented here (Figure 4) a model defined in Python

Frontiers in Plant Science | www.frontiersin.org 2 May 2017 | Volume 8 | Article 686

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

FIGURE 2 | Modularity in the code. Some aspects of call hierarchy (main classes/methods) in relation to modularity at 3 levels: via a time_evolver class [used by

CreateTimeEvolver()] which organizes model components*; via the internal coupler mechanism (CoupledSim; blue color); and via the (here Python) wrapper class

(SimWrapper; red color) which interfaces with external models. Two main options are available for the simPT_sim module (standard simulator): command line (CLI) and

graphical (GUI) mode. The simPT_parex (gray color) module allows automated parameter exploration via a compute server and uses similar functionality as the CLI

mode.

describing a leaf was coupled with a simple root model.
More precisely the PyPTS package (https://pypi.python.org/
pypi/PyPTS/0.2.4) is used to set up a leaf tissue in Python
based on an hdf5 input file. In the next step the SimWrapper
GetXMLState() and Initialize() functions are used to read the
root input file. What then follows is an iteration of simulation
steps coordinated by a Python script which operates the Python
leaf model and the Virtual Plant Tissue root model in succession
and forces them to exchange information via the wrapper
functions.

The project directory layout is very systematic and follows
the Maven convention which is aimed at increasing the build
transparency (https://maven.apache.org/maven-conventions.
html). Everything used to build project artifacts is placed in
directoy/src. Code related files can be found in directory
src/main. Documentation files are located in src/doc.
Files related to automated unit and scenario testing (e.g., to
verify models can be simulated for a defined number of steps)
via ctest (see https://cmake.org) and googletest (https://github.

com/google/googletest) can be found in src/test. The tests
can be run manually by the user by using the make target
“test” (for more details on the build see below). Detailed test
output is generated by setting the SIMPT_VERBOSE_TESTING
flag to “ON” in CMakeBuildConfig.txt. The build generated
artifacts are put in a single directory target, separate from the
source code, which is completely removed when the project is
cleaned.

Git (https://git-scm.com) was used for version control and
the Jenkins continuous integration platform (https://jenkins.
io) for automatic building and testing (including performance
tests). Virtual Plant Tissue builds on Linux/UNIX platforms,
Mac OSX platforms and Windows/MinGW platforms. The
project is built using the CMake build system (see http://www.
cmake.org/), using an out of source build. For those more
familiar with the Make build system, in the top level directory,
a front-end Makefile is provided to trigger a build. Details
on the build procedure and the macros that can be set to
configure the build, can be found in the file INSTALL.txt in

Frontiers in Plant Science | www.frontiersin.org 3 May 2017 | Volume 8 | Article 686

https://pypi.python.org/pypi/PyPTS/0.2.4
https://pypi.python.org/pypi/PyPTS/0.2.4
https://maven.apache.org/maven-conventions.html
https://maven.apache.org/maven-conventions.html
https://cmake.org
https://github.com/google/googletest
https://github.com/google/googletest
https://git-scm.com
https://jenkins.io
https://jenkins.io
http://www.cmake.org/
http://www.cmake.org/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

FIGURE 3 | Scheme with control flow for internal coupling. Multiple simulation instances can be run in parallel, while interacting in an organized way through a

coupler class (Figure 2). Each simulation time step is divided in n time slices (according to the sim_ODE_coupling_steps parameter) in which the chemical levels of

the models evolve independently, followed by an exchange event (via the ExchangeCoupler coupler). This exchange ensures that the cells at the (coupling) boundary

of the respective models can adapt their boundary conditions to the chemical concentrations of the cells of the other model directly coupled to them. A separate

VPTissue data file defines which cells are specifically coupled, through which chemicals, and with which transport or permeability constant. If cell x of model 1 is

coupled to cell y of model 2, then the coupler ensures that the correct chemical concentration of cell y becomes the boundary condition (concentration) of cell x, and

vice versa. Each model has a cell2cell_transport_boundary class that determines the transport kinetics between the coupled models (cells) through the modified

boundary conditions. After n cycles the simulation step finishes by executing the mechanical processes for each model simulation individually.

the top level project directory. The file PLATFORMS.txt in the
same directory, lists the platforms (combinations of operating
system/compiler/required libraries) on which the project has
been successfully built. More information can also be found in the
chapter “The Virtual Plant Tissue Software” in the User Manual
(see src/doc/latex_user_man/UserManual.pdf).
The chapter also highlights more elements of the Virtual Plant
Tissue development process related to coding practices, to the
project directory layout and to the Continuous Integration cycle
of building and testing using the Jenkins tool.

The project maximizes code re-usage through third party
software components (libraries and/or header files). We
distinguish between non-included or external dependencies
and included dependencies. The former are major software,
installed on almost all systems such as Qt (https://www.qt.io/)
or Boost (www.boost.org). Unlike in VirtualLeaf, Boost’s ptree
container is used to hold configuration data with a hierarchical
structure (such as tissues). This container provides easy access
and input/output to a number of file formats. Furthermore,
there is no longer a need for a pre-compilation step and model
parameters can now be more easily added to the data files. The
latter are smaller public domain software that we have included
in source format in the project and are built directly into the
application by our build procedure. Some of the non-included
dependencies are required to build the application (a GCC or
Clang C++ compiler, Qt4 or Qt5 and Boost 1.53+), others
are optional (e.g., HDF5: https://www.hdfgroup.org/HDF5,
SWIG 2.0). Our build procedure, based on the CMake tool,
automatically inspects the system and if the optional dependency
is not present, the corresponding build steps are simply skipped.
The user can also set some macros that consciously skip some
build steps, even if the dependency is available (see the file

INSTALL.txt in the top level project directory). A complete
list of dependencies, both non-included and included, with
a (very) brief description of their function is available in the
file DEPENDENCIES.txt in the top level directory of the
project.

RESULTS

We have opted to keep the simplifying, yet fast two-
dimensional vertex-based representation of plant tissue of its
predecessor VirtualLeaf. This approach requires relying on
inherent (pseudo-)symmetries of the tissues, and at the same
time it allows describing biophysical and biochemical processes
in great detail. A diverse set of C++ model classes incorporated
in the framework representing various functional units supports
that principle (Table 1).

