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Sudan grass (Sorghum sudanense) is an annual warm-season gramineous forage grass
that is widely used as pasture, hay, and silage. However, drought stress severely
impacts its yield, and there is limited information about the mechanisms of drought
tolerance in Sudan grass. In this study, we used next-generation sequencing to identify
differentially expressed genes (DEGs) in the Sudan grass variety Wulate No.1, and we
developed simple sequence repeat (SSR) markers associated with drought stress. From
852,543,826 raw reads, nearly 816,854,366 clean reads were identified and used for
analysis. A total of 80,686 unigenes were obtained via de novo assembly of the clean
reads including 45,065 unigenes (55.9%) that were identified as coding sequences
(CDSs). According to Gene Ontology analysis, 31,444 unigenes were annotated, 11,778
unigenes were identified to 25 categories in the clusters of orthologous groups of proteins
(KOGQ) classification, and 11,223 unigenes were assigned to 280 Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways. Additionally, there were 2,329 DEGs under a
short-term of 25% polyethylene glycol (PEG) treatment, while 5,101 DEGs were identified
under the long-term of 25% PEG treatment. DEGs were enriched in pathways of carbon
fixation in photosynthetic organisms and plant hormone signal transduction which played
a leading role in short-term of drought stress. However, DEGs were mainly enriched
in pathway of plant hormone signal transduction that played an important role under
long-term of drought stress. To increase accuracy, we excluded all the DEGs of all
controls, specifically, five DEGs that were associated with high PEG concentrations were
found through RNA-Seq. All five genes were up-regulated under drought stress, but the
functions of the genes remain unclear. In addition, we identified 17,548 SSRs obtained
from 80,686 unigenes. The newly identified drought tolerance DEGs will contribute to
transgenic breeding efforts, while SSRs developed from high-throughput transcriptome
data will facilitate marker-assisted selection for all traits in Sudan grass.

Keywords: Sudan grass, next-generation sequencing, differentially expressed genes, simple sequence repeat
markers, PEG
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INTRODUCTION

Global climate change has increased the incidence of drought
worldwide across successive years (Shanker et al., 2014), and
it has had many negative effects on plant growth such as leaf
rolling, growth inhibition, and death (Mutisya et al., 2010), thus
severely affecting agriculture. Sudan grass (Sorghum sudanense)
is an annual warm-season gramineous forage grass (Smith et al.,
1982; Zhan et al., 2008). Because of its favorable yield, superior
value, fast regrowth, superior disease, and pest resistance, and
tolerance to abiotic stress, Sudan grass is widely grown in pastures
and used as hay and silage throughout the world (Rangaswami
Ayyangar and Ponnaiya, 1939; Summer et al., 1965; Zamfir et al.,
2001; Al-Suhaibani, 2006). It is distributed throughout China as
a typical grass for livestock, aquaculture foods, and protecting
fishing ponds (Wei et al., 2008; Chen et al., 2009), especially in
arid and semiarid regions (Awad et al., 2013). However, exposure
to drought stress for long time periods can affect forage yield
and quality. Bibi et al. (2010) showed that drought stress could
decrease Sudan grass yields. Therefore, it is important to study
drought tolerance mechanisms in Sudan grass.

Drought stress causes osmotic and oxidative stress, which
decreases membrane stability, leading to cell death (Wang et al.,
2003). In order to cope with drought stress, plants have developed
comprehensive mechanisms such as metabolic alteration, signal
transduction, and differential gene expression (Shanker et al.,
2014). Although various breeding approaches have been used
to alleviate damage caused by drought stress in plants, genetic
engineering has been more effective than other approaches.
However, genetic engineering requires identifying genes with
expression patterns regulated by drought stress.

The next-generation sequencing (NGS) technique known
as RNA sequencing (RNA-Seq) is a cost-efficient tool for
sequencing the full transcriptomes of both model and non-
model species. RNA-Seq has been successfully used in many
plants such as Brachypodium sylvaticum (Fox et al, 2013),
Sorghum sudanense (Li et al., 2016), sugarcane (Cardoso-Silva
et al., 2014), pepper (Ashrafi et al., 2012), orchardgrass (Huang
et al., 2015), Hemarthria (Huang X. et al., 2016), and annual
ryegrass (Pan et al., 2016). Transcriptome data has been used
in biological studies worldwide in order to better understand
biological processes (Surget-Groba and Montoya-Burgos, 2010),
and it has especially been applied to studying the responses
of gene expression to various stresses (Kreps et al, 2002).
Shinozaki and Yamaguchi-Shinozaki (2007) reported that plants
transformed with drought-inducible genes exhibited improved
stress tolerance. Similarly, Ashraf (2010) noted that some genes
are overexpressed, thereby inducing damage caused by drought
stress, which are thus well utilized to improve the tolerance
of plants to drought stress. However, effectively no published
reports have used RNA-Seq to analyze the regulation of gene
expression by the drought stress in Sudan grass.

