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Drought stress from soil or air limits plant growth and development, leading to a
reduction in crop productivity. Several E3 ligases positively or negatively regulate the
drought stress response. In the present study, we show that the pepper (Capsicum
annuum) Drought Induced RING type E3 ligase 1, CaDIR1, regulates the drought
stress response via abscisic acid (ABA)-mediated signaling. CaDIR1 contains a C3HC4-
type RING finger domain in the N-terminal region; this domain functions during
protein degradation via attachment of ubiquitins to the substrate target proteins. The
expression levels of the CaDIR1 gene were suppressed and induced by ABA and
drought treatments, respectively. We conducted loss-of-function and gain-of function
genetic studies to examine the in vivo function of CaDIR1 in response to ABA and
drought stress. CaDIR1-silenced pepper plants displayed a drought-tolerant phenotype
characterized by a low level of transpirational water loss via increased stomatal
closure and elevated leaf temperatures. CaDIR1-overexpressing (OX) Arabidopsis plants
exhibited an ABA-hypersensitive phenotype during the germination stage, but an ABA-
hyposensitive phenotype—characterized by decreased stomatal closure and reduced
leaf temperatures—at the adult stage. Moreover, adult CaDIR1-OX plants exhibited a
drought-sensitive phenotype characterized by high levels of transpirational water loss.
Our results indicate that CaDIR1 functions as a negative regulator of the drought stress
response via ABA-mediated signaling. Our findings provide a valuable insight into the
plant defense mechanism that operates during drought stress.

Keywords: abscisic acid, drought, post-translational modification, transpiration, ubiquitination

INTRODUCTION

Plants are sessile organisms; hence, they encounter various environmental stress conditions—
including biotic and abiotic stresses. These stresses lead to inhibition of plant growth and
development. Water-deficit conditions constitute a major environmental stress and present a
serious threat to plant survival. To overcome water-deficit conditions, plants have evolved
elaborate adaptive strategies, such as minimizing transpiration water loss from the leaf tissues
and maximizing water uptake from the root tissues (Apse and Blumwald, 2002; Yamaguchi-
Shinozaki and Shinozaki, 2006; Golldack et al., 2014). Regulation of the transpiration rate via
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stomatal closure is one of the most effective plant adaptive
mechanisms for retaining water. Under drought stress
conditions, plant perceive a signal through sensors; this
process triggers the expression of defense-related genes and
the biosynthesis of the plant hormone abscisic acid (ABA) (Lee
and Luan, 2012; Golldack et al., 2014; Lim C. W. et al., 2014).
ABA functions in many cellular and physiological processes of
plant growth and development, including retardation of seed
germination and cotyledon greening. Moreover, ABA plays a
crucial role in adaptation to biotic and abiotic stresses—including
drought stress—via regulation of various defense-related genes
involved in plant survival through modifications of root
hydraulic conductivity, osmotic adjustment, and changes in
stomatal aperture (Sirichandra et al., 2009; Lim et al., 2015a).
Recently, several studies have identified key factors involved
in ABA signal transduction from perception to response
(Vlad et al., 2009; Ryu et al., 2010; Joseph et al., 2014; Ding
et al., 2015). However, the plant defense response via ABA
signaling is a complex phenomenon; therefore, the precise
functional modifications induced by abiotic stress remain
unclear.

Ubiquitination is a unique post-translational modification
process in eukaryotes, and it is composed of multiple processes
involving the sequential action of three enzymes (Moon et al.,
2004; Dreher and Callis, 2007; Stone, 2014). Initially, ubiquitin
is activated by E1 (ubiquitin-activating enzyme); next, the
activated ubiquitin is transferred to E2 (ubiquitin-conjugating
enzyme); and finally, E3 (ubiquitin ligase) recruits and attaches
ubiquitin to the substrate target protein (Ciechanover and
Schwartz, 1998; Vierstra, 2009; Stone, 2014; Park et al., 2015).
Ubiquitination is an intrinsic process involving thousands of
distinct E3 ubiquitin ligases, which are critical factors in
determining substrate specificity for various target proteins.
E3 ubiquitin ligases are classified into two groups based on
their subunit compositions. The single subunit subfamily is
composed of plant U-box (PUB), homology to E6-AP C-terminus
(HECT), and Really Interesting New Gene (RING) types of
E3 ligases. On the other hand, the CULLIN4-damaged-specific
DNA binding protein1 (CUL4-DDB1) and Skp (S-phase kinase-
associated protein)/cullin/F-box (SCF) ligases consist of a multi-
subunit (Stone et al., 2005; Pazhouhandeh et al., 2011; Irigoyen
et al., 2014; Seo et al., 2014). To date, more than 1,400 E3
ubiquitin ligases have been identified in Arabidopsis (Vierstra,
2009). The Arabidopsis genome encodes more than 470 RING
finger domain-containing E3 ubiquitin ligases (Stone et al.,
2005; Vierstra, 2009). A number of studies have reported
that protein degradation via RING type E3 ubiquitin ligases
plays a key role in ABA signaling and abiotic stress responses
(Li et al., 2011; Chen et al., 2013). For example, RSL1
(Ring finger of seed longevity 1) is involved in ubiquitination
and degradation of PYR1 and PYL4 ABA receptors at the
plasma membrane (Bueso et al., 2014). Moreover, RGLGs
(Ring domain ligases) are involved in ABA signaling and
drought stress responses via regulation of the stability of ABA-
signaling components (Cheng et al., 2012; Wu et al., 2016).
The functions of E3 ligases in response to abiotic stress
via the ABA-signaling pathway have been extensively studied

in various plants; however, their precise function remains
unclear.

In the present study, we identified and analyzed the RING
type E3 ubiquitin ligase, CaDIR1 (Capsicum annuum Drought
Induced RING type E3 ligase 1), which contains a RING
finger motif. CaDIR1 localized in the nucleus and exhibited
in vivo E3 ligase activity. We conducted loss-of-function and
gain-of-function genetic studies in pepper and Arabidopsis,
respectively, to elucidate the in vivo functions of CaDIR1.
CaDIR1-silenced pepper plants displayed a drought-tolerant
phenotype characterized by a low level of transpirational water
loss. On the other hand, CaDIR1-overexpressing (OX) transgenic
Arabidopsis plants exhibited a drought-sensitive phenotype. Our
data indicate that CaDIR1 functions as a negative regulator of the
drought stress response.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Seeds of hot pepper (C annuum L. ‘Nockwang’) and tobacco
(Nicotiana benthamiana) were sown in a steam-sterilized
compost soil mix (peat moss, perlite, and vermiculite, 5:3:2,
v/v/v) at 27 ± 1◦C. The plants were raised under white
fluorescent light (80 µmol photons·m−2

·s−1) with a 16-h
light/8-h dark cycle. Arabidopsis thaliana ecotype Col-0 seeds
were germinated on Murashige and Skoog (1962) (MS) salt
supplemented with 0.5% sucrose (Duchefa Biochemie); the
plates were incubated in a growth chamber at 24◦C. For the
phenotypic analysis of response to drought stress, Arabidopsis
plants were maintained in a steam-sterilized compost soil mix
in a growth chamber under controlled environmental conditions
as follows: 24◦C and 60% relative humidity under fluorescent
light (130 µmol photons·m−2

·s−1) with a 16-h light/8-h dark
cycle.

Sequence Analysis of the CaDIR1 Protein
The deduced sequences for CaDIR1 and its homologous RING-
type ubiquitin E3 ligases were identified using BLAST searches1.
The SMART2 web server was used to identify the RING finger.
The amino acid alignment was conducted using ClustalW23, and
the results were edited with Genedoc software4.

Virus-Induced Gene Silencing of CaDIR1
The virus-induced gene silencing (VIGS) system with the
tobacco rattle virus was used to generate CaDIR1 knockdown
pepper plants (Park et al., 2015). The N-terminal region of
the CaDIR1 cDNA (201–434 bp) was inserted into the pTRV2
vector. Agrobacterium tumefaciens strain GV3101 containing
pTRV1, pTRV2:00, and pTRV:CaDIR1 was co-infiltrated into
the cotyledons of pepper plants (OD600 = 0.4 for each
construct).

1http://www.ncbi.nlm.nih.gov/BLAST
2http://smart.embl-heidelberg.de/
3http://www.ebi.ac.uk/Tools/msa/clustalw2
4http://www.nrbsc.org/gfx/genedoc
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Generation of CaDIR1-OX Transgenic
Arabidopsis Plants
The full-length CaDIR1 cDNA was integrated into the pENTR/
D-TOPO vector (Invitrogen, Carlsbad, CA, USA) and was
then cloned into the pK2GW7 binary vector using the LR
reaction, to induce constitutive expression of the CaDIR1 gene
in Arabidopsis. The 35S:CaDIR1 construct was introduced
into Agrobacterium tumefaciens strain GV3101. Agrobacterium-
mediated transformation of Arabidopsis thaliana ecotype Col-0
with the CaDIR1 gene was conducted using the floral dip method
(Clough and Bent, 1998). For selection of CaDIR1-OX plants,
seeds were plated on MS medium containing 50 µg·mL−1

kanamycin.