Basic Geometry and Simulation Logic
Fundamentally, a plant tissue is described in Virtual Plant
Tissue as a mesh consisting of polygonal cells that consist of
nodes (vertices) connected by edges. The cells have attributes
(geometric, chemical, and others) and neighboring cells share
an apoplast segment or “wall” (consisting of one or more
edges). The walls in fact represent two physiologically distinct
cell wall (and plasma membrane) domains on either side of
the middle lamella and therefore have neighbor cell specific
attributes as well as others (Supplementary Figure 1). Thanks to
the “transporter” array attribute, PIN-FORMED (PIN; Krecek
et al., 2009) transporter levels can be assigned to the cell
wall segments and therefore, like VirtualLeaf (Merks et al.,
2007; van Mourik et al., 2012), Virtual Plant Tissue is suitable
to study auxin transport and PIN polarization dynamics (the

Frontiers in Plant Science | www.frontiersin.org 4 May 2017 | Volume 8 | Article 686

https://www.qt.io/
http://www.boost.org
https://www.hdfgroup.org/HDF5
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

FIGURE 4 | Scheme with control flow for cross-platform coupling. In

this specific case a (simple root) model defined in Virtual Plant Tissue interacts

through its SimWrapper class (Figure 2) with an external (simple leaf) model

defined with the PyPTS package. A Python driver/master script (here

run_coupled_sim.py) sets up the first model tissue (along with the model

parameters) based on an hdf5 input file (leaf.h5) and initializes a SimWrapper

object based on an XML input file (simpt_root.xml). Then n simulation steps

are executed. In each step the master script first orders Virtual Plant Tissue to

do a time step for the root model and then provide information on the chemical

levels of the coupled cells (those directly interacting in the coupling). That

information is used as a boundary condition for the simulation step of the leaf

(PyPTS) model which is then executed (numerical integration uses

SciPy.integrate). The chemical levels of the leaf model (more precisely of the

coupled cells) are then transferred to the Virtual Plant Tissue simulation via the

SetMeshState() method of the SimWrapper object. Finally, the I/O functionality

of PyPTS is called by the master script to write out the state of both

simulations at that time step in separate hdf5 files. Detailed instructions to run

this example can be found in the source code

(src/main/swig_sim/py_WrapperModel/README.md).

“AuxinGrowth” model is derived from Merks et al., 2007).
However, unlike other modeling approaches such as cellular
Potts models (Grieneisen et al., 2007) or vertex-based modeling

TABLE 1 | Main model components and brief function description.

Component Function

cell_chemistry Equations for intra-cellular reaction dynamics

cell_color Rules for output color of cells

cell_daughters Rules for partitioning of chemicals (and other

properties) to daughter cells

cell_housekeep Equations for updating properties related to cell

and wall expansion

cell_split Rules determining cell division

cell2cell_transport Equations for transport across cell walls

cell2cel_transport_boundary Equations for transport across cell walls at the

boundary (with external environment or with

coupled model)

delta_hamiltonian Energy function based on energy-difference upon

node displacement

hamiltonian Energy function on per cell-basis (tracks total

energy)

move_generator Generator of random node displacements

time_evolver Defines time evolution scheme

wall_chemistry Equations for reaction dynamics in cell walls

The listed components represent the building blocks of all Virtual Plant Tissue models.

Various options are provided in the source code (see user manual, Appendix A). The

choice for each component is specified in the VPTissue data file. Several pre-defined

models are available. The most noteworthy stand-alone models are: AuxinGrowth$

(Merks et al., 2011), Blad0032 (De Vos et al., 2015), Blad0128, Blad0512, Geometric$,

Meinhardt$ (Meinhardt et al., 1998), NoGrowth$ (Merks et al., 2011), SmithPhyllotaxis

(Smith et al., 2006), TipGrowth$, Wortel (De Vos et al., 2014). $ Indicates models

originating from and cross validated with VirtualLeaf.

with cell partitioning (Abley et al., 2013) intracellular hormone
concentration gradients cannot currently be represented. On the
other hand the latter types of models are typically associated
with a high computational cost and have other issues (for
instance cell sliding in lattice based models). Virtual Plant Tissue
can efficiently simulate large tissue structures (Supplementary
Table 1, Supplementary Figure 2), however, some implicit
assumptions have to be considered. An implicit assumption is
that intracellular gradients are small, which for auxin may not
be the case for cells as long as 100 µm (Kramer, 2008). Another
inherent assumption is that lateral diffusion in the apoplast is
negligible which in principle needs to be assessed case by case.

The state of the tissue at a specific time is described in a single
XML input file or “leaf file” (in accordance with Merks et al.,
2011; the leaf files are, however, not cross-compatible). An input
file contains model specific parameters (including names for the
components or modules that define the model), but also lists all
cells, nodes and walls together with their unique attributes (cf.
user manual: Supplementary File 1). Fundamentally, the dynamic
processes during a simulation time step are separated into a
phase with slow biochemical and biophysical processes governed
by ordinary differential equations and algebraic rules, and a
phase with instantaneous (elastic) wall mechanical processes,
governed by a Monte Carlo sampling strategy to approximate the
equilibrium state (Figure 1). This type of time-scale “separation”
and the use of a generalized energy function or Hamiltonian is an
efficient and established modeling approach (Wabnik et al., 2010;
De Rybel et al., 2014). Since this only excludes simulating very

Frontiers in Plant Science | www.frontiersin.org 5 May 2017 | Volume 8 | Article 686

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

fast (elastic) mechanical changes (taking<1 min: see for instance
Proseus et al., 1999), it does not strongly limit the scope of plant
biological questions to be studied. The ordering and composition
of the phases is customizable as explained below.

Modularity at Multiple Levels
The Virtual Plant Tissue code structure has been designed
for a modular model building and simulation approach at
three principal levels: (i) combining functional units within a
model, (ii) coupling models within Virtual Plant Tissue, and (iii)
coupling with external models of other frameworks (Figure 1).
In Virtual Plant Tissue biological as well as algorithmic
concepts/modules have been molded into classes (Table 1,
Supplementary File 1). Importantly, the regulation of the time
evolution scheme, defining type and sequence of computational
processes (cell division, wall yielding, hormone transport, ...),
is encapsulated in a separate time evolver class. Generally,
a great flexibility to define model simulations is available to
the user by editing parameters listed in the input XML file.
Importantly, all parameters (including model/module selection
and time evolution algorithm) can be changed dynamically, with
every change taking effect at the start of the time step following
that change. This can be done either interactively with the “gui”
or as the result of an automated computation, i.e., when certain
conditions are met such as surpassing a threshold value of
number of cells or simulated time. One could for instance define a
component of components, for example a cell division (cell_split)
module which selects either symmetric or asymmetric division
(both defined in separate modules) based on cell type (pavement
cell or meristemoid cell).

The core simulator has been isolated into a single class which
enables multiple instances of simulations to be run in parallel via
an internal interface. This represents a higher level of modularity
linking internal models/simulations. A Coupler type class defines
howmultiple simulations can communicate. An example coupler

class is available that maximally preserves the respective models’
individual character by restriction of information exchange
through modified boundary conditions (ExchangeCoupler class
(Figure 2). With a dedicated parameter in the VPTissue input
file the coupling frequency can be optimized (Figure 5). This is a
necessary feature since the coupling step (time slice) needs to be
small enough to ensure mass conservation across the boundary.
In the example of Figure 5A one of two basic coupled models
only produces a chemical (model details in Supplementary Text
1.1). The accumulation of that chemical in the uncoupled case
is only closely approximated if the coupling constant is high
enough (leading to intensive updating of boundary condition).
As expected increasing the permeability constant (“diffusion” in
the xml file) for chemical exchange between models leads to
nearly equal partitioning of the chemical (Figure 5B).

A SWIG adapter has been implemented to define a clean
external interface opening up the possibility for couplingmultiple
models implemented on different platforms. The interface has
methods that are also defined in a wrapper class that allows
the Virtual Plant Tissue core simulator to be accessed from an
external program that can be written in a different language
(Python or Java) via native wrapper objects (Figure 4). As an
example a model defined in Python (with the PyPTS package,)
describing a leaf was coupled with a simple root model defined
in Virtual Plant Tissue (Figure 6, Supplementary Video 1, model
details in Supplementary Text 1.2). In this particular case the
Python model is supplemented with instructions to coordinate
the coupling and simulation events (a separate driver or organizer
script would work equally well). The (geometrically static)
Python leafmodel accumulates chemical “0,” which is transported
to the Virtual Plant Tissue root model. The root responds
above a threshold by growing and increasing chemical “1”
production, which will be transported to the leaf and eventually
will shut down chemical “0” production and subsequently root
growth.

FIGURE 5 | Example output of internal coupling with Virtual Plant Tissue. Coupled simulation output of two structurally identical tissues (from models

TestCoupling_I and TestCoupling_II, see source code for details). The cells of the first tissue produce a chemical (at a constant rate) that is transported to the second

tissue (first order passive transport with a permeability constant P = 1 (length unit)/(time unit)). (A) The total chemical build-up in the two coupled tissue models as a

function of the number of simulation steps. The effect of varying the coupling frequency (nc: number of coupling steps per time step) on chemical levels summed over

the two models is demonstrated. Only at a sufficiently high number of coupling steps per time step (nc = 100) the total chemical levels converge to that of the

uncoupled situation (“Uncoupled”). This demonstrates that for this type of coupling (ExchangeCoupler) the coupling frequency has to be set sufficiently high to ensure

mass conservation. (B) Evolution of the chemical build-up in the respective models (labeled I and II) for different permeabilities [P = 1, 0.1, 0.01, 0 (length unit)/(time

unit); nc in all cases = 100], with higher rates leading to more equal distribution of the chemical.

Frontiers in Plant Science | www.frontiersin.org 6 May 2017 | Volume 8 | Article 686

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

FIGURE 6 | Chemical and length dynamics in a cross-platform simulation. In this coupled simulation a long range signal produced in the leaf is transported to

the root where it accumulates and induces growth. Through reverse transport of a second signal produced in the root, the first signal is feedback inhibited which

results in growth arrest. The first model (leaf) describes a static tissue with all cells producing a chemical (“0”) at a constant rate and degrading it proportional to the

concentration (first order decay). Chemical 0 (depicted by red graph and red tissue coloring) is transported (described by an equation describing first order passive

transport) to the tissue from the second (root) model. The root does not produce chemical 0, but accumulates it through the coupled transport. If a concentration

threshold is reached the root starts growing (dashed line). Simultaneously chemical 1 (depicted by blue graph and blue tissue coloring) is produced (and degraded) by

the root and is transported to the leaf (which does not produce that chemical). If a concentration threshold of chemical 1 is subsequently exceeded in the leaf, the

local production of chemical 0 is stopped. This eventually leads to growth arrest of the root through the same mechanism as before. Multiple feedback mechanisms

are therefore present. (A,B) Evolution of chemical concentrations in the leaf and root model, respectively, with snapshots of the tissues (at 30 and 90 simulation steps).

The full time evolution of the tissues is shown in Supplementary Video 1. More details can be found in the source code and user manual.

Concrete biological questions through the described
approaches for coupled simulations are diverse. For instance:
how does inter-organ transport of assimilates and hormones
affect leaf growth (e.g., Bhalerao et al., 2002; Ljung et al., 2015;
Notaguchi and Okamoto, 2015)? This could be tackled by
coupling an architectural plant model (functional-structural
plant model; Vos et al., 2010) of the shoot with a vertex-
based model of leaf growth in our framework (a starting leaf
model is already available). The most likely candidates for
exchange through the external (wrapper) interface are sugars
and hormones with the fluxes depending on the developmental
state of the respective organs. A direct internal coupling of
VPTissue based root and shoot models is feasible too (with
minerals and hormones as candidates for exchange). Another
possibility for internal coupling is to study the influence of
plant architecture (branching) on polar auxin transport (Bennett
et al., 2016). Stem segments could be coupled in a cell-based
way to exchange auxin. Some of these ideas are illustrated in
Figure 7.

Programming with Virtual Plant Tissue
Despite the extensive efforts to make the framework readable
and minimizing dependencies in the code, developers
adopting the platform will still need to spend some time
familiarizing with it. Basic tasks to master are adding models,
model components and model attributes to the code base.
Adding a model requires defining an input file as well as
some preferences files (in src/main/models/’model
family’/resources). One can copy an existing model
as the template, use an xml editor or use the Virtual Plant
Tissue Editor (see below) for that. New model component
files need to be added to src/main/models/’model

family’/components/’component type’. Each new
component also needs to be added to the local factories.h
and factories.cpp files and to the CMakeLists.txt file one level
higher. A convenient feature made possible through the Virtual
Plant Tissue code modularity is the possibility to define a
(meta-)component that uses other model components from
the same component type. For instance, one could define a
leaf growth model that contains different cell types such as
pavement or meristemoid cells. A cell division meta-component
could then simply refer to separate dedicated pavement and
meristemoid division modules without the need to combine
them and duplicate a lot of code. The steps for adding
an attribute depend on the type (belonging to simulation,
cell, wall, tissue, or node). Detailed help on programming
with Virtual Plant Tissue can be found in the user manual
(Chapter 7).

Models, Components, and Algorithmic
Choices
Diverse models are provided in the current Virtual Plant Tissue
distribution (some originally from VirtualLeaf). Several of them
are meant for demonstration or as a starting point for building
more advanced models, for instance to study phyllotactic
patterning (model based on Smith et al., 2006) and leaf venation
(with Meinhardt and AuxinGrowth models). Other models
correspond exactly to what was published, including root and
leaf models. They can also be used to study regulatory networks
involved in leaf and root growth. Some model simulation
snapshots can be seen in Supplementary Figure 2. The main
components defining a model are listed in Table 1 and can be
divided into biological and Monte Carlo mechanics modules.

Frontiers in Plant Science | www.frontiersin.org 7 May 2017 | Volume 8 | Article 686

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

FIGURE 7 | Biological applications for coupled simulations. Plants can

be considered as modular organisms developing as repetitions of

constructional units (Bell, 1991). This is utilized in functional-structural

modeling frameworks to simulate plant growth dynamics. The segment or

growth units typically have their own descriptive (non-mechanistic) growth

equations. Combining them can produce a realistic picture of whole plants

which can be set to grow in specific environmental conditions. (A–C) Illustrate

different options to benefit from this principle for coupled simulations with

Virtual Plant Tissue. (A) VPTissue’s internal interface enables pairwise chemical

exchange as represented by the arrows. For instance a root-stem coupling

could involve exchange of nutrients and hormones such as auxin and

cytokinin. (B) The external wrapper interface could regularly feed an

architectural model of the root with information on the size of the primary root

from a cellular root model growing in VPTissue. (C) A VPTissue model of the

growing leaf could have bidirectional exchange through the external (wrapper)

interface with an architectural model of the shoot simulated in an FSPM

framework. Depending on the developmental stage of the shoot and the leaf

transport of sugars, auxin or other signals could preferentially be directed in or

out of the VPTissue leaf. From the standpoint of the vertex-based leaf model,

the FSPM shoot model effectively becomes a dynamic boundary condition.

Shoot apical meristem models could also benefit from such an approach.

Thanks to the modularity of the Virtual Plant Tissue code a
new component type can be easily added and used by different
models or model versions. For the biological component types
cell_chemistry, wall_chemistry and cell2cell_transport the time
organization within each simulation time step is determined by
a differential equation solver. On the other hand, components
like cell_housekeep, cell_split and cell_daughters contain rules
that are evaluated only once per simulation step. For cell division
(cell_split) the options currently available are still the same as
in VirtualLeaf: cells divide into equal daughter cell areas based
on a pre-specified orientation of the division axis or a division
axis perpendicular to the cell’s axis of inertia (Merks et al.,
2011). For the mechanical components different options are now
available. The original Hamiltonian of VirtualLeaf is now called
“PlainGC” and uses the difference of absolute target cell areas
and actual cell areas (Merks et al., 2011). In the “ModifiedGC” the
relative differences of the cell areas are used which avoids terms
of larger cells to dominate the Hamiltonian (Supplementary

Figure 3).

Original : H = λA

∑

i

(

a(i)− AT(i)
)2

+ λM

∑

j

(

l(j)− LT(j)
)2
,

Modified : H = λA

∑

i

(

a(i)− AT(i)

a(i)

)2

+ λM

∑

j

(

l(j)− LT(j)
)2
,

where indices i and j sum over all cells and polygon edges,
respectively, λA is a parameter setting the cells’ resistance to
compression or expansion, and λM is a spring constant. AT

is the cell’s target area, LT the wall element target length.
The target length is constant and the same for all wall
elements (edges) and new nodes can be inserted as soon
as an edge reaches a critical length (“target_node_distance”).
In the Hamiltonian of the “ElasticWall” model the edge
length constraint is replaced by an elastic energy term and
each wall has its individual wall strength and its variable
rest length (specified in the xml data file). This provides
more flexibility to describe wall mechanics. The “Maxwell”
Hamiltonian additionally replaces the target area constraint
by a turgor pressure term in analogy with Corson et al.
(2009):

Maxwell : H = −
∑

cells

PS(i)+
Eh

2

∑

walls

l0(j)

(

l(j)

l0(j)
− 1

)2

.

With the elastic modulus, h the uniform wall thickness,
l(j) and l0(j) the actual and rest lengths of wall j,
respectively, the turgor pressure, and S(i) the area of
cell i.

Every time step each cell’s solute quantity and each wall’s rest
length are updated through the corresponding cell_housekeep
module. For the ElasticWall model irreversible wall extension
happens by increasing wall rest length by a constant fractional
amount if the actual wall length exceeds a threshold (for instance
if 50% higher than the rest length). In theMaxwell model the wall
rest length and solute concentration are updated according to
the solution of differential equations (Equations 2, 8) described
in Corson et al. (2009) as applied to one Virtual Plant Tissue
simulation time step. The repertoire of mechanical modules is
useful to investigate the influence of wall mechanics on organ
growth. A more concrete question is how differences in wall
mechanical properties and osmoregulation of different sections
of the maize leaf affect growth under abiotic stress conditions
such as drought (e.g., Dzhurakhalov et al., 2015b). The Maxwell
module is particularly suitable since, instead of the artificial
representation of wall yielding and turgor in VirtualLeaf, real
biophysical properties are used such as elasticity and viscosity.

Whereas, Virtual Plant Tissue offers the speed and flexibility
to develop more advanced models for cell wall mechanics, it
currently does not allow describing intracellular interactions
which potentially play a role in determining cell shape such as
those involving the cytoskeleton (Sampathkumar et al., 2014). To
describe such processes at high resolution Virtual Plant Tissue is
less suitable than finite element methods (e.g., Yanagisawa et al.,

Frontiers in Plant Science | www.frontiersin.org 8 May 2017 | Volume 8 | Article 686

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

2015) or a three-dimensional modeling framework (Boudon
et al., 2015).

In line with the modular simulation set-up diverse new
algorithmic options are available, like choices for the ODE solver
(www.boost.org), random number generators and distributions,
and Monte Carlo energy evaluation criteria. It is for instance
important for a (stochastic) modeling framework to evaluate the
influence of those choices on simulation output and to ensure
convergence of the Monte Carlo equilibration (Dzhurakhalov
et al., 2015a). For an overview of algorithmic options the reader
is referred to the user manual (Chapter 3). In the end all selected
model components are organized in a time evolution scheme
(time_evolver class). Virtual Plant Tissue provides different
readymade choices to the user. For instance selecting the
“VLeaf” evolver instead of the “VPTissue” evolver results in each
simulation time step terminating with the reaction and transport
steps instead of the fast elastic equilibration step.

Additional Features and Toolset
Simulations are organized into workspaces which consist of
projects (directories) comprising the initial data file, simulation
output preferences, and accumulated output files. Besides
running Virtual Plant Tissue via the command line a graphical
user interface is available for users. Figure 8 shows a Virtual Plant
Tissue screen shot open at a workspace with several projects
(left panel). The top right panel is used to access the workspace
preferences determining features such as which I/O viewers need
to be enabled, which color scheme should be used, etc. The
Parameters panel allows viewing and editing all configuration
parameters from the simulation. The Project Preferences panel
enables to overrule workspace preferences for a particular
project. The bottom panel provides a running log of a project that
is open. By virtue of a rigorous Model-View-Controller design
it is possible to attach and remove multiple viewers during a
running simulation to economize on computational resources.
Figure 9 shows a screenshot of the Qt viewer for the Geometric
project in Figure 8.

The simulator itself has functionality for converting between
XML, compressed XML or HDF5 data formats (Supplementary
File 1) and for post-processing simulation output in various
graphic (PLY, pdf, png, ...) or text (csv) formats. TheHDF5 format
allows data arrays (practically unlimited in size) to be easily
accessed, exchanged and analyzed (a plugin for the Paraview
visualization software is included in the source code, a dedicated
VPTissue HDF5 file reader for Python, is available on https://
pypi.python.org/pypi/PyPTS/0.2.4).

The Virtual Plant Tissue package comes with a toolset
comprising a graphical editor (simPT_editor) for XML files.
The Tissue Editor is a graphical editor for the Virtual Plant
Tissue mesh geometry, the cell, wall, and node attributes and the
model and simulation parameters (Figure 10). The application
constructs, reads and writes a full XML file, including simulation
parameters and mesh data. It is possible to load an image
that can be used as a template to draw cell meshed based
on microscopic images of plant tissue. Detailed information
on the graphical interface can be found in the user manual

FIGURE 8 | Screenshot of the Virtual Plant Tissue simulator started

with the simPT_Default_workspace containing 11 projects. Project

SmithPhyllotaxis is opened.

(src/doc/latex_user_man/UserManual.pdf,
Chapter 3).

Virtual Plant Tissue also comes with a parameter exploration
tool (simPT_parex) which allows running and monitoring
a parameter sweep calculation (with different sampling
strategies) on a compute server. After connecting to a
server one can start a new exploration or get details on a
running task. Several types of exploration can be started: in
sweep based explorations one parameter is varied based on
a range of values (e.g., Supplementary Figure 4), template
based exploration allows varying several parameters at once
with a csv file that specifies the parameter combinations.
More detailed information can be found in the user manual
(src/doc/latex_user_man/UserManual.pdf, Chapter
4, Data Sheet 2).

The build and installation process is tailored to rapid
identification of compilation/installation/run-time errors with a
high level of abstraction and platform independence allowing
easy compilation on Linux, Windows, and MacOS systems.
Code documentation is partly automated [the Application

Frontiers in Plant Science | www.frontiersin.org 9 May 2017 | Volume 8 | Article 686

http://www.boost.org
https://pypi.python.org/pypi/PyPTS/0.2.4
https://pypi.python.org/pypi/PyPTS/0.2.4
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

FIGURE 9 | Screenshot of the Virtual Plant Tissue Qt viewer for the

Geometric project in the workspace of Figure 8.

Programming Interface (API) documentation in the reference
manual is generated via doxygen (www.doxygen.org)].

DISCUSSION

The Virtual Plant Tissue project grew out of contacts with the
authors of the established plant modeling framework VirtualLeaf
(Merks et al., 2011). Whereas, in many ways it is an offspring
of VirtualLeaf, in other ways it is new and state-of-the-art. It
has a totally new codebase (C++11), takes advantage of the
multi-core architecture of present day systems and is current
in its use of libraries (e.g., Qt4 and Qt5). Moreover, it offers
new, biologically relevant features: newmodels, dynamic models,
coupled simulations, and a practical toolset with a tissue editor
and parameter exploration tool, which should especially appeal
to the aspirant modeler. Thanks to the third party Boost library
the ptree data structure was introduced which comes with
improved input-output capabilities like the use of HDF5 data files
which for instance allows data processing with the open source
high performance data analysis and visualization application
Paraview or with the in house PyPTS toolset. A flexible post-
processing feature is also available through the graphical user
interface.