Marker-assisted selection (MAS) breeding is as important
as genetic engineering (Ashraf, 2010). SSRs (simple sequence
repeats), AFLPs (amplified fragment length polymorphisms),
RAPDs (randomly amplified polymorphic DNAs), and RFLPs
(restriction fragment length polymorphisms) have been used

as efficient markers to analyze genetic diversity (Billot et al,
2013). Because SSRs are highly polymorphic and adaptable across
species, many researchers have used them to examine genetic
diversity (Smith et al., 2000; Menz et al., 2002; Geleta et al., 2006),
construct genetic maps (Wu and Huang, 2006), investigate the
genetic relationships among populations (Ali et al., 2008), and
identify quantitative trait loci (QTLs) for important agronomic
traits (Sanchez et al., 2002; Mace and Jordan, 2011; Wang et al,,
2012; Upadhyaya et al., 2012). However, few SSR markers have
been developed for use in Sudan grass.

In this study, we used RNA-Seq, a powerful NGS-based
technique, to study transcription profiles of Sudan grass. The
main goals of this study were (1) to develop SSR markers
associated with drought-tolerance genes in the Sudan grass
variety Wulate No. 1 and (2) to identify differently expressed
genes (DEGs) under drought stress. This study provides more
information about the molecular mechanisms of drought stress in
Sudan grass, thereby contributing to future transgenic breeding
efforts in addition to providing markers for MAS.

MATERIALS AND METHODS

Plant Material and RNA Isolation

Seeds of the Sudan grass variety Wulate No.1 (Barenbrug Co.,
Chengdu, China) were sown in sand-culture pots that were
placed in controlled growth champers set to 25°C for 12-h days
and 22°C for 12-h nights. After seeds had germinated in water,
1/2 strength Hoagland’s solution was used to cultivate seedlings.
After 20 days, seedlings were subjected to polyethylene glycol
(PEG) stress as a means of inducing drought stress. The plants
were divided into two treatments: (1) plants in three pots (three
replicates) were subjected to 25% PEG dissolved in 1/2 strength
Hoagland’s solution (drought stress); (2) the other three pots
were subjected to just 1/2 strength Hoagland’s solution (control).
The leaves were harvested at 0, 3, and 6 days and stored in a
—80°C freezer prior to RNA extraction.L_0_1,L_3_1,andL_6_1
were non-stressed controls that were collected at 0, 3, and 6 day,
respectively. L_3_2 and L_6_2 were drought-stressed treatments
that were collected at 3 and 6 day, respectively. Therefore, 5
treatments were set and each treatment had 3 replicates. A total
of 15 samples were collected for RNA sequencing.

Total RNA was extract from leaves using the RNeasy
Plant Mini Kit (Qiagen, Valencia, CA, USA) according to
the manufacturer’s instructions and then loaded onto and
electrophoresed through a 1% agarose gel to check the
degradation and contamination of the RNA (Figure1). The
quantity, concentration, and quality of the total RNA were
examined using an RNA Nano 6000 kit for the Agilent 2100
Bioanalyzer 2100 System (Agilent Technologies, CA, USA). The
integrity of the RNAs is shown in Figure 2.

Preparation and Sequencing of the cDNA
Library

We used 3 pg of RNA per sample as genetic material for
preparation, and mRNAs were purified from total RNA using
poly-T oligo-attached magnetic beads. These fragments were
used as templates in a reaction carried out by divalent cations
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the three replicates of Wulate No.1 at 6 day in 25% PEG.