Subcellular Localization Analysis
The full-length CaDIR1 cDNA without stop codon were inserted
into the p326GFP binary vector. Agrobacterium tumefaciens
strain GV3101 carrying the 35S:CaDIR1-GFP construct was
combined with strain p19 (1:1 ratio; OD600 = 0.5) and
co-infiltrated into the leaves of 4-week-old N. benthamiana
seedlings. The green fluorescent protein (GFP) signal was
observed under a confocal microscope (510 UV/Vis Meta; Zeiss,
Oberkochen, Germany) equipped with LSM Image Browser
software.

ABA and Drought Treatments in Pepper
and Arabidopsis Plants
For the germination assays, and the measurement of germination
rate, primary root growth, and cotyledon greening, 100 seeds
per genotype were stratified at 4◦C for 3 days and sown on
MS agar plates containing various concentrations of ABA. For
the post-germination assay, 5-day-old wild-type and CaDIR1-
OX seedlings grown in the absence of ABA were transferred
into MS medium supplemented with 10 µM ABA. After
7 days, the root lengths of the seedlings were measured.
The drought stress treatment was performed as described by
Lim and Lee (2014). Ten-day-old wild-type and CaDIR1-OX
seedlings were randomly planted in pots containing soil mixture
and maintained under favorable growth conditions. For the
drought stress treatment, watering was withheld for 10 days
and plants were then re-watered for 1 day. For assessing the
transpirational water loss from rosette leaves, 30 leaves were
detached from 3-week-old plants and placed in Petri dishes.
The dishes were placed in a growth chamber at 40% relative
humidity, and the fresh weight was determined 1–7 h after
detachment.

Measurement of Stomatal Aperture
The measurement of stomatal aperture was performed as
described previously (Lee et al., 2013) with some modifications.
Leaf peels collected from the leaves of 4-week-old pepper plants
and 5-week-old Arabidopsis plants were floated in a stomatal
opening solution (SOS; 50 mM KCl, 10 mM MES-KOH, 10 µM
CaCl2, pH 6.15) with light exposure for 3 h. The buffer was
replaced with fresh SOS buffer containing various concentrations
of ABA. Leaf peels were incubated for an additional 3 h. In

each individual sample, 100 stomata were randomly observed
under a Nikon Eclipse 80i microscope. The stomatal images were
recorded with Image J 1.46r software5.

Measurement of Leaf Temperature
For the measurement of leaf temperature, 4-week-old pepper
plants and 5-week-old Arabidopsis plants having fully expanded
leaves were treated with 50 µM ABA. Thermal images were
obtained using an infrared camera (FLIR systems; T420), and
the leaf temperature was measured with FLIR Tools+ ver 5.2
software.

RNA Isolation and Reverse
Transcription-Polymerase Chain
Reaction
Total RNA was isolated from the leaf tissues of pepper and
Arabidopsis plants using an RNeasy Mini kit (Qiagen, Valencia,
CA, USA). The RNA samples were treated with RNA-free
DNase to remove genomic DNA. Total RNA (1 µg) was used
to synthesize cDNA using a Transcript First Strand cDNA
Synthesis kit (Roche, Indianapolis, IN, USA) according to the
manufacturer’s instructions. Semi-quantitative and quantitative
reverse transcription-polymerase chain (RT-PCR) analyses were
performed using Ex-taq (Takara Bio, Shiga, Japan) and
iQTM SYBR Green Supermix (Bio-Rad, Hercules, CA, USA),
respectively, with specific primers (Supplementary Table S1).
CaACT1 and Actin 8 were used as internal controls in pepper and
Arabidopsis, respectively.

Statistical Analyses
To determine significant differences between treatments,
statistical analyses were performed using one-way analysis of
variance (ANOVA) or Student’s t-test. A P-value of <0.05 was
considered significant.

RESULTS

Identification of CaDIR1 as an E3
Ubiquitin Ligase
To isolate novel drought-induced pepper E3 ubiquitin ligase,
we performed RNA-seq analysis using pepper leaves that had
been subjected to drought stress; we successfully isolated the
putative pepper drought-induced candidate E3 ubiquitin ligase
(Lim and Lee, 2016). Based on domain analysis and alignment,
we designated this gene CaDIR1 (C. annuum Drought Induced
RING type E3 ligase 1) (accession no. KY296543). The CaDIR1
sequence contains a 1293-bp open reading frame, encoding
430 amino acid residues. The mature protein has a molecular
mass of 47.9 kDa and an isoelectric point of 9.36. The C3HC4
type RING finger motif, which is essential for E3 ligase in the
ubiquitin–26S proteasome system, is located in the N-terminal
region of CaDIR1. Multiple sequence alignment analysis revealed
that CaDIR1 has relatively high amino acid sequence identity

5http://imagej.nih.gov/ij
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FIGURE 1 | Amino acid sequence analysis, subcellular localization, and in vivo self-ubiquitination of pepper CaDIR1 (Capsicum annuum
Drought-Induced RING finger protein 1). (A) Alignment of the Really Interesting New Gene (RING) zinc finger C3HC4-type domain. Red boxes indicate
conserved cysteine (C) and histidine (H) residues. (B) Subcellular localization of CaDIR1 based on transient expression of the green fluorescent protein (GFP) fusion
protein in Nicotiana benthamiana epidermal cells. The 35S:CaDIR1-GFP and 35S:Fib2-RFP constructs were expressed using agroinfiltration of N. benthamiana
leaves and were observed under a confocal laser-scanning microscope. 4′,6-Diamidino-2-phenylindole (DAPI) staining and the Arabidopsis Fib2 protein were used
as markers for the nucleus and nucleolus, respectively. White bar = 10 µm. (C) In vivo self-ubiquitination of CaDIR1. Immunoblot analysis of an N. benthamiana leaf
harboring and immunoprecipitating the 35S:CaDIR1-GFP fusion protein with GFP antibody. Detection of CaDIR1-GFP self-ubiquitination using anti-GFP and
anti-ubiquitin antibodies; shifted bands indicate the attachment of ubiquitin molecules.

(87.0–87.9%) with other RING type E3 ligases (Supplementary
Figure S1), especially those containing a RING finger motif
(90.3–93.7%) (Figure 1A).

Previous studies have reported that several E3 ligases
function in the cytoplasm and nucleus (Park et al., 2016; Lim
et al., 2017a). To examine the subcellular localization of the
CaDIR1 protein in intact cells, the fusion protein of CaDIR1

and the GFP (35S:CaDIR1-GFP) was transiently expressed in
Nicotiana benthamiana epidermal cells (Figure 1B). Expression
analysis of the 35S:CaDIR1-GFP construct revealed that the
CaDIR1-GFP fusion protein localized in the nucleus. The blue
fluorescent signal for 4′,6-diamidino-2-phenylindole (DAPI) and
red fluorescent signal for the fibrillarin-RFP fusion protein were
detected in the nucleus and nucleolus, respectively. These results
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indicate that CaDIR1 functions in the nucleus, especially the
nucleolus.

E3 ligases containing RING finger motifs display in vivo
self-ubiquitination (Liu et al., 2010; Yang et al., 2015). CaDIR1
contains a RING finger motif (Figure 1A); hence, we performed
an in vivo ubiquitination assay to examine whether CaDIR1
functions as an E3 ligase (Figure 1C). The 35S:GFP and
35S:CaDIR1-GFP constructs were transiently expressed in
N. benthamiana leaves, and total proteins were isolated. The
GFP-tagged proteins were purified, and ubiquitinated proteins
were subsequently detected using anti-GFP and anti-ubiquitin
antibodies. We found that the CaDIR1-GFP fusion protein
was involved in the ubiquitination process in CaDIR1-GFP
expressing plant cells.

Expression Patterns of CaDIR1 in Pepper
Leaves in Response to Abiotic Stresses
Abscisic acid functions in the plant response to osmotic stress;
moreover, ABA and osmotic stress signals share common
components in their signal transduction pathways (Jakab et al.,
2005). To investigate the expression patterns of CaDIR1 in
response to ABA and abiotic stresses, we performed Real-
Time PCR analysis using leaves harvested from six-leaf stage
pepper plants that had been treated with ABA, drought, or
NaCl (Figure 2). When we monitored the induction of CaDIR1
transcripts after ABA treatment, the CaDIR1 transcripts were
started to be reduced at 2 h after treatment and continued to
be suppressed at 24 h (Figure 2A). After drought treatment,
the CaDIR1 transcripts were weakly induced at 2 h and then
gradually decreased to the basal level within 12 h (Figure 2B).
However, high salinity treatment did not significantly altered
expression of CaDIR1 in pepper leaves (Figure 2C).

Enhanced Drought Tolerance of
CaDIR1-Silenced Pepper Plants
To investigate in vivo function of CaDIR1, we used VIGS
(Figure 3). Semi-quantitative RT-PCR analysis revealed that
the CaDIR1 gene was less expressed in CaDIR1-silenced
pepper plants (TRV:CaDIR1) than in control plants (TRV:00)

(Supplementary Figure S2A); we used these CaDIR1-silenced
pepper plants in our subsequent phenotypic analyses. First,
we examined the function of CaDIR1 in response to drought
stress by withholding watering for 14 days and then re-watering
for 1 day (Figure 3A). Under well-watered conditions, we
observed no phenotypic differences between control plants
and CaDIR1-silenced plants (Figure 3A, left panel). However,
after withholding watering for 14 days and re-watering for
1 day, control plants showed a more wilted phenotype than
CaDIR1-silenced plants (Figure 3A, middle and right panels).
Moreover, after re-watering, the survival rate of CaDIR1-
silenced plants was 83%, whereas that of control plants
was approximately 41% (Figure 3B). To evaluate whether
the drought-tolerant phenotype displayed by CaDIR1-silenced
pepper plants was derived from enhanced capacity for water
retention, we measured the transpirational water loss of detached
pepper leaves (Figure 3C). At various time points after
detachment, the leaf fresh weight was significantly higher in
CaDIR1-silenced plants (75%) than in control plants (69%).
Previous reports have suggested that altered water retention is
associated with ABA sensitivity (Cheong et al., 2007; Santiago
et al., 2009; Ryu et al., 2010; Lim et al., 2015c); hence, we
monitored the leaf temperatures and stomatal apertures after
treatment with ABA (Figures 3D,E). The leaf temperatures
of CaDIR1-silenced pepper plants were higher than those of
control plants (Figure 3D). Stomatal movement leads to an
increase in evaporative cooling, and this influences the leaf
temperature. Hence, we assessed the stomatal apertures after
treatment with various concentrations of ABA. Consistent with
the leaf temperature data, the stomatal apertures of CaDIR1-
silenced plants were smaller than those of control plants
(Figure 3E).

Altered ABA Sensitivity of CaDIR1-OX
Transgenic Arabidopsis Plants at
Different Growth Stages
CaDIR1-silenced pepper plants displayed a drought-tolerant
phenotype (Figure 3). Therefore, we performed additional
reverse genetic analyses to evaluate the in vivo function of

FIGURE 2 | Expression of the CaDIR1 gene. The expression pattern of the CaDIR1 gene was examined in the leaves of pepper plants after treatment with
100 µM abscisic acid (ABA) (A), drought (B), or 200 mM NaCl (C). The pepper Actin1 gene was used as an internal control. Data represent the mean ± standard
error of three independent experiments. Asterisks indicate significant differences between three independent experiments (Student’s t-test; ∗P < 0.05, ∗∗P < 0.005).
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FIGURE 3 | Enhanced drought tolerance of CaDIR1-silenced pepper plants. (A) The drought-tolerant phenotype of CaDIR1-silenced pepper plants. Control
and CaDIR1-silenced pepper plants were grown in pots for 6 weeks under well-watered conditions. Thereafter, watering was withheld for 14 days, followed by
re-watering for 1 day. Representative images were taken before (left) and after (middle) drought and after 1 day of re-watering (right). (B) Survival rates of control and
CaDIR1-silenced pepper plants after 1 day of re-watering. Data represent the mean ± standard error of three independent experiments, each evaluating 20 plants.
(C) Transpirational water loss from the leaves of empty vector control and CaDIR1-silenced pepper plants at various times after detachment of leaves. (D) Increased
leaf temperatures of CaDIR1-silenced pepper plants in response to 50 µM ABA treatment. (E) Stomatal apertures in control and CaDIR1-silenced pepper plants
after treatment with various concentrations of ABA. Leaf peels were harvested from 3-week-old plants of each line and incubated in stomatal opening solution (SOS)
buffer containing 0, 10, and 20 µM ABA. Representative images were taken under a microscope and the stomatal apertures were measured. Data represent the
mean ± standard error of three independent experiments. Asterisks indicate significant differences between three independent experiments (Student’s t-test;
P < 0.05).

CaDIR1 in response to abiotic stress. We generated 35S:CaDIR1
Arabidopsis transgenic plants in the Col-0 ecotype background;
these plants showed overexpression of the CaDIR1 gene. Semi-
quantitative reverse transcription-polymerase chain reaction
(RT-PCR) analysis revealed the expression of CaDIR1 transcripts
in two independent T3 homozygous transgenic Arabidopsis lines,

but not in wild-type plants (Supplementary Figure 2B). We used
these CaDIR1-overexpressing (OX) plants in our subsequent
phenotypic analyses.

To elucidate the involvement of CaDIR1 in ABA signaling,
we conducted phenotypic analysis of CaDIR1-OX plants at
the germinative and post-germinative stages in response to
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FIGURE 4 | Enhanced and reduced sensitivity of CaDIR1-overexpressing (OX) transgenic Arabidopsis plants to ABA during the germinative and
post-germinative growth stages, respectively. (A) Seed germination of wild-type (WT) and CaDIR1-OX plants in response to ABA. Seeds were germinated on
0.5x Murashige and Skoog (MS) medium containing 0.0, 0.75, or 1.0 µM ABA. (B,C) Seedling development of WT and CaDIR1-OX plants exposed to ABA.
Representative photographs were taken 5 days after plating (B). Quantification of green cotyledons in WT and transgenic plants was performed 5 days after plating
(C). Data represent the mean ± standard error values obtained after evaluating 72 seeds from three independent experiments. (D,E) Primary root elongation of WT
and transgenic plants in response to ABA. The root length of each plant was measured 8 days after plating. (F,G) Primary root elongation of WT and transgenic
plants exposed to ABA after germination. Five-day-old seedlings grown on 0.5x MS medium were transferred to fresh 0.5x MS medium containing 0 µM or 10 µM
ABA. After 7 days, the representative images were taken (F), and the root length in each line was measured (G). Data represent the mean ± standard error of three
independent experiments. Different letters indicate significant differences between three independent experiments (ANOVA; P < 0.05).

ABA (Figure 4). First, we germinated CaDIR1-OX seeds on
Murashige and Skoog (MS) medium supplemented with 0, 0.75,
and 1.00 µM ABA. In the absence of ABA, we determined
no significant difference in germination rates between wild-
type and CaDIR1-OX seeds. However, in the presence of ABA,
the germination rate of CaDIR1-OX seeds was significantly
lower than that of wild-type seeds (Figure 4A). Next, we
examined seedling establishment and root growth of wild-type
and CaDIR1-OX plants in response to ABA (Figures 4B–E).
Consistent with the germination rate, the rate of cotyledon
greening and primary root growth were significantly lower
in CaDIR1-OX plants than in wild-type plants. To determine
whether the altered ABA sensitivity of CaDIR1-OX plants was
derived indirectly from the influence of ABA on seed germination
or directly from the influence of ABA on seedling growth,
5-day-old seedlings germinated on MS medium were transferred

to fresh MS medium supplemented with 0 µM or 10 µM ABA
(Figures 4F,G). Contrary to our germination data, the roots of
CaDIR1-OX seedlings were significantly longer than those of
wild-type seedlings, indicating that the altered ABA sensitivity
displayed by CaDIR1-OX plants is dependent on the growth
stage.

We further examined the altered phenotypes of adult wild-
type and CaDIR1-OX plants in response to ABA by measuring
the stomatal apertures and leaf temperatures (Figures 5A,B). In
the absence of ABA, we determined no significant differences in
stomatal apertures or leaf temperatures between wild-type and
CaDIR1-OX plants. However, after exposure to 20 µM ABA,
the stomatal apertures of CaDIR1-OX plants were significantly
larger than those of wild-type plants (Figure 5A). Moreover, after
exposure to 50 µM ABA, the leaf temperatures of CaDIR1-OX
plants were significantly lower than those of wild-type plants
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FIGURE 5 | | Reduced tolerance of CaDIR1-OX plants to drought stress. (A) Stomatal apertures in wild-type (WT) and CaDIR1-OX plants treated with ABA.
Leaf peels were harvested from the 3-week-old plants of each line and incubated in SOS buffer containing 0 µM or 20 µM ABA. Representative images were taken
under a microscope and the stomatal apertures were measured. Data represent the mean ± standard error of three independent experiments. (B) Decreased leaf
temperatures of CaDIR1-OX plants in response to 50 µM ABA treatment. (C) Transpirational water loss from the leaves of WT and transgenic plants at various times
after detachment of leaves. (D) Drought-sensitive phenotype of CaDIR1-OX plants. Four-week-old WT and transgenic plants were subjected to drought stress by
withholding watering for 10 days and then re-watering for 1 day. Representative images were taken before (left) and after (middle) drought and after 1 day of
re-watering (right). (E) Survival rates of plants after 1 day of re-watering. Data represent the mean ± standard error of three independent experiments, each
evaluating 20 plants.

(Figure 5B). Our results indicate that CaDIR1-OX plants exhibit
altered responses to ABA in a growth-stage dependent manner.

Reduced Drought Tolerance of
CaDIR1-OX Transgenic Plants
To investigate whether the ABA-hyposensitive phenotype
displayed by adult CaDIR1-OX plants influences altered water
retention, we assessed the transpirational water loss by measuring
the fresh weight of detached rosette leaves (Figure 5C). In the

presence of ABA, the fresh weight of CaDIR1-OX leaves was
significantly lower than that of wild-type leaves. To investigate
the influence of CaDIR1 overexpression on drought tolerance,
we conducted phenotypic analysis of wild-type and CaDIR1-
OX plants in response to drought stress (Figure 5D). Under
well-watered conditions, we observed no phenotypic differences
between wild-type and CaDIR1-OX plants (Figure 5D, left
panel). However, when we subjected plants to drought stress
by withholding watering for 10 days and then re-watering for
1 day, CaDIR1-OX plants exhibited more wilted phenotypes
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FIGURE 6 | Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis of drought stress-inducible genes in CaDIR1-OX leaves
exposed to drought stress through detachment (A) and 50 µM ABA treatment (B). The relative expression (11CT) level of each gene was normalized to that of
Actin 8 as an internal control gene. Data represent the mean ± standard deviation of three independent experiments. Different letters indicate significant differences
between three independent experiments (ANOVA; P < 0.05 followed by Fisher’s LSD test).

than wild-type plants (Figure 5D, middle and right panels).
Moreover, after re-watering, 100% of wild-type plants resumed
their growth, whereas only 31–43% of the CaDIR1-OX plants
survived (Figure 5E). Our results indicate that the reduced
capacity for water retention of CaDIR1-OX plants is derived from
ABA hyposensitivity, and this contributes to a drought-sensitive
phenotype.

Next, we examined the mechanism whereby CaDIR1
overexpression influences ABA biosynthesis and drought stress
signaling (Figure 6). We performed qPCR analysis of wild-type
and CaDIR1-OX leaves that had been subjected to drought
stress through detachment. We found that after 6 h of drought
stress treatment, the expression levels of stress-responsive
genes—including NCED3, DREB2A, RD29B, RD20, RD26, and
RAB18—were significantly higher in CaDIR1-OX leaves than
in wild-type leaves (Figure 6A). Moreover, the dehydrin genes,
including COR47, ERD10, and LTI30, were also more induced
in CaDIR1-OX leaves than in wild-type leaves at 1 h after ABA
treatment (Figure 6B). Our data indicate that CaDIR1 negatively
regulates drought tolerance in Arabidopsis and pepper plants by
modulating ABA-mediated stomatal closure.

DISCUSSION

In the present study, we isolated a drought stress-inducible RING
type E3 ligase gene, CaDIR1, which functions as a negative
regulator of the drought stress response via ABA-dependent
signal transduction. Protein degradation via the ubiquitin–
proteasome system plays an important role in regulating
the plant response to abiotic stress (Lee et al., 2011; Guo
et al., 2013). Several abiotic stress-related E3 ligases have been
isolated and functionally characterized; nevertheless, the precise
molecular and physiological mechanisms whereby plants adapt
to abiotic stress remain unclear. Post-translational degradation
via the ubiquitin–proteasome system facilitates rapid adaptation
to variable environmental conditions through ABA-mediated
signaling (Lyzenga et al., 2012). Under water-deficit conditions—
such as drought stress—ABA biosynthesis is increased in various
plant tissues and accumulates in the leaf tissues, especially the
guard cells (Zhu, 2002; Cutler et al., 2010; Hubbard et al.,
2010). Induction of ABA leads to increased expression of
defense-related genes, and this induces stomatal closure and
contributes to drought tolerance (Robertson and Chandler, 1994;
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Murata et al., 2015; Park et al., 2015). A number of studies have
reported that under drought stress conditions, RING type E3
ligases—such as RGLG1, RGLG5, SDIR1, OsCTR1, XERICO,
Rha2a, and Rha2b—function as positive regulators of ABA
(Ko et al., 2006; Li et al., 2011; Lim S. D. et al., 2014; Zhang
et al., 2015; Wu et al., 2016). In contrast, under normal condition,
RING type E3 ligases—including RSL1, RGLG2, and AIP2—
negatively regulate ABA signaling, and this affect protein stability
of positive regulators of ABA, such as ABA receptors and
transcription factors (Cheng et al., 2012; Bueso et al., 2014; Zhang
et al., 2015). The results of our present phenotypic analysis and
in vivo ubiquitination assay imply that CaDIR1 is involved in the
degradation of target proteins, which act as positive regulators of
the drought stress response.

The expression levels of ABA biosynthesis- and/or defense-
related genes are critical to the plant defense response to drought
stress (Zhang et al., 2006; Aubert et al., 2010; Hubbard et al.,
2010; Fujita et al., 2011; Lim et al., 2015b). Here, we used
CaDIR1-OX transgenic Arabidopsis plants to elucidate the in vivo
function of CaDIR1. The CaDIR1-OX plants have different
ABA phenotypes depending on its developmental stages. These
reversed phenotypes suggested that the function of CaDIR1
is different in response to stress on developmental stages.
Adult CaDIR1-OX transgenic Arabidopsis plants displayed ABA-
hyposensitive phenotypes characterized by decreased stomatal
closure and reduced leaf temperatures (Figure 5). Under drought
stress conditions, the expression of NCED3 is induced and ABA
biosynthesis in plant tissues is increased, leading to amplification
of ABA-dependent signaling (Iuchi et al., 2001). Several studies
have demonstrated that the expression levels of defense-related
genes are closely related to abiotic stress tolerance (Verslues and
Bray, 2006; Shinozaki and Yamaguchi-Shinozaki, 2007; Aubert
et al., 2010). Our CaDIR1-OX plants displayed a drought-
sensitive phenotype; therefore, we predicted that these plants
would show low expression levels of defense-related genes.
Contrary to our prediction, the expression levels of defense-
related genes—including NCED3, DREB2A, and RD29B—were
higher in CaDIR1-OX plants than in wild-type plants. We
propose that if CaDIR1-OX plants lack the facility to induce a
successful defense response, they cannot alleviate drought stress
signals; hence, these stress signals are continually transferred to
the plant tissues—especially the leaf tissue—leading to enhanced
expression of defense-related genes, including NCED3 (Lim et al.,
2017b). Moreover, NCED3 positively regulates the transcription
of defense-related genes (Urano et al., 2009); hence, up-regulation
of NCED3 influences the expression of defense-related genes. In
the ABA-mediated drought stress response, CaDIR1 regulates the
expression levels of defense-related genes directly or indirectly;
however, the precise mechanisms underlying this regulatory
process remain unclear.

CONCLUSION

We have demonstrated that the RING-type E3 ubiquitin
ligase CaDIR1 negatively regulates the plant defense response
to drought stress in adult pepper plants via ABA-mediated
signaling. In our gain-of-function and loss-of-function genetic
studies, CaDIR1-OX Arabidopsis plants and CaDIR1-silenced
pepper plants exhibited drought-sensitive and drought-tolerant
phenotypes, respectively, and these phenotypes were associated
with altered responses to ABA. We were unable to identify the
E3 ligase target proteins, which presumably function downstream
of CaDIR1. Further studies to identify the downstream target
proteins regulated by CaDIR1 E3 ligase are required. Our
findings provide a valuable insight into the plant defense
response to drought stress via the ABA-mediated signaling
pathway.
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FIGURE S1 | (A) Multiple alignment of amino acids in the CaDIR1 protein and its
homologous RING type E3 ligases was performed using ClustalW2. (B)
Phylogenetic tree of CaDIR1 and other plant RING finger type E3 ligases. The tree
was constructed using the amino acid sequences indexed in GenBank BLAST
database. The length of each pair of branches represents the distance between
sequence pairs.

FIGURE S2 | (A) RT-PCR analysis of CaDIR1 gene expression in the leaves of
CaDIR1-silenced pepper plants (TRV:CaDIR1) and empty vector control pepper
plants (TRV:00) 24 h after treatment with ABA. CaACT1 was used as an internal
control gene. (B) RT-PCR analysis of CaDIR1 expression in wild-type plants and
CaDIR1-OX transgenic lines. Actin8 was used as an internal control gene.
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