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Increasing grain yield is the ultimate goal for maize breeding. High resolution quantitative

trait loci (QTL) mapping can help us understand the molecular basis of phenotypic

variation of yield and thus facilitate marker assisted breeding. The aim of this study is to

use genotyping-by-sequencing (GBS) for large-scale SNP discovery and simultaneous

genotyping of all F2 individuals from a cross between two varieties of maize that are

in clear contrast in yield and related traits. A set of 199 F2 progeny derived from the

cross of varieties SG-5 and SG-7 were generated and genotyped by GBS. A total

of 1,046,524,604 reads with an average of 5,258,918 reads per F2 individual were

generated. This number of reads represents an approximately 0.36-fold coverage of

the maize reference genome Zea_mays.AGPv3.29 for each F2 individual. A total of

68,882 raw SNPs were discovered in the F2 population, which, after stringent filtering,

led to a total of 29,927 high quality SNPs. Comparative analysis using these physically

mapped marker loci revealed a higher degree of synteny with the reference genome.

The SNP genotype data were utilized to construct an intra-specific genetic linkage map

of maize consisting of 3,305 bins on 10 linkage groups spanning 2,236.66 cM at an

average distance of 0.68 cM between consecutive markers. From this map, we identified

28 QTLs associated with yield traits (100-kernel weight, ear length, ear diameter, cob

diameter, kernel row number, corn grains per row, ear weight, and grain weight per

plant) using the composite interval mapping (CIM) method and 29 QTLs using the

least absolute shrinkage selection operator (LASSO) method. QTLs identified by the

CIM method account for 6.4% to 19.7% of the phenotypic variation. Small intervals

of three QTLs (qCGR-1, qKW-2, and qGWP-4) contain several genes, including one

gene (GRMZM2G139872) encoding the F-box protein, three genes (GRMZM2G180811,

GRMZM5G828139, and GRMZM5G873194) encoding the WD40-repeat protