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Although silicon (Si) is not recognized as an essential element for general higher plants,
it has beneficial effects on the growth and production of a wide range of plant species.
Si is known to effectively mitigate various environmental stresses and enhance plant
resistance against both fungal and bacterial pathogens. In this review, the effects of
Si on plant–pathogen interactions are analyzed, mainly on physical, biochemical, and
molecular aspects. In most cases, the Si-induced biochemical/molecular resistance
during plant–pathogen interactions were dominated as joint resistance, involving
activating defense-related enzymes activates, stimulating antimicrobial compound
production, regulating the complex network of signal pathways, and activating of
the expression of defense-related genes. The most previous studies described an
independent process, however, the whole plant resistances were rarely considered,
especially the interaction of different process in higher plants. Si can act as a modulator
influencing plant defense responses and interacting with key components of plant
stress signaling systems leading to induced resistance. Priming of plant defense
responses, alterations in phytohormone homeostasis, and networking by defense
signaling components are all potential mechanisms involved in Si-triggered resistance
responses. This review summarizes the roles of Si in plant–microbe interactions,
evaluates the potential for improving plant resistance by modifying Si fertilizer inputs,
and highlights future research concerning the role of Si in agriculture.
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INTRODUCTION

Silicon (Si) is the second most abundant element after oxygen in the earth’s crust, and comprises
up to 70% of soil mass (Epstein, 1994; Savant et al., 1997; Ma and Yamaji, 2006). Si was initially not
recognized as an essential element for higher plants, although it was known to be beneficial for plant
growth and production. Its accumulation among plant species differs greatly, due to differences in
root Si uptake capacity (Takahashi et al., 1990). Generally, Si uptake takes place through plant
roots as silicic acid [Si(OH)4], an uncharged molecule (Ma and Yamaji, 2006), and passes through
the plasma membrane via two Si transporters, Lsi1 and Lsi2, which function as influx transporters
and efflux transporters, respectively (Ma et al., 2006, 2007, 2008).

Numerous studies show that Si accumulates in plants and exerts various beneficial effects for
many plant species, especially gramineous plants such as rice and sugarcane and some cyperaceous
plants (Epstein, 1994, 1999; Liang, 1999; Liang et al., 2005b). Absorbed Si is mainly deposited in
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cell walls, and is also involved with stress-related signaling
systems (Fauteux et al., 2005). Si is helpful for improving
the mechanical and physiological properties of plants and
contributes to plants overcoming many biotic and abiotic stresses
(Epstein, 1999; Richmond and Sussman, 2003; Ma, 2004; Ma
and Yamaji, 2006). For example, Si enhances resistance to
diseases caused by fungi, bacteria, and pests (Fauteux et al.,
2005; Marschner, 2012), as well as exerting alleviative effects on
various abiotic stresses including lodging, drought stress, salt
stress, water logging, metal toxicity, nutrient imbalance, radiation
damage, high temperature, freezing, and UV in a wide variety
of plant species (Epstein, 1994, 1999; Savant et al., 1997; Ma,
2004; Ma and Yamaji, 2006; Liu et al., 2014; Coskun et al.,
2016).

Many studies have focused on the role of Si on plant–microbe
interactions and enhanced host resistance to a range of microbial
pathogens by stimulating defense reactions (Remus-Borel et al.,
2005; Cai et al., 2008; Ghareeb et al., 2011; Ye et al., 2013).
However, the mechanistic basis and regulation of Si-mediated
disease resistance are still poorly understood. Furthermore,
the underlying mechanisms of Si regulated plant–microbe
interactions have not been identified so far in higher plants.
In this review, the effect of Si on plant–microbe interactions
are discussed, and the physical, biochemical, and molecular
regulatory mechanisms of Si on plant disease resistance are
extensively reviewed.

Plant diseases are a major threat to agricultural production
as they cause serious loss of crop yield and quality. Numerous
studies have reported that Si is effective in controlling diseases
caused by both fungal and bacterial pathogens in different
plant species (Fauteux et al., 2005; Rodrigues and Datnof,
2015). A priming role of Si has been demonstrated in plant-
pathogen interactions and the regulation of Si in plant diseases is
summarized in Table 1. Si plays a positive role in plant–pathogen
interactions and increases plant resistance to disease caused by
fungi, bacteria, viruses, and nematodes.

Silicon could alleviate plant disease through preventing
pathogen penetration (1) via structural reinforcement (Epstein,
1999; Epstein, 2001; Rodrigues et al., 2015b), (2) by inhibiting
pathogen colonization through stimulating systemic acquired
resistance, (3) through antimicrobial compound production
(Fauteux et al., 2005; Datnoff et al., 2007; Fortunato et al.,
2012b; Van et al., 2013), as well as (4) through increasing
plant resistance by activating multiple signaling pathways and
defense-related gene expression (Fauteux et al., 2005; Chen
et al., 2014; Vivancos et al., 2015). The beneficial effects of Si
with regard to plant resistance to disease are attributed to Si
accumulation in epidermal tissue, the formation of complexes
with organic compounds in cell walls, the induction of phenolic
compounds, phytolexin/glucanase/peroxidase production, and
regulating pathogenicity or stress-related gene expression to
limit pathogen invasion and colonization (Belanger et al.,
2003; Brunings et al., 2009; Chain et al., 2009; Sakr, 2016). The
effect of Si on plant–microbe interactions and related physical,
biochemical, and molecular resistance mechanisms have been
demonstrated in Table 1 and will be detailed discussed in the
following section.