A multiscale perspective that focuses on the interplay
between cellular and macroscopic studies is expected to become
increasingly important for plant biology. Virtual Plant Tissue
was specifically developed aiming at modularity, and inter-
operability, features which are considered to be important to

support modeling efforts in that respect (Baldazzi et al., 2012).
With modularity we mean the structuring of code such that it
consists of conceptually and functionally coherent entities which
have clean and minimal interfaces. This increases readability,
facilitates troubleshooting and improves extensibility. In the
case of Virtual Plant Tissue this modularity makes it is easier
to add new models or model components, as well as to re-
use them. It also promotes standardization of models within
the framework and facilitates unit testing strategies. Moreover,
since the model components are themselves parameters in the
input data files, which can be altered during simulation, the
model composition can be dynamic in time. Furthermore, any
model component can also be built up by reference to other
components (a meta-component so to speak) in which case
model building does start to look like brick laying. This feature
is not available in most other open source plant modeling
frameworks. Even in modular frameworks such as the Python
based OpenAlea this is less straightforward due to the absence
of clean interfaces. Virtual Plant Tissue, like VV or Organism,
is written in C++ which remains the standard for scientific
computing software due to its performance, robustness to run-
time errors, and parallelizability (Barton and Nackman, 1994;
Stroustrup, 2013). The easy (parameter dependent) availability of
the Boost repertoire of random number generators is especially
useful for a (hybrid) stochastic simulator if multiple (parallel)
independent runs are required. If we take inter-operability
to be the ability for different applications to exchange data
and interact, then a number of issues occur. First of all,
the diversity of software for plant simulation leads to models
implemented in different languages, with different conceptual
designs and data representations. Cross-compatibility of software
in different environments can also be an issue. Virtual Plant
Tissue represents two novel types of solutions. Firstly, an
internal interface allows model simulations defined in Virtual
Plant Tissue to be coupled in a direct way. A so called
boundary condition coupler is provided which uses an extra
input file specifying which cells of the respective models are
interacting via the internal memory. This solution avoids the
above issues, at the cost of possible reimplementation in Virtual
Plant Tissue. In this way static boundary conditions, as found
in many models, can be replaced by dynamic models. The
second solution consists of a so called wrapper class with a
limited set of interaction methods which provides an external
coupling interface for other applications developed in C++,
Java, or Python. The glue code is already present in the Virtual
Plant Tissue code base. In this case, only some light re-
engineering of both models will be required but not a full re-
implementation. A concrete and potentially useful application
could be to couple Virtual Plant Tissue based mechanistic tissue
growth models (like a root tip or a leaf) to the corresponding
parts of a functional-structural plant model (for instance from
OpenAlea).

We have already discussed above some limitations of Virtual
Plant Tissue. Unlike lattice based models (Grieneisen et al.,
2007; Mähönen et al., 2014) or vertex-based models with cell
partitioning (Abley et al., 2013) intracellular hormone gradients
or other subcellular phenomena (like cell compartments which

Frontiers in Plant Science | www.frontiersin.org 10 May 2017 | Volume 8 | Article 686

http://www.doxygen.org
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

FIGURE 10 | Screenshot of tissue editor window with the attribute panel and geometric panel to the right. The Node, Edge, and Cell mode selection

buttons are on the top left of the window. These buttons enable type-specific operations like node movement, edge insertion, cell creation, etc. (details can be found

in the user manual).

can affect hormone availability; e.g., Band et al., 2012) cannot be
described yet with Virtual Plant Tissue. Unlike OpenAlea which
can offer a so called visual programming environment (VPE),
model implementation in Virtual Plant Tissue requires C++

programming skills. Obviously, no three-dimensional tissue
representations can be done. At this point parallelisation of the
simulator is not available as an option yet, but this is envisaged
for the next release.

AUTHOR CONTRIBUTIONS

All authors made substantial contributions to the conception,
design or analysis of the work. All authors contributed to
drafting and revising the work, final approval of the version to
be published, and are accountable for all aspects of the work,
ensuring that questions related to the accuracy or integrity
of any part of the work are appropriately investigated and
resolved.

FUNDING

This work was supported by a concerted research activity grant
(GOA) “A Systems Biology Approach of Leaf Morphogenesis” of
the University of Antwerp. DDV was supported by the Belgian
Science Policy Office by a MARS Inter University Attraction
Poles project (IAP7/29). SS was supported by an IWT grant.

ACKNOWLEDGMENTS

We thank Roeland Merks for fruitful discussions regarding this
work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpls.2017.
00686/full#supplementary-material

Frontiers in Plant Science | www.frontiersin.org 11 May 2017 | Volume 8 | Article 686

http://journal.frontiersin.org/article/10.3389/fpls.2017.00686/full#supplementary-material
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

REFERENCES

Abley, K., De Reuille, P. B., Strutt, D., Bangham, A., Prusinkiewicz, P.,
Marée, A. F., et al. (2013). An intracellular partitioning-based framework
for tissue cell polarity in plants and animals. Development 140, 2061–2074.
doi: 10.1242/dev.062984

Allen, M. T., Prusinkiewicz, P., and DeJong, T. M. (2005). Using L-
systems for modeling source-sink interactions, architecture and physiology
of growing trees: the L-PEACH model. New Phytol. 166, 869–880.
doi: 10.1111/j.1469-8137.2005.01348.x

Baldazzi, V., Bertin, N., de Jong, H., and Génard, M. (2012). Towards multiscale
plant models: integrating cellular networks. Trends Plant Sci. 17, 728–736.
doi: 10.1016/j.tplants.2012.06.012

Band, L. R., Úbeda-Tomás, S., Dyson, R. J., Middleton, A. M., Hodgman, T. C.,
Owen, M. R., et al. (2012). Growth-induced hormone dilution can explain
the dynamics of plant root cell elongation. Proc. Natl. Acad. Sci. U.S.A. 109,
7577–7582. doi: 10.1073/pnas.1113632109

Barton, J. J., and Nackman, L. R. (1994). Scientific and Engineering C++, An

Introduction with Advanced Techniques and Examples. Reading, MA: Addison
Wesley.