FIGURE 1 | RNA validation of Sudan grass samples by 1% agarose gel electrophoresis. M represents the marker, lanes 1-3 correspond to the three
replicates of Wulate No.1 at 0 day in 0% PEG, lanes 4-6 correspond to the three replicates of Wulate No.1 at 3 day in 0% PEG, lanes 7-9 correspond to the three
replicates of Wulate No.1 at 3 day in 25% PEG, lanes 10-12 correspond to the three replicates of Wulate No.1 at 6 day in 0% PEG, and lanes 13-15 correspond to

1IN T 12 15

in a NEBNext First Strand Synthesis Reaction Buffer (5x; New
England BioLabs, Ipswitch, MA, USA). The first cDNA strand
was synthesized using random hexamer primers and transcribed
with RNase H™. The second strand cDNA was synthesized
using DNA polymerase I and RNase H. NEBNext Adaptor (New
England BioLabs) were prepared for hybridization after blunt 3’
ends were cut via exonuclease/polymerase activities. Then, we
purified cDNA with the AMPure XP system (Beckman Coulter,
Brea, CA USA) to select 150-200 bp fragments. The products
were generated using 3 pL of USER Enzyme (New England
BioLabs) size-selected for adaptor-ligated cDNA at 37°C for 15
min followed by 5 min at 95°C and amplified via PCR using
Universal PCR primers and index(X) primers. The PCR was
performed using Phusion High-Fidelity DNA polymerase (New
England BioLabs). Before PCR product sequencing, samples
were index-coded for clustering under the TruSeq PE Cluster
Kit v3-cBot-HS (Illumia, San Diego, CA, USA). Finally, the
amplified products were purified using the AMPure XP system,
and library quality was assessed on the Agilent Bioanalyzer
2100 system (Agilent Technologies, Santa Clara, CA, USA)
to create the final cDNA libraries. Sequencing libraries were
generated using NEBNext® Ultra™ RNA Library Prep Kit for
Ilumina® (New England BioLabs) following the manufacturer’s
recommendations. In total, there were 15 cDNA libraries were
constructed of Sudan grass.

Data Analysis

The sequencing-derived image data were transformed into raw
reads. To ensure high quality transcriptomic data, the raw
reads were cleaned using in-house Perl scripts that remove
adapter sequences, poly-N repeats, and low quality reads, whilst
calculating the Q20, Q30, GC-content, and sequence duplication
level of the clean data. The cleaned reads were then assembled by
Trinity (Grabherr et al., 2011) with min_kmer_cov set to 2 as a
default, and all other parameters used default settings.

The assembled sequences were BLASTed against NR (NCBI
non-redundant protein sequences, NCBI blast 2.2.28+-, e-value
= le-5), NT (NCBI non-redundant nucleotide sequences,
NCBI blast 2.2.28+, e-value = le-5), PFAM (Protein family,
HMMER 3.0 package, hmmscan e-value = 0.01), KOG/COG

(Clusters of Orthologous Groups of proteins, NCBI blast
2.2.284, e-value = le-3), Swiss-Prot (a manually annotated and
reviewed protein sequence database, NCBI blast 2.2.28+, e-
value = le-5), KO (KEGG Ortholog database, KAAS [KEGG
Automatic Annotation Server], e-value = le-10), and GO (Gene
Ontology, Blast 2 GO v2.5, e-value = 1le-6; Gotz et al., 2008)
databases to determine gene functions of differentially expressed
transcripts. Then, we predicted the coding sequences (CDSs) of
the assembled unigenes in NR and Swiss-Prot. When similar
unigenes were identified, the CDSs were translated into amino
acid sequences later and open reading frames (ORFs) were
extracted from the results; alternatively, ESTScan (3.0.3) was used
to predict ORFs.

Analysis and Mapping of DEG Reads and

Differential Gene Expression

Before mapping clean reads onto the reference genome with
RSEM (Li and Dewey, 2011), the assembled Trinity transcript
data was regarded as the reference sequence. The bowtie 2
mismatch parameter in RSEM was set to 0. The quantity of
read counts for all genes was obtained from the mapping
results and then normalized by FPKM (expected number of
fragments per kilobase of transcript sequence per millions base
pairs sequenced; Trapnell et al.,, 2010). Differential expression
analysis of each sample was performed using the DESeq R
package (1.10.1). DESeq provides statistical routines for detecting
genes exhibiting differential expression with a negative binominal
distribution model (Anders and Huber, 2010). To ensure the
accuracy of the P-values, Benjamini and Hochbergs approach
was used to control the false discovery rate (FDR), after which
a P < 0.05 threshold was used to classify genes as differentially
expressed. All DEGs were subjected to GO enrichment analysis.
To adjust for gene length, a Wallenius non-central hyper-
geometric distribution (Young et al., 2010) was applied in the
GO enrichment analysis using the GOseq R package (Young
et al.,, 2010). Next, KOBAS 2.0 (Mao et al., 2005) was utilized
to test the statistical enrichment of DEGs in KEGG pathways, a
database resource for understanding high-level functions within
biological systems (Kanehisa et al., 2008). In KOBAS 2.0, a FDR
<0.05 threshold was used for remarkable enrichment pathways,
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three replicates at day 6 in 25% PEG.