SILICON-MEDIATED DISEASE
RESISTANCE

Physical Mechanisms
The beneficial effects of Si on plant growth are attributed to
improved overall mechanical strength and an outer protective
layer (Epstein, 1999, 2001; Sun et al., 2010). Successful
infection requires plant pathogens to enter the host plant
by penetrating physical barriers including wax, cuticles, and
cell walls (Schmelzer, 2002; Nawrath, 2006; Łaźniewska et al.,
2012).

Silicon-enhanced resistance is associated with the density of
silicified long and short epidermal cells, the thick layer of silica
under the cuticle, the double cuticular layer, the thickened Si-
cellulose membrane, formation of papilla, and complexes formed
with organic compounds in epidermal cell walls that strengthen
plants mechanically. The physical barriers inhibit pathogen
penetration and make plant cells less susceptible to enzymatic
degradation caused by fungal pathogen invasion (Inanaga et al.,
1995; Fauteux et al., 2005; Datnoff et al., 2007; Van et al., 2013).

Silicon accumulates and, when deposited beneath the cuticle,
can form a cuticle-Si double layer to prevent pathogen
penetration, thereby decreasing disease incidence (Figure 1)
(Ma and Yamaji, 2006, 2008). Most Si is cross-linked with
hemicellulose in cell walls, which improves mechanical properties
and regeneration (He et al., 2015; Guerriero et al., 2016). Si
contributes not only to cell-wall rigidity and reinforcement,
it also increases cell-wall elasticity during extension growth
(Marschner, 2012). In primary cell walls, Si interacts with
cell-wall constituents such as pectins and polyphenols, which
increase cell-wall elasticity during extension growth (Emadian
and Newton, 1989). In rice, Si-induced epidermal cell-wall
fortification is associated with reduced severity of blast
disease (Kim et al., 2002). Si application restricted hyphael
entry to the first-invaded epidermal cell for wheat leaves
infected with Pyricularia oryzae, while hyphae successfully
invaded several neighboring leaf cells when there was no Si
treatment (Sousa et al., 2013). A similar result was found in
wheat (Bipolaris sorokiniana) pathosystem (Domiciano et al.,
2013), in which Si supply delayed pathogen ingress into
epidermal cells and reduced fungal colonization in foliar
tissue. For rice infected with Pyricularia grisea and Rhizoctonia
solani, a decrease in the number of leaf blade lesions was
associated with an increased incubation period when Si was
deposited on tissue surfaces (Rodrigues et al., 2001; Seebold
et al., 2004). Moreover, the number of successful penetrative
appressorial sites for P. oryzae was decreased in rice supplied
with Si, suggesting that the denser Si layer contributed to
preventing or delaying pathogen penetration (Hayasaka et al.,
2008).

Besides the reinforcement of cell walls by Si, the formation
of papillae has also been stimulated by Si during pathogen
infection. Silicon accumulation was found to occur in the
haustorial neck and collar area of fungus as well as in
papillae, which contributed to preventing pathogen invasion
(Samuels et al., 1994). Zeyen et al. (1993) demonstrated that
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TABLE 1 | Effects of silicon on plant disease and related resistance mechanisms.

Hosts Diseases Pathogens Effects Reference Resistance mechanisms

Arabidopsis Powdery mildew Erysiphe cichoracearum,
Agrobacterium tumefaciens

+ Ghanmi et al., 2004;
Fauteux et al., 2006;
Vivancos et al., 2015

Physical, biochemical and
molecular

Banana Black sigatoka Mycosphaerella fijiensis + Kablan et al., 2012 Physical and biochemical

Fusarium wilt Fusarium oxysporum f. sp. cubense + Fortunato et al., 2012a Physical and biochemical

Root rot Cylindrocladium spathiphylli + Vermeire et al., 2011 Biochemical

Xanthomonas wilt Xanthomonas campestris + Mburu et al., 2015 Physical and biochemical

Barley Powdery mildew Blumeria graminis + Wiese et al., 2005 Physical

Bean Angular leaf spot Pseudocercospora griseola + Rodrigues et al., 2010 Physical

Belle pepper Phytophthora blight Phytophthora capsici + French-Monar et al., 2010 Physical

Bentgrass Dollar spot Sclerotinia homoeocarpa + Uriarte et al., 2004;
Zhang et al., 2006

Physical and biochemical ?