Bell, A. (1991). Plant Form. An Illustrated Guide to flowering Plant Morphology.
Oxford: Oxford University Press.

Bennett, T., Hines, G., van Rongen, M., Waldie, T., Sawchuk, M. G.,
Scarpella, E., et al. (2016). Connective auxin transport in the shoot
facilitates communication between shoot apices. PLoS Biol. 14:e1002446.
doi: 10.1371/journal.pbio.1002446

Bhalerao, R. P., Eklöf, J., Ljung, K., Marchant, A., Bennett, M., and
Sandberg, G. (2002). Shoot-derived auxin is essential for early
lateral root emergence in Arabidopsis seedlings. Plant J. 29, 325–332.
doi: 10.1046/j.0960-7412.2001.01217.x

Boudon, F., Chopard, J., Ali, O., Gilles, B., Hamant, O., Boudaoud, A., et al.
(2015). A computational framework for 3D mechanical modeling of plant
morphogenesis with cellular resolution. PLoS Computat. Biol. 11:e1003950.
doi: 10.1371/journal.pcbi.1003950

Corson, F., Hamant, O., Bohn, S., Traas, J., Boudaoud, A., and Couder, Y. (2009).
Turning a plant tissue into a living cell froth through isotropic growth. Proc.
Natl. Acad. Sci. U.S.A. 106, 8453–8458. doi: 10.1073/pnas.0812493106

De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E., Novák,
O., et al. (2014). Plant development. Integration of growth and patterning
during vascular tissue formation in Arabidopsis. Science 345:1255215.
doi: 10.1126/science.1255215

De Vos, D., De Borger, E., Broeckhove, J., and Beemster, G. (2015).
Simulating leaf growth dynamics through Metropolis-Monte Carlo based
energy minimization. J. Comput. Sci. 9, 107–111. doi: 10.1016/j.jocs.2015.
04.026

De Vos, D., Dzhurakhalov, A., Draelants, D., Bogaerts, I., Kalve, S., Prinsen, E.,
et al. (2012). Towards mechanistic models of plant organ growth. J. Exp. Bot.
63, 3325–3337. doi: 10.1093/jxb/ers037

De Vos, D., Vissenberg, K., Broeckhove, J., and Beemster, G. T. (2014). Putting
theory to the test: which regulatory mechanisms can drive realistic growth of a
root? PLoS Comput. Biol. 10:e1003910. doi: 10.1371/journal.pcbi.1003910

Draye, X., and Pagès, L. (2007). “Cross Talk: a simulation platform for the
linking of existing soil, plant and atmosphere models,” in PMA06: Second

International Symposium on Plant Growth Modeling, Simulation, Vizualization

and Applications, eds T. Fourcaud and X.-P. Zhang (Los Alamitos, CA: IEEE
Computer Society), 93–100.

Dupuy, L., Mackenzie, J., Rudge, T., and Haseloff, J. (2008). A system for modelling
cell-cell interactions during plant morphogenesis. Ann. Bot. 101, 1255–1265.
doi: 10.1093/aob/mcm235

Dzhurakhalov, A., Avramova, V., Vissenberg, K., Beemster, G. T. S., and
Broeckhove, J. (2015b). Modelling the cell expansion in maize leaf. Commun.

Agric. Appl. Biol. Sci. 80, 103–109.
Dzhurakhalov, A., De Vos, D., Broeckhove, J., and Beemster, G. T. S. (2015a).

Monte Carlo parameterization in the VirtualLeaf framework. J. Phys. Conf. Ser.
640:012012. doi: 10.1088/1742-6596/640/1/012012

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns:

Elements of Reusable Object-Oriented Software. Boston, MA: Addison-Wesley
Longman Publishing Co., Inc.

Grieneisen, V. A., Xu, J., Marée, A. F., Hogeweg, P., and Scheres, B.
(2007). Auxin transport is sufficient to generate a maximum and
gradient guiding root growth. Nature 449, 1008–1013. doi: 10.1038/
nature06215

Hemmerling, R., Kniemeyer, O., Lanwert, D., Kurth, W., and Buck-Sorlin, G.
(2008). The rule-based language XL and the modelling environment GroIMP
illustrated with simulated tree competition. Funct. Plant Biol. 35, 739–750.
doi: 10.1071/FP08052

Hodgman, T. C., and Ajmera, I. (2015). The successful application of
systems approaches in plant biology. Prog. Biophys. Mol. Biol. 117, 59–68.
doi: 10.1016/j.pbiomolbio.2015.01.002

Kalve, S., De Vos, D., and Beemster, G. T. (2014). Leaf development: a cellular
perspective. Front. Plant Sci. 5:362. doi: 10.3389/fpls.2014.00362

Kniemeyer, O. (2008). Design and Implementation of a Graph Grammar Based

Language for Functional-Structural Plant Modelling. Dissertation, Technische
Universität Cottbus.

Kramer, E. M. (2008). Computer models of auxin transport: a review and
commentary. J. Exp. Bot. 59, 45–53. doi: 10.1093/jxb/erm060

Krecek, P., Skupa, P., Libus, J., Naramoto, S., Tejos, R., Friml, J., et al. (2009).
The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol.

10:249. doi: 10.1186/gb-2009-10-12-249
Ljung, K., Nemhauser, J. L., and Perata, P. (2015). New mechanistic links between

sugar and hormone signalling networks. Curr. Opin. Plant Biol. 25, 130–137.
doi: 10.1016/j.pbi.2015.05.022

Mähönen, A. P., ten Tusscher, K., Siligato, R., Smetana, O., Díaz-Triviño, S.,
Salojärvi, J., et al. (2014). PLETHORA gradient formationmechanism separates
auxin responses. Nature 515, 125–129. doi: 10.1038/nature13663

Meinhardt, H., Koch, A. J., and Bernasconi, G. (1998). “Models of pattern
formation applied to plant development,” in Symmetry in Plants,

eds D. Barabe and R. Jean (Singapore: World Scientific Publishing),
723–758.

Merks, R. M., Guravage, M., Inzé, D., and Beemster, G. T. (2011). VirtualLeaf: an
open-source framework for cell-based modeling of plant tissue growth
and development. Plant Physiol. 155, 656–666. doi: 10.1104/pp.110.
167619

Merks, R. M., Van de Peer, Y., Inzé, D., and Beemster, G. T. (2007). Canalization
without flux sensors: a traveling-wave hypothesis.Trends Plant Sci. 12, 384–390.
doi: 10.1016/j.tplants.2007.08.004

Mjolsness, E. (2006). The growth and development of some recent plant models:
a viewpoint. J. Plant Growth Regul. 25, 270–277. doi: 10.1007/s00344-006-
0069-7

Notaguchi, M., and Okamoto, S. (2015). Dynamics of long-distance signaling
via plant vascular tissues. Front. Plant Sci. 6:161. doi: 10.3389/fpls.2015.
00161

Pradal, C., Dufour-Kowalski, S., Boudon, F., Fournier, C., and Godin, C. (2008).
OpenAlea: A visual programming and component-based software platform for
plant modeling. Funct. Plant Biol. 35, 751–760.

Proseus, T. E., Ortega, J. K. E., and Boyer, J. S. (1999). Separating growth
from elastic deformation during cell enlargement. Plant Physiol. 119:775.
doi: 10.1104/pp.119.2.775

Prusinkiewicz, P. (2004). Art and science for life: designing and
growing virtual plants with L-systems. Acta Hortic. 630, 15–28.
doi: 10.17660/ActaHortic.2004.630.1

Sampathkumar, A., Yan, A., Krupinski, P., and Meyerowitz, E. M. (2014).
Physical forces regulate plant development and morphogenesis. Curr. Biol. 24,
R475–R483. doi: 10.1016/j.cub.2014.03.014

Shapiro, B. E., Meyerowitz, E. M., and Mjolsness, E. (2013). Using cellzilla
for plant growth simulations at the cellular level. Front. Plant Sci. 4:408.
doi: 10.3389/fpls.2013.00408

Smith, R. S., Guyomarch, S., Mandel, T., Reinhardt, D., Kuhlemeier, C., and
Prusinkiewicz, P. (2006). A plausible model of phyllotaxis. Proc. Natl. Acad.
Sci. U.S.A. 103, 1301–1306. doi: 10.1073/pnas.0510457103

Stroustrup, B. (2013). The C++ Programming Language, 4th Edn. Upper Saddle
River, NJ: Addison-Wesley.

van Mourik, S., Kaufmann, K., van Dijk, A. D., Angenent, G. C., Merks,
R. M., and Molenaar, J. (2012). Simulation of organ patterning on the
floral meristem using a polar auxin transport model. PLoS ONE 7:e28762.
doi: 10.1371/journal.pone.0028762

Frontiers in Plant Science | www.frontiersin.org 12 May 2017 | Volume 8 | Article 686

https://doi.org/10.1242/dev.062984
https://doi.org/10.1111/j.1469-8137.2005.01348.x
https://doi.org/10.1016/j.tplants.2012.06.012
https://doi.org/10.1073/pnas.1113632109
https://doi.org/10.1371/journal.pbio.1002446
https://doi.org/10.1046/j.0960-7412.2001.01217.x
https://doi.org/10.1371/journal.pcbi.1003950
https://doi.org/10.1073/pnas.0812493106
https://doi.org/10.1126/science.1255215
https://doi.org/10.1016/j.jocs.2015.04.026
https://doi.org/10.1093/jxb/ers037
https://doi.org/10.1371/journal.pcbi.1003910
https://doi.org/10.1093/aob/mcm235
https://doi.org/10.1088/1742-6596/640/1/012012
https://doi.org/10.1038/nature06215
https://doi.org/10.1071/FP08052
https://doi.org/10.1016/j.pbiomolbio.2015.01.002
https://doi.org/10.3389/fpls.2014.00362
https://doi.org/10.1093/jxb/erm060
https://doi.org/10.1186/gb-2009-10-12-249
https://doi.org/10.1016/j.pbi.2015.05.022
https://doi.org/10.1038/nature13663
https://doi.org/10.1104/pp.110.167619
https://doi.org/10.1016/j.tplants.2007.08.004
https://doi.org/10.1007/s00344-006-0069-7
https://doi.org/10.3389/fpls.2015.00161
https://doi.org/10.1104/pp.119.2.775
https://doi.org/10.17660/ActaHortic.2004.630.1
https://doi.org/10.1016/j.cub.2014.03.014
https://doi.org/10.3389/fpls.2013.00408
https://doi.org/10.1073/pnas.0510457103
https://doi.org/10.1371/journal.pone.0028762
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

De Vos et al. VPTissue for Modular Plant Growth Simulation

Vos, J., Evers, J. B., Buck-Sorlin, G. H., Andrieu, B., Chelle, M., and de Visser, P.
H. (2010). Functional-structural plant modelling: a new versatile tool in crop
science. J. Exp. Bot. 61, 2101–2115. doi: 10.1093/jxb/erp345

Wabnik, K., Kleine-Vehn, J., Balla, J., Sauer, M., Naramoto, S., Reinöhl, V.,
et al. (2010). Emergence of tissue polarization from synergy of intracellular
and extracellular auxin signaling. Mol. Syst. Biol. 6:447. doi: 10.1038/msb.
2010.103

Yanagisawa, M., Desyatova, A. S., Belteton, S. A., Mallery, E. L., Turner, J. A.,
and Szymanski, D. B. (2015). Patterning mechanisms of cytoskeletal and
cell wall systems during leaf trichome morphogenesis. Nat. Plants 1:15014.
doi: 10.1038/nplants.2015.14

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 De Vos, Dzhurakhalov, Stijven, Klosiewicz, Beemster and

Broeckhove. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) or licensor are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 13 May 2017 | Volume 8 | Article 686

https://doi.org/10.1093/jxb/erp345
https://doi.org/10.1038/msb.2010.103
https://doi.org/10.1038/nplants.2015.14
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive

	Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation
	Introduction
	Methods
	Results
	Basic Geometry and Simulation Logic
	Modularity at Multiple Levels
	Programming with Virtual Plant Tissue
	Models, Components, and Algorithmic Choices
	Additional Features and Toolset

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