FIGURE 2 | Sudan grass RNA sample quality. The labeling scheme for
each of the Wulate No.1 RNA samples is as follows: L-0d-1 through L-0d-3,
the three replicates at day 0 in 0% PEG; L-3d(ck)-1 through L-3d(ck)-3, the
three replicates at day 3 in 0% PEG; L-3d(T)-1 through L-3d(T)-3, the three
replicates at day 3 in 25% PEG; L-6d(ck)-1 through L-6d(ck)-3, the three
replicates at day 6 in 0% PEG; and L-6d(T)-1 through L-6d(T)-3, the

and the FDR parameter was set as BH in KOBAS 2.0. Finally,
blastx was used to search the genome of a related species in the
string database with the DEG sequences in order to obtain the
protein—protein interactions. The results were then visualized in
Cytoscape (Shannon et al., 2003).

SSR Detection and Primer Design

In order to identify and locate SSRs (Simple Sequence Repeats)
from the unigenes, MISA 1.0 was used. It detected SSRs according
to the following unit size and minimum repeat parameters: 1-
10, 2-6, 3-5, 4-5, 5-5, and 6-5. SSR primers were designed using
PRIMER 3 (2.3.4) with the following parameters: length range,
18-23, with 21 as optimal; PCR product size range, 100-300
bp; optimum annealing temperature, 55°C; and GC content,
40-60%, with 50% as optimal.

Survey of SSR Polymorphism

A total of 20 Sudan grass and sorghum accessions were used to
identify SSR markers. We randomly chose 30 SSR primers to
evaluate their polymorphism. DNA extractions were performed
using the DNeasy Plant Mini Kit (Qiagen) from leaves of the 20
Sudan grass and sorghum accessions. PCR amplifications were
conducted in a total reaction volume of 15 wL containing 1.5 L
of DNA, 0.5 L of Golden DNA Polymerase (TTANGEN Biotech,
Beijing, China), 7.5 pL of 2x Reaction Mix (TTANGEN), 0.6 pL
of each primer, and 4.4 pL of ddH,O. The PCR reaction cycling
profile was 94°C for 4 min followed by 35 cycles at 94°C for 40 s,
55-60°C for 40 s, 72°C for 1 min, and a final extension at 72°C for
10 min. PCR products were separated via gel electrophoresis on
a 6% denaturing polyacrylamide gels at 350 V for 1 h alongside a
50-bp DNA marker used to assess product lengths. Then, we used
0.1% AgNOj3 to stain the gel. Well amplified loci were identified
using Gel Doc™ XR (Bio-Rad Laboratories Inc., Hercules, CA,
USA).

RESULTS AND DISCUSSION

Sequence Analysis and Transcript
Assembly

Replicate c¢DNA libraries from Sudan grass leaf samples
of plants grown under drought and control treatments
(Supplementary Image 1) were constructed and sequenced on
the Illumina HiSeq 2000 platform. A total of 852,543,826 raw
reads were generated, and they have been deposited in the NCBI
(National Center for Biotechnology Information) Short Read
Archive (SRA: SRP095822). A total of 816,854,366 clean reads
were identified after trimming adapters and filtering out low
quality reads (Table 1). Using Trinity to further assemble the
sequences, we obtained 149,395 contigs with a mean length of
1,386 bp, N50 of 2,366, and lengths of 201-24,422 bp, amounting
to a total of 207,118,332 bp (Figure 3). The contigs were further
assembled into 80,686 unigenes with a mean length of 938 bp
and N50 of 1847 across a total of 75,697,479 bp (Figure 3). There
are few Sudan grass ESTs in NCBI databases; however, Li et al.
(2010) and Lu et al. (2009) used ESTs from Sorghum bicolor to
explore SSRs in Sudan grass. Thus, the present results will serve as
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valuable genomic resources that will help identify more valuable
SSRs.

Gene Function Annotation

A total of 80,686 unigenes were annotated successfully. Totals
of 38,919 unigenes (48.23%) showed significant similarity to
the NR database, 46,064 (57.09%) to the NT database, 11,223
(13.9%) to the KO database, 24,436 (30.28%) to the Swiss-Prot
database, 26,786 (33.19%) to the PFAM database, 31,444 (38.97%)
to the GO database, and 11,778 (14.58%) to the KOG database.
When the sequences were compared to all databases, only 5,892
unigenes (7.3%) were annotated in all, while all 52,315 unigenes
(64.83%) were annotated in at least one database according to
Blastx search (Table 2).