Bitter gourd Powdery mildew Erysiphe sp. + Ratnayake et al., 2016 Biochemical

Capsicum Anthracnose Colletotrichum gloeosporioides + Jayawardana et al., 2016 Physical and biochemical

Cherry Fruit decay Penicillium expansum, Monilinia
fructicola

+ Qin and Tian, 2005 Biochemical

Chinese cantaloupe Fusarium root rot Fusarium spp. + Liu et al., 2009 Physical and biochemical

Postharvest pink rot Trichothecium roseum + Guo et al., 2007 Physical and biochemical

Coffee Leaf rust Hemileia vastatrix + Carré-Missio et al., 2014 Physical

Root-knot Nematode Meloidogyne exigua + Silva R. et al., 2010 Biochemical

Common bean Anthracnose Colletotrichum lindemuthianum + Polanco et al., 2014;
Rodrigues et al., 2015a

Biochemical

Cotton Fusarium wilt Fusarium oxysporum f. sp.
vasinfectum

+ Whan et al., 2016 Physical and biochemical

Creeping, turf grass Brown patch Rhizoctonia solani + Uriarte et al., 2004;
Zhang et al., 2006

Physical and biochemical?

Cucumber Crown and root rot Pythium ultimum + Chérif et al., 1994 Biochemical

Fusarium wilt Fusarium oxysporum f. sp.
cucumerinum

+ Miyake and Takahashi, 1983 Physical and biochemical?

Powdery mildew Sphaerotheca fuliginea,
Podosphaera xanthii

+ Menzies et al., 1991, 1992;
Fawe et al., 1998;
Liang et al., 2005a

Physical and biochemical

Gerbera daisy Powdery mildew Erysiphe cichoracearum,
Podosphaera fusca

/ Moyer et al., 2008 /

Hami melons Decay Alternaria alternate, Fusarium
semitectum, Trichothecium roseum

+ Bi et al., 2006 Biochemical

Lettuce Downy mildew Bremia lactucae + Garibaldi et al., 2011 Physical and biochemical?

Melon Bacterial fruit blotch Acidovorax citrulli + Conceição et al., 2014 Biochemical

Powdery mildew Podosphaera xanthii + Dallagnol et al., 2015 Biochemical

Muskmelon Pink rot disease Trichothecium roseum + Li et al., 2011 Biochemical

Powdery mildew Sphaerotheca fuliginea + Menzies et al., 1992 Physical and biochemical

Oil palm Basal stem rot Ganoderma boninense + Najihah et al., 2015 Physical

Pea Brown spot Mycosphaerella pinodes + Dann and Muir, 2002 Biochemical

Pearl millet Downy mildew Sclerospora graminicola + Deepak et al., 2008 Physical and biochemical

Perennial ryegrass Fusarium patch Microdochium nivale + McDonagh and Hunter, 2010 Physical

Gray leaf spot Magnaporthe oryzae + Rahman et al., 2015 Biochemical

Potato Dry rot Fusarium sulphureum + Li et al., 2009 Biochemical

Pumpkin Powdery mildew Podosphaera xanthii + Lepolu Torlon et al., 2016 Physical and biochemical?

Rice Blast Pyricularia oryzae, Magnaporthe
grisea, Magnaporthe oryzae

+ Seebold et al., 2000;
Kim et al., 2002;
Rodrigues et al., 2003;
Cai et al., 2008,
Hayasaka et al., 2008;
Brunings et al., 2009;
Domiciano et al., 2015

Physical, biochemical and
molecular

(Continued)
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TABLE 1 | Continued

Hosts Diseases Pathogens Effects Reference Resistance mechanisms

Brown spot Bipolaris oryzae, Cochliobolus
miyabeanus

+ Dallagnol et al., 2011, 2013;
Prabhu et al., 2012;
Van et al., 2015a

Physical, biochemical and
molecular

Grain discoloration Bipolaris oryzae + Prabhu et al., 2012 Molecular

Leaf scald Monographella albescens,
Microdochium oryzae

+ Tatagiba et al., 2016;
Araujo et al., 2015

Physical and biochemical

Sheath blight Rhizoctonia solani + Peters et al., 2001;
Schurt et al., 2014

Physical and biochemical

Rose Powdery mildew Podosphaera pannosa + Shetty et al., 2012 Physical

Sorghum Anthracnose Colletotrichum sublineolum + Resende et al., 2013 Physical and biochemical ?

Soybean Phytophthora stem and
root rot

Phytophthora sojae + Guérin et al., 2014 Molecular

Rust Phakopsora pachyrhizi + Cruz et al., 2014;
Lemes et al., 2011

Biochemical

St. Augustinegrass Gray leaf spot Magnaporthe grisea + Brecht et al., 2007 Physical and biochemical

Strawberry Powdery mildew Sphaerotheca aphanis + Kanto et al., 2006 Physical and biochemical

Sugarcane Brown rust Puccinia melanocephala + Ramouthar et al., 2015 Physical and biochemical ?

Tall fescue Brown patch Rhizoctonia solani − Zhang et al., 2006 /

Tobacco Viral infection Tobacco ringspot virus + Zellner et al., 2011 Molecular

Tobacco mosaic virus / Zellner et al., 2011 /

Tomato Bacterial speck Pseudomonas syringae + Andrade et al., 2013 Biochemical

Bacterial wilt Ralstonia solanacearum + Ghareeb et al., 2011;
Chen et al., 2014

Molecular

Fusarium crown and
root rot

Fusarium oxysporum f. sp
radicis-lycopersici

+ Huang et al., 2011 Physical

Tomato, bitter
gourd

Root rot Pythium aphanidermatum + Heine et al., 2007 Biochemical and molecular?

Wheat Blast Pyricularia grisea + Filha et al., 2011 Physical and biochemical

Leaf blast Pyricularia oryzae + Silva et al., 2015 Biochemical

Leaf streak Xanthomonas translucens + Silva I.T. et al., 2010 Physical and biochemical

Powdery mildew Blumeria graminis + Chain et al., 2009;
Guével et al., 2007; Moldes
et al., 2016

Physical, biochemical and
molecular

Spot blotch Bipolaris sorokiniana + Domiciano et al., 2010 Physical and biochemical

Zucchini squash Powdery mildew Erysiphe cichoracearum,
Podosphaera xanthii

+ Menzies et al., 1992;
Savvas et al., 2009

Physical and biochemical

Positive (+), negative (−) or no effect (/) of silicon on plant resistance to disease. ?, indicates possible defense mechanisms are involved.

barley epidermal cells could produce papillae in response to
Blumeria graminis f. sp. hordei infection during Si application.
A similar result has been found in the rose, in which Si
supply increased the number of papillae in leaf cells in
response to Podosphaera pannosa infection (Shetty et al., 2012).
The prevalence of papillae after Si treatment could increase
rice resistance to blast (Cai et al., 2008), wheat and barley
resistance to powdery mildew (Zeyen et al., 1993; Belanger et al.,
2003).

Heine et al. (2007) reported that the ability of Si to inhibit
fungal spread in root apices is dependent on the uptake of
Si into root symplasts. Further, the accumulation of Si on
root cell walls did not represent a physical barrier to the
spread of Pythium aphanidermatum in tomato or bitter gourd
roots. In cucumber plants, Si foliar application could increase
cucumber resistance to powdery mildew via physical barrier
and osmotic effects, but Si root application can induce systemic
resistance (Liang et al., 2005a). Taken together, Si, which is

deposited in the wax, cuticle, and cell wall, as well as papillae,
contributes in part to increased physical resistance against
pathogen penetration. However, it is suggested that biochemical
resistance to pathogens, as regulated by Si, is more complex than
physical resistance alone; this has been strongly contested in
recent years.

Biochemical Mechanisms
Silicon-enhanced biochemical resistance is associated with (1)
increasing the activity of defense-related enzymes, such as
polyphenoloxidase, glucanase, peroxidase, and phenylalanine
ammonia-lyase (PAL); (2) inducing antimicrobial compounds
production, such as phenolic, flavonoids, phytoalexins and
pathogenesis-related (PR) proteins in plants; and (3) regulating
systemic signals, such as salicylic acid (SA), jasmonic acid (JA),
and ethylene (ET; Fauteux et al., 2005; Datnoff et al., 2007;
Fortunato et al., 2012b; Van et al., 2013).
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FIGURE 1 | (A) Leaf blast symptoms in rice after inoculated with Magnaporthe grisea for 10 days (Sun et al., 2010). Rice plants were continuously treated with (+Si)
or without silicon (–Si). (B) Silica layer was formed in the cell wall of Si-treated plants and enhanced plant resistance to fungi infection by physical barriers.

Defense-Related Enzymes and Antimicrobial
Compounds
Defense-related enzymes are closely linked with disease
resistance, and Si has been reported to stimulate the activity
of these enzymes during plant–pathogen interactions (Fauteux
et al., 2005; Datnoff et al., 2007; Van et al., 2013). Several
studies have reported the role of Si in disease resistance by
activating defense-related enzyme activities such as chitinase,
peroxidases, polyphenoloxidases, β-1,3-glucanase, phenylalanine
ammonia-lyase, uperoxide dismutase, ascorbate peroxidase,
glutathione reductase, catalase, lipoxygenase, and glucanase.
PAL, involved in the synthesis of plant secondary antimicrobial
substances, is essential for plant disease resistance responses
(Waewthongrak et al., 2015). The higher PAL activity after
Si treatment contributes to an accumulation of total soluble
phenolic and lignin-thioglycolic acid derivatives in the leaves
of banana and coffee plants, and this corresponds with low
disease incidence (Silva R. et al., 2010; Fortunato et al., 2012b).
Polyphenol oxidase (PPO), which mainly exists in cytoplasm
in a free form or bound in chloroplasts, mitochondria, and
other subcellular organelles, is the main enzyme of phenolic
substance oxidation (Quarta et al., 2013); its activity has been
positively correlated with plant disease resistance (Piperno,
2006). Furthermore, PPO was found to be involved in the
synthesis of lignin and to increase the antibacterial ability
of host plants (Song et al., 2016). Si application could also
increase peroxidase (POD) and chitinase (CHT) activities,
which play important roles in host–pathogen interactions.
POD is involved in cell-wall reinforcement and the final steps
of lignin biosynthesis, as well as the cross-linking of cell-wall

proteins (Brisson et al., 1994), while CHT is one of the PR
proteins that contribute to hydrolyze the cell walls of many
phytopathogenic fungi (Pan and Ye, 1992; Shewry and Lucas,
1997).

Defense-related enzyme activities induced by Si may regulate
gene expression related to enzyme synthesis; for example, the
expression of genes encoding phenylalanine ammonia-lyase
(PALa and PALb) and lipoxygenase (LOXa) were significantly
up-regulated in Si-treated perennial ryegrass plants, associated
with suppression of gray leaf spot (Rahman et al., 2015).
Si could elevate the activities of defense-related enzymes
(e.g., peroxidase and polyphenol oxidase) via enhancing
or priming JA-inducible responses to herbivory in rice (Ye
et al., 2013). The beneficial effects of Si for suppressing
pathogen infections via an increase in the activities of defense-
related enzymes have been found in the pathosystems of
cucumber (Pythium spp. and Podosphaera xanthii), pea
(Mycosphaerella pinodes), wheat (Pyricularia oryzae), rice
(Magnaporthe oryzae, Bipolaris oryzae, Rhizoctonia solani,
and Pyricularia oryzae), melon (Trichothecium roseum and
Podosphaera xanthii), Chinese cantaloupe (Trichothecium
roseum), bean (Colletotrichum lindemuthianum), perennial
ryegrass (Magnaporthe oryzae), and soybean (Corynespora
cassiicola; Table 2).

A substantial response to defense-related enzymes is the
change in antimicrobial substances; generally, lower disease
incidence in plants after Si application are associated with a
higher activity of defense-related enzymes, which induce the
production and accumulation of antimicrobial compounds, such
as phenols, flavonoids, phytoalexins, and PR proteins in plants
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TABLE 2 | Defense-related enzymes regulated by silicon in plant–pathogen interactions.

Hosts Diseases Pathogen Defense-related enzymes Reference

Bean Anthracnose Colletotrichum
lindemuthianum

Superoxide dismutase, ascorbate peroxidase,
glutathione reductase

Polanco et al., 2014

Cucumber Crown and root rot Pythium spp. Chitinase, peroxidases, polyphenoloxidases Chérif et al., 1994

Powdery mildew Podosphaera xanthii Peroxidases, polyphenoloxidases, chitinases Liang et al., 2005a

Melon Pink rot Trichothecium roseum Peroxidase Bi et al., 2006

Powdery mildew Podosphaera xanthii Chitinases, superoxide dismutase, β-1,3-glucanase Dallagnol et al., 2015

Chinese cantaloupe Pink rot Trichothecium roseum Peroxidases, phenylalanine ammonia-lyase Guo et al., 2007

Pea Leaf spot Mycosphaerella pinodes Chitinase, β-1,3-glucanase Dann and Muir, 2002

Perennial ryegrass Gray leaf spot Magnaporthe oryzae Peroxidase, polyphenol oxidase Rahman et al., 2015

Rice Blast Magnaporthe oryzae,
Pyricularia oryzae

Glucanase, peroxidase, polyphenol oxidase,
phenylalanine ammonia-lyase, superoxide dismutase,
catalase, ascorbate peroxidase, glutathione reductase,
lipoxygenase

Rodrigues et al., 2003, 2004,
2005; Cai et al., 2008;
Domiciano et al., 2015

Brown spot Bipolaris oryzae Chitinase, peroxidase Dallagnol et al., 2011

Sheath blight Rhizoctonia solani Phenylalanine ammonia-lyases, peroxidases,
polyphenoloxidases, chitinases

Schurt et al., 2014

Soybean Target spot Corynespora cassiicola Chitinases, β-1-3-glucanases, phenylalanine
ammonia-lyases, peroxidases, polyphenol oxidases

Fortunato et al., 2015

Wheat Blast Pyricularia oryzae Chitinases, peroxidases Filha et al., 2011

after pathogen penetration (Chérif et al., 1994; Fawe et al., 1998;
Rodrigues et al., 2004; Remus-Borel et al., 2005). However, the
opposite effect was found in soybeans, in which Si application
reduced the basal antioxidant enzyme activity of leaves during
Cercospora sojina infection, leading to an increase in host
susceptibility to frogeye leaf spot. These findings suggest that Si-
induced resistance to plant disease was most likely due to the
less than optimal conditioning of the antioxidant system (Telles
Nascimento et al., 2016).

Antimicrobial compounds help higher plants to combat
disease (Fauteux et al., 2005; Datnoff et al., 2007; Van et al.,
2013), and Si has been documented to stimulate the accumulation
of antimicrobial compounds, such as phenols, flavonoids, and
phytoalexins during pathogen infection (Chérif et al., 1994;
Fawe et al., 1998; Rodrigues et al., 2004; Remus-Borel et al.,
2005); this may therefore contribute to the enhancement of
defense-related enzyme activities. Defense-related antimicrobial
phenols or lignin-associated polyphenolic compounds increased
by Si resulted from the inducing activities of PAL and
PPO following pathogen invasion (Rahman et al., 2015). Si-
enhanced lignin and flavonoid production is attributed to higher
PAL activity induced by Si; PAL converts L-phenylalanine
into trans-cinnamic acid, which in turn is the precursor
of lignin and flavonoids (Dixon et al., 2002; Hao et al.,
2011).