To analyze the conservation of sequences, we compared Sudan
grass sequences to those from other species. The top match was
Sorghum bicolor (65.7% sequence identity), followed by Zea mays
(14.9%), Setaria italica (4.6%), and Oryza sativa (2.9%; Figure 4).
As expected, more than 88% of sequences among all unigenes had
a top match with sequences from plants in the family Poaceae.

Among 80,686 unigenes, 45,065 (55.9%) were predicted to
match CDSs with lengths ranging from 33 to 14,379 bp with
an average length of 665 bp (Figure5). ESTScan indicated
that 34,128 of unigenes (42.3%) were predicted to match CDSs

TABLE 1 | Summary statistics of the Sudan grass transcriptome
assemblies.

Sample Raw reads Clean reads
LO1 168,623,898 165,220,518
L3831 173,980,764 169,869,984
L3832 171,496,394 163,559,358
L 6_1 183,220,324 173,103,162
L 6.2 165,222,446 145,101,344
Total 852,543,826 816,854,366

L_0_1,L_8_1, and L_6_1 were non-stressed controls that were collected at O, 3, and 6
day, respectively. L_3_2 and L_6_2 were drought-stressed treatments that were collected
at 3 and 6 day, respectively (Each treatment had three replicates). The same below.

ranging in length from 51 to 10,476 bp with an average length of
336 bp (Figure 5).

GO is an international standardized gene functional
classification system with three ontologies: biological process
(BP), molecular function (MF), and cellular component (CC;
Wang et al, 2010). Each ontology offers a comprehensive
description of the properties of genes. A total of 31,444 unigenes
were annotated according to an analysis performed with Blast
2 GO. BP was the most abundantly represented according to
GO, followed by CC and MF (Figure 6). Within BP, cellular
process (18,850 unigenes, 21.0%) and metabolic process (18,499
unigenes, 20.6%) comprised the majority. Within MF, binding
(19,070 unigenes, 46.5%) and catalytic activity (15,383 unigenes,
37.5%) contained the largest numbers of genes, while within CC,
cell (13,495 unigenes, 21.4%) was almost as common as cell part
(13,492, 21.4%), in agreement with Li et al. (2016).

Within the KOG analysis, 11,778 unigenes were identified to
25 categories. The largest number of unigenes were classified
as “General function prediction only” (2,463 unigenes, 20.9%),
followed by “Posttranslational modification, protein turnover,
chaperones” (1,535 unigenes, 13.0%), and “Signal transduction
mechanisms” (1,039 unigenes, 8.8%; Figure 7). However, in
Sorghum, the category enriched for the most unigenes was
“General function prediction only;” followed by “Replication,

TABLE 2 | Unigene information annotated in different databases.

Database Number of unigenes  Percentage (%)
Annotated in NR 38,919 48.23
Annotated in NT 46,064 57.09
Annotated in KO 11,223 13.9
Annotated in Swiss-Prot 24,436 30.28
Annotated in PFAM 26,786 33.19
Annotated in GO 31,444 38.97
Annotated in KOG 11,778 14.59
Annotated in all Databases 5,892 7.3
Annotated in at least one Database 52,315 64.83
Total Unigenes 80,686 100
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recombination, and repair” and “Posttranslational modification,
protein turnover, chaperones.” Similarly, in sugarcane, unigenes
were enriched in the “Replication, recombination and repair”
category followed by “General function prediction only” and
“Posttranslational modification, protein turnover, chaperones”
(Cardoso-Silva et al.,, 2014). Likewise, Sudan grass grown under
exposure to natural daylight, expressed genes that were enriched
for “Replication, recombination and repair;,” followed by “General

function prediction only” and “Transcription” (Li et al., 2016).
Thus, different species and different conditions yielded different
classifications.

To better understand the biological functions of and
interactions among genes, 11,223 unigenes were classified into
280 KEGG pathways. The pathways included Metabolism,
Genetic Information Processing, Environmental Information

Processing, Cellular Processes, Organismal Systems, and
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number of unigenes (5,871, 46.1%), followed by Genetic  There were 4,903 and 3,466 DEGs identified by comparing
Information Processing (2,190, 17.2%), and Organismal  expression on the 3rd day to the control expression levels of
Systems (2,189, 17.2%). Overall, Carbohydrate metabolism  days 0 and 3, respectively (i.e., L_0_1 vs. L_3_2 and L_3_1 vs.
(1,071 unigenes, 8.4%) was the most among all pathways, L_3_2comparisons). Comparisons between Sudan grass exposed
while signal transduction (1,028 unigenes, 8.4%) contributed  to the PEG treatment for 6 days with the day 0 and 6 controls,
to Environmental Information Processing (Figure8). revealed 9,512 and 6,194 DEGs, respectively (ie., L_0_1 vs.
Carbohydrate metabolism was heavily enriched in the KEGG  L_6_2 and L_6_1 vs. L_6_2 comparisons), which indicated that
analysis, in accordance with the results of Huang D. L. et al.  expressions changes that had occurred by the 3rd day were
(2016), as well as a similar study in orchardgrass (Huang et al.,  smaller than those occurring by the 6th day. In contrast, the
2015). comparison between expression levels on the 3rd and 6th day
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FIGURE 8 | KEGG classification results: A, Cellular Processes; B, Environmental Information Processing; C, Genetic Information Processing;

of the PEG treatment (ie., L_3_2 vs. L_6_2), revealed only
130 DEGs, with 5 and 125 genes down- and up-regulated,
respectively. Few of the same DEGs changed in the 3rd and 6th
days, but there were changes among all control samples over time
(ie, L_0_1vs. L 3 1,L 0 1vs.L 6_1,and L_3_1vs. L_6_1;
Table 3).

To improve the accuracy of the results, we excluded
DEGs that changed in the controls, finding 2,329 DEGs
between the controls (0 and 3rd day) and the treatment
of 3rd (i.e, L_0_1 vs. L_3_2 vs. L_3_1 vs. L_3_2), which
including 1,531 and 785 DEGs down- and up-regulated,
respectively. For the 6th days of the PEG treatment compared
to the controls (0 and 6th day) (ie, L_0_1 vs. L 6 2 vs.
L_6_1 vs. L_6_2), there were 3,031 and 2,084 DEGs down-
and up-regulated, respectively, in total of 5,101 DEGs been
founded (Table 4). The DEGs enriched within KEGG pathways
indicated Carbon fixation in photosynthetic organisms and
Plant hormone signal transduction pathways play important
roles in handling short-term drought stress. The next most
enriched pathways were Phenylpropanoid biosynthesis,
Glycolysis/Gluconeogenesis, and Photosynthesis (Figure9).
Lenka et al. (2011) also demonstrated that the Carbon fixation
pathways play an important role in the drought responses of rice.
However, under long term drought stress, the Plant hormone
signal transduction pathways was most important, followed
by Starch and sucrose metabolism and Phenylpropanoid
biosynthesis (Figure9). Huang et al. (2014) declared that
the up-regulated genes stimulated by drought stress were

TABLE 3 | Differentially expressed genes across two categories of Sudan
grass.

Samples Down-regulated Up-regulated Total
L0 1vs. L 32 3,319 1,584 4,903
L3 1vs. L 32 2,355 1,111 3,466
LO1vs. L 6.2 5,482 4,030 9,512
L6 1vs.L 6.2 3,746 2,448 6,194
L. 32vs. L 6.2 5 125 130
L O_1vs. L 8.1 1,962 1,009 2,971
L O 1vs. L 61 482 212 694
L3 1vs.L 61 250 814 1,064

TABLE 4 | Differentially expressed genes across four categories of Sudan
grass.

Samples Down-regulated Up-regulated Total
L0 1vs.L 3 2vs. L 31 1,631 785 2,329
vs. L_3.2
L O 1vs.L 6. 2vs. L 61 3,031 2,084 5,101
vs. L _6_2

enriched in the signal transduction pathway, agreeing with our
results.

To eliminate expression changes among the all controls (0,
3rd, and 6th day), Venn diagrams were examined (Figure 10),
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FIGURE 10 | Analysis of DEGs with drought stress in Sudan grass. The

left one is the up-regulation of DEGs, the right one is the down-regulation of
DEGs.

which revealed no genes were down-regulated by PEG stress,
while five genes were up-regulated. The corresponding genes
ID were c18079_gl, c21893_gl, ¢33865_g2, c34306_gl, and
¢35500_g3.

To better understand the functions of these genes, we
BLASTed these sequences against NR, NT, PFAM, KOG, Swiss-
Prot, and GO databases. The c18079_gl sequence is 612 bp
(Appendix S1), and its NR and NT descriptions indicate it is a
hypothetical protein that has been annotated in Sorghum bicolor.
According to Swiss-Prot, it is similar to Arabidopsis thaliana’s
defensin-like protein. According to PFAM, it appears to belong
to the Gamma-thionin family or Scorpion toxin-like domain.
Lastly, GO analysis indicated it has a role in transport or defense
response in BP, plasma membrane or ion channel inhibition or
activity in MF, and plant-type in CC (Table 5). The first response
to the drought stress is reducing water deficit by closure of
stomata, which is also called hydropassive closure. When the
stomata are open, water evaporates from guard cells. However,
stomata are opened by the reversal of ion fluxes (Jouyban, 2012);
c18079_gl may be responsible for mediating this response.