Lignin and phenolic secondary metabolism play important
roles in plant disease resistance. Si is involved in phenolic
metabolism and lignin biosynthesis in plant cell walls
(Marschner, 2012). It also increases lignin-carbohydrate
complexes and lignin content in the epidermal cell wall of
rice, and enhances plant resistance to blast disease (Inanaga
et al., 1995; Cai et al., 2008). Si supply could increase the total
concentration of soluble phenolic compounds in host plants and
enhance plant disease resistance through delaying the growth

of invading pathogens (Dallagnol et al., 2011; Fortunato et al.,
2015). Flavonoids, another phenolic compound, are also induced
by Si and enhanced rose plant resistance to Podosphaera pannosa
(Shetty et al., 2012), and wheat resistance to Pyricularia oryzae
(Silva et al., 2015).

Higher accumulation of phenolic and lignin or lignin-
thioglycolic acid derivatives, due to Si treatment, fortified
cucumber plants against damping-off (Pythium ultimum) (Chérif
et al., 1994), wheat against powdery mildew (Blumeria graminis)
(Belanger et al., 2003) and blast (Pyricularia oryzae) (Filha
et al., 2011), Arabidopsis against powdery mildew (Erysiphe
cichoracearum) (Ghanmi et al., 2004), soybean against target spot
(Corynespora cassiicola) (Fortunato et al., 2015), melon against
powdery mildew (Podosphaera xanthii) (Dallagnol et al., 2015),
rice against blast disease (Magnaporthe grisea) (Cai et al., 2008),
brown spot (Bipolaris oryzae) (Dallagnol et al., 2011), and sheath
blight (Rhizoctonia solani) (Zhang et al., 2013).

Phytoalexins is recognized to be critical in plant defense
against pathogen infection. Enhanced production of phytoalexins
reduces the incidence of powdery mildew caused by Podosphaera
xanthii in cucumber plants (Fawe et al., 1998), as well as
blast caused by M. grisea in rice (Rodrigues et al., 2004,
2005). Si supply is reported to increase accumulation of the
flavonoid phytoalexins in cucumber plants during Podosphaera
xanthii infection (Fawe et al., 1998). Similar results have
been found in rice, in which Si increased resistance to
blast by stimulating the production of phytoalexins, such
as momilactones A and B (Rodrigues et al., 2004, 2005).
With regard to perennial ryegrass (Magnaporthe oryzae)
pathosystems, Si-induced enhancement of phenolic acids,
including chlorogenic acid and flavonoids, and relative levels
of genes encoding PAL and lipoxygenase contributed to
improved resistance to gray leaf spot disease (Rahman et al.,
2015).
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FIGURE 2 | Signaling pathways in the plant defense response regulated by silicon (Si). Crosstalk between signaling pathways in plant defense originating
from the actions of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are demonstrated, as well as their interactions in modulating the defensive response
regulated by Si. The SA signaling pathway mainly involves in biotrophs disease, whereas JA and ET signaling pathways attribute to necrotrophs disease. T, negative
effect; purple stars, positive effect; red, increased or up-regulated by Si supply. The networking of signaling pathways are modified from Pieterse et al. (2009).

Systemic Signals
To prevent pathogen infection, host plants have developed
a complicated immune system providing several layers of
constitutive and inducible defense mechanisms, which are
regulated by a complex network of signal transduction pathways
(Grant et al., 2013). SA, JA, and ET play key roles in plant
immunity networks and regulate plant defense responses (Clarke
et al., 2000; Devadas et al., 2002). SA is mainly active against
biotrophic and hemibiotrophic pathogens, whereas JA and ET are
predominantly involved against necrotrophic pathogens (Pieterse
et al., 2012).

Several studies have suggested that Si may regulate plant
stress responses by modulating phytohormone homeostasis and
signaling pathways (Zhang et al., 2004; Fauteux et al., 2006; Iwai
et al., 2006; De Vleesschauwer et al., 2008; Brunings et al., 2009;
Chen et al., 2009; Ghareeb et al., 2011; Reynolds et al., 2016).
Plant phytohormones accumulate in Si-treated plants in response
to pathogen invasion, wounding, or herbivory (Fauteux et al.,
2006; Ye et al., 2013; Kim et al., 2014); for example, Si-induced
rice defense against insect herbivores through JA accumulation
(Ye et al., 2013) and regulated wound-induced JA biosynthesis
(Kim et al., 2014). In Si-treated Arabidopsis plants infected
with powdery mildew pathogen (Erysiphe cichoracearum), the
biosynthesis of SA, JA, and ET in leaves was stimulated, leading
to increased resistance (Fauteux et al., 2006). Similarly, tomato

infected with Ralstonia solanacearum showed that Si triggers
activation of the JA and ET signaling pathways (Zhang et al., 2004;
Chen et al., 2009; Ghareeb et al., 2011). The stimulating effects of
Si on the JA and ET signaling pathways in rice challenged with
Magnaporthe oryzae demonstrate that the Si-mediated signaling
pathway is critical for enhancing rice resistance to blast disease
(Iwai et al., 2006; De Vleesschauwer et al., 2008; Brunings et al.,
2009). However, Van et al. (2015a) suggest that Si-induced rice
resistance to Cochliobolus miyabeanus is regulated independently
of the classic hormones SA and JA, but that it does interfere
with the synthesis and/or action of fungal ET. In the defense
of Arabidopsis against powdery mildew, although Si increases
the expression of genes encoding enzymes involved in the SA
pathway, resistant phenotypes show a significantly decreased
production of SA and expression of defense genes compared
with susceptible controls, implying that Si-mediated resistance
involves mechanisms other than SA-dependent defense responses
(Vivancos et al., 2015).