The second gene, c21893_g1, is 1,583 bp (Appendix S1), and it
also strongly resembles the Sorghum bicolor hypothetical proteins
in the NR and NT databases. However, we were unable to find any
description of it in the PFAM, KOG, and Swiss-Prot databases,
but in the GO database, the functions of the gene were protein
folding and unfolded protein binding (BP) or heat shock protein
binding (MF; Table 5). Buchanan et al. (2005) indicated that heat
shock protein 17.2, heat shock protein 16.9, and HSP 70 were
up-regulated by increased PEG stress in sorghum. Several studies
reported that drought stress is often combined with heat shock
(Wang and Huang, 2004; Mienie and De Ronde, 2008; Grigorova
etal., 2011), perhaps explaining the up-regulation of this gene by
drought stress in Sudan grass.

The third gene, c33865_g2, is the longest of all five (3,697 bp,
Appendix S1). It is similar to the previous genes, which are
similar to hypothetical proteins in Sorghum bicolor, but in

contrast, it matches genes in all of the examined databases. It
matches an uncharacterized AAA domain-containing protein
from Schizosaccharomyces pombe in the Swiss-Prot database, and
there were many BP, MF, and CC roles in the GO database
(Table 6). The KOG database indicated the gene is an AAA™-
type ATPase (Table 5). As an ABC transporter-like protein in
sorghum, the gene has been shown to be up-regulated under
drought stress (Buchanan et al., 2005). Deeba et al. (2012) also
showed that activation of the ATP generation in groundnuts can
improve drought tolerance. However, the actually function of this
gene is unclear.

The fourth gene, ¢34306_g, is 2,181 bp in length
(Appendix S1). In the NR and NT databases, it matches
the phosphosulfolactate synthase-related protein in Zea
mays. The PFAM database indicated the gene is a (2R)-
phospho-3-sulfolactate synthase (ComA) or Small cytokine
(intecrine/chemokine), interleukin-8 like gene, whereas GO
indicates it has a role in signal transduction, chemotaxis, heat
acclimation, coenzyme M biosynthetic process, or immune
response (BP); chemokine activity and catalytic activity (MF),
and extracellular region (CC; Table 5). Graham et al. (2002)
introduced the details of the biosynthetic pathway for coenzyme
M. Phosphosulfolactate synthase and ComA catalyze the first
step of the coenzyme M biosynthetic process (Liu et al., 2006),
and ¢34306_g may be involved in this process.

The last gene, ¢35500_g3, is 1,110 bp (Appendix S1), and
it is a hypothetical protein in the NR and NT databases. It
matched a cucumber L-ascorbate oxidase in Swiss-Prot and a
multicopper oxidase or copper ion binding protein in PFAM.
In GO, ¢35500_g3 is characterized as having a role in the
oxidation-reduction process (BP), oxidoreductase activity (MF),
and extracellular region or plant-type cell wall (CC). Drought
stress induces the accumulation of reactive oxygen species (ROS),
and therefore ROS-scavenging is stimulated by drought. Osakabe
et al. (2014) indicated that ascorbate oxidase plays an important
role in scavenging cytosolic H,O, (Table 5). The function of
ascorbate oxidase was to protect integrated chloroplast proteins,
and massive reports have shown that the overexpression of APX2
improved drought tolerance. Increased levels of thylakoid-bound
ascorbate peroxidase have been identified in sorghum under
drought stress (Buchanan et al., 2005). Dawson et al. (1975)
reported that every molecule of ascorbate oxidase contains 8-10
atoms of copper, and this has been subsequently studied as an
enzyme model for L-ascorbate oxidase (Ueda and Hanaki, 1984).
Thus, this gene maybe involved in the pathway for ascorbate
oxidase.

Finally, to ensure the accuracy of the Venn diagrams, we used
more comparisons to analyze DEGs (5 combinations). These
alternative results coincide with the main results. We again found
the same five genes up-regulated and no genes down-regulated
(Figure 11).