The signaling pathways in the plant defense response
regulated by Si were demonstrated in Figure 2. The EDS1 and
PAD4 genes are required for SA biosynthesis, whereas the EDS5
and SID2 genes involve in regulating SA biosynthesis (Shah,
2003). In Arabidopsis, the TaLsi plant, which contained higher Si,
were more resistance to Golovinomyces cichoracearum infection
than control plants when treated with Si, and corresponded with
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FIGURE 3 | Significantly regulated genes in response to silicon in tomato plants after infected with Ralstonia solanacearum for 72 h (Ghareeb et al.,
2011). The heatmap represents the ratio of genes expression between plants with silicon and inoculated with R. solanacearum (Si + P) and plants without silicon and
inoculated with R. solanacearum (P).

higher expressions of EDS1 and PAD4 genes, as well as NPR1
and three SA-induced PR defense genes PR1, PR2, and PR5
(Vivancos et al., 2015). Moreover, the mutants of TaLsi1 sid2
and TaLsi1 pad4, which crossed mutants pad4 and sid2 with the
line TaLsi1, showed lower area under the disease progress curve
(AUDPC) after Si supply, suggesting that Si-enhanced resistance
to Golovinomyces cichoracearum infection in Arabidopsis is
maintained in pad4 and sid2 mutants engineered to better absorb
Si (Vivancos et al., 2015). The regulatory protein NPR1 is
critical for activation of PR gene expression in response to SA,
and NPR1 itself is positively regulated by some SA-inducible
WRKY proteins (Li et al., 2004). During tomato plant infected
with R. solanacearum, the gene expression of transcription
factor WRKY1 was upregulated in response to Si (Ghareeb
et al., 2011). Si induced defense related genes and transcripts
belong to the SA dependent pathway, which accompanied by
an increase in the level of endogenous SA and subsequent
PRs expression (Durrant and Dong, 2004; Kurabachew et al.,
2013).

Silicon can induce expression of a large spectrum of inducible
defense responses and amplifies the JA-mediated induced defense
response by serving as a priming agent for the JA pathway

(Figure 2), for example, the enhanced induction of defense-
related enzymes and proteins, as well as enhanced induction
of transcripts encoding proteins involved in JA signaling,
whereas JA promotes overall leaf silicification and the maturation
of phytolith-bearing silica cells by increase Si accumulation
(Fauteux et al., 2006; Ye et al., 2013). During rice attacked by
caterpillar Cnaphalocrocis medinalis (leaffolder, LF), significant
decreases in Si deposition and an apparent loss of Si-induced
LF resistance were observed in transgenic events that silenced
the expression of either allene oxide synthase (OsAOS) or
CORONATINE INSENSITIVE1 (OsCOI1), which is involved
in JA biosynthesis or perception, suggesting that Si primes
JA-mediated antiherbivore defense responses (Ye et al., 2013).
Ubiquitin-protein ligase is suggested to be involved in the fine-
tuning of JA-related response by degrading the JA-negative
regulator, JAZ1 (Thines et al., 2007). Dreher and Callis (2007)
demonstrated that up-regulation of ubiquitin-protein ligase by Si
application in plants after pathogen infection may contribute to
tuning the signaling of a defense response.

JERF3, TSRF1 and ACCO are ET marker genes, JERF3 is
a transcription factor which is activated in response to ET
and JA signaling, ACCO involved in ethylene biosynthesis, and
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FIGURE 4 | The role of silicon (Si) on plant–pathogen interactions. Si mediated plant defense responses were classified as physical, biochemical and
molecular mechanisms. Physical mechanisms involved in cell wall reinforcement and papillae deposition, biochemical mechanisms were attributed to activating
defense-related enzymes, stimulating antimicrobial compounds production as well as regulating the complex network of signals pathways, and the molecular
mechanisms mainly contained the regulation of genes and protein related to defense responses.

TSRF1 is an ET-responsive transcription factor (Pirrello et al.,
2012). In tomato plants, the expression of JERF3, TSRF1 and
ACCO genes were upregulated by Si when challenging with
R. solanacearum, supporting that Si induced resistance were
mediated via ET and JA signaling pathways (Ghareeb et al.,
2011). ET and JA interact to regulate the expression of particular
defense-related genes such as PDF1.2 upon pathogen perception
(Pieterse et al., 2009) (Figure 2). In Arabidopsis, Si increased the
PDF1.2 expression during Botrytis cinerea infection, suggesting
its role as a modulator of the signaling pathways involved in the
plant’s response to fungal infection (Cabot et al., 2013). In rice-
C. miyabeanus pathosystems, ET-insensitive OsEIN2a antisense
plants were more resistance to brown spot than wildtype plants,
and Si treatment of the OsEIN2a antisense transgenics or
coapplication of Si and ET signaling blocker silver thiosulfate
(STS) had no additive effect on brown spot resistance, suggesting
that Si specifically targets the ET signaling pathway to defense
resistance (Van et al., 2015a).