Development and Validation of SSR

Markers
We identified 17,548 SSRs obtained from 80,686 sequences
totaling 75,697,479 bp. A total of 13,574 sequences contained
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SSRs. Of these, 2,965 sequences contained more than a single
SSR, and 866 exhibited compound SSR formation. Trinucleotide
repeat motifs were the most abundant among the six types

TABLE 6 | SSR motifs.

Repeats motif Number Percentage (%)

of motifs, totaling 6,860 (39.09%). The second most abundant
were mononucleotide motifs, totaling 6,771 (38.59%), followed
by 3,366 dinucleotide motifs (19.18%), 474 tetranucleotide
motifs (2.7%), 49 pentanucleotide motifs (0.28%), and 28
hexanucleotide motifs (0.16%). The most abundant motifs
included mononucleotide A (91%), dinucleotide AG (47%), and
trinucleotide CCG repeats (39%; Table 6).

The repeat counts ranged from 5 to 23. SSRs with 5-8 repeats
were being most abundant, followed by those with 9-12 repeats

AT 6,166 (Figure 12). In sugarcane, trinucleotide motifs are perhaps most
c/G 605 common among SSRs, which is consist with our results. Cardoso-
Total 6,771 38.59 Silva et al. (2014) reported that trinucleotide SSR motifs strongly
IINUGLEGTIBE I impact the rate of frameshift mutations.
AC/GT 806 We randomly selected 30 primer pairs for amplification. Of
AG/CT 1,571 these, 23 primer pairs (76.7%) successfully amplified products
AT/AT 696 from genomic DNA from Sudan grass and Sorghum (though the
CG/CG 293 remaining 7 primer pairs failed to generate PCR products). The
Total 3,366 1918 failure of the primer pairs to amplify may have been caused by
AAC/GTT 140
AAG/CTT 356 - ,
Distribution of SSR Motifs

AAT/ATT 124
ACC/GGT 506
ACG/CGT 741 p—
ACT/AGT 142
AGC/CTG 1,015 @ repeat_type
AGG/CCT 942 § 4000 5-8

= [ ez
ATC/ATG 204 3 B

] .
CCG/CGG 2,690 & . 17-23

2000
Total 6,860 39.09
Total 474 2.7 N e
PENTA-NUCLEOTIDE e B e e e
Total 49 0.28 SSR motif unit
HEXA-NUCLEOTIDE | e | The distribution of SSR motifs in Sudan arass.
Total 28 0.16
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FIGURE 11 | Venn diagrams of DEGs among 5 combinations. Up-regulated DEGs are on the left, while down-regulated DEGs are on the right.
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the location of primers across splice sites, introns, mutations, or
indels.

In total, 124 amplified bands were detected from the PCR
products of 23 primer pairs. The products of the primer pairs
ranged from 134 to 280 bp. Among the 23 primers, the unigene
c24737_gl amplified by primer pair 23 showed the highest
average polymorphism information content (PIC = 0.8304),
followed by c25684_g1, which was amplified by primer pair 1
(PIC = 0.7608). However, according to Shannon’s information
index (I), c25493_g1 (amplified by primer pair 9) was the most
diverse, (I = 0.6851), followed by c24737_gl (amplified by
primer pair 23). According to Nei’s gene diversity (H), c10226_g1
(amplified by primer pair 7) exhibited the most variation (H =
0.5281), followed by ¢33403_g4 (amplified by primer pair 14; H
= 0.5169). Among these 23 unigenes, the average PIC was 0.5327,
I was 0.552, H was 0.439, and PPB was 78.18%. Therefore, these
23 unigenes showed high levels of diversity (Table 7).

SSR makers are extremely useful molecular makers that can
be used for genetic linkage mapping, comparative mapping, and
many other genotyping applications (Tang et al., 2009). These
makers have many advantages including reliable reproducibility,
co-dominance, and a high degree of operational transferability
to other related species (Wang et al., 2002; Kaur et al., 2011).
SSRs have been widely used in sorghum (Sanchez et al., 2002;
Mace and Jordan, 2011; Upadhyaya et al., 2012; Hussein et al.,
2014), but Li et al. (2016) reported important differences between
sorghum and Sudan grass in indel markers. Few studies have tried
to use ESTs from sorghum to design SSR markers in Sudan grass.
Further genetic analyses of Sudan grass require the development
of more SSR makers for the species. Our study has identified
17,548 SSRs that may be used to enhance the molecular breeding
of Sudan grass.

CONCLUSION

In this study, we used NGS data to analyze the Sudan grass
transcriptome under drought stress. We found 2,329 DEGs and
5,101 DEGs under a short- and long-term of 25% PEG treatment,
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