Three classes of active defense mechanisms are distinguished
in plant–pathogen interactions regulated by Si application: the
primary response comes in cells infected by pathogens; the
secondary response is induced by elicitors and restricted to cells
near to the initial infection site; and thirdly, the systemic acquired
response is transported hormonally to all tissues of the infected
plant (Hutcheson, 1998).

Molecular Mechanisms
Silicon is involved in the metabolic processes of plant–pathogen
interaction, activating defense genes of host plants via a series of

physiological and biochemical reactions and signal transductions,
as well as inducing the resistance response in plants to prevent
plant diseases (Fauteux et al., 2005; Vivancos et al., 2015). Si
may act in the primary response and modulate the activity of
post-elicitation intracellular signaling systems which regulate the
expression of defense genes related to structural modifications
of cell walls, hypersensitivity responses, hormone synthesis,
antimicrobial compound synthesis, and PR proteins (Fauteux
et al., 2005).

Transcriptomic and proteomic studies have been conducted
to illustrate the defense responses of Si in various pathosystems
(Fauteux et al., 2006; Chain et al., 2009; Majeed Zargar et al.,
2010; Ghareeb et al., 2011; Nwugo and Huerta, 2011). Si could
induce tomato resistance to Ralstonia solanacearum via up-
regulating the expression of genes involved in defense and stress
responses, such as WRKY1 transcription factor, disease resistance
response protein, ferritin, late embryogenesis abundant protein,
and trehalose phosphatase (Figure 3) (Ghareeb et al., 2011). The
similar result have been found in tomato stems of rhizobacteria
and silicon treated-tomato genotypes upon inoculation with
R. solanacearum compared to the non-treated, pathogen
inoculated control, in which most of the up-regulated genes are
involved in signal transduction, defense, protein synthesis and
metabolism, while a large proportion of down regulated genes
were involved in photosynthesis, lipid metabolism (Kurabachew
et al., 2013). Crosstalk between signaling pathways in plant
defense regulated by Si and related transcription factor have
been detailed discussed in the Section of “Systemic Signals”
and Figure 2. During the induction of systemic acquired
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resistance in cucumber mediated with Si, the expression of gene
encoding a novel proline-rich protein (PRP1) was enhanced,
which contributed to cell-wall reinforcement at the site of
attempted penetration of fungi into epidermal cells (Kauss
et al., 2003). During pathogen interactions in tomato plants
(R. solanacearum), the expression of CHI-II, GLU, PGIP, and
POD, which are attributed to virulence factors released by the
pathogen to inhibit host resistance and facilitate host invasion,
were down-regulated by Si application (Ghareeb et al., 2011).
In tomato plants inoculated with R. solanacearum, 26 proteins
were markedly changed by Si supply, suggesting that Si-mediated
disease resistance may be related to change at a protein level
(Chen et al., 2014).

Silicon could negate many transcriptional changes induced
by pathogen infection, for example, Arabidopsis infected with
the fungus Erysiphe cichoracearum results in alteration of the
expression of a set of nearly 4000 genes, and the number or
expression level of up-regulated genes, which are defense-related,
were not changed compared with control and Si-treated plants,
whereas the magnitude of the down-regulated genes, which are
involved in primary metabolism, were attenuated when treated
with Si (Fauteux et al., 2006). In wheat plants infected with
Blumeria graminis f. sp. tritici, about 900 genes responding to
pathogen infection were altered in control leaves, while few
genes were changed by the pathogen in Si-supplied plants,
suggesting that Si almost eliminated the stress imposed by the
pathogen invasion (Chain et al., 2009). Similar findings were
obtained by Brunings et al. (2009), the impact of Magnaporthe
oryzae inoculation on the transcriptome of rice is diminished
by Si application. Therefore, rather than inducing resistance
by transcriptional reprogramming of defense-related genes, Si
seems to eliminate the impact of pathogen infection on the
transcriptome of host plants, probably through preventing the
exploitation of pathogen virulence factors (Van et al., 2015b).

CONCLUSION AND PERSPECTIVES

By combining available information on the interaction of
plant–microbes mediated by Si, the physical, biochemical,
and molecular mechanisms that can be attributed to Si-
mediated plant defense responses have been summarized in
this review (Figure 4). Firstly, Si induces resistance against
a wide range of diseases by acting as a physical barrier,
which is based on pre-formed defense barriers before pathogen

infection, for example, wax, cuticle, and cell-wall protection,
and post-formed defense barriers after pathogen infection,
for example, cell-wall reinforcement and papillae deposition
at infection sites. Secondly, Si-induced biochemical resistance
during plant–pathogen interactions involves activating defense-
related enzymes activates, stimulating antimicrobial compound
production, and regulating the complex network of signal
pathways. Finally, Si may act at a molecular level to regulate
the expression of genes involved in the defense response.
Understanding plant–microbe interactions regulated by Si will
be helpful in the effective use of this mineral to increase
crop yield and enhance resistance to plant diseases. Although
numerous studies have elucidated the possible mechanism
of Si-mediated resistance at the physical, biochemical, and
molecular levels, detailed mechanisms of Si regulated plant–
microbe interactions, such as plant signaling transduction and
transcriptome regulation of defense-related pathways, are needed
for further study.
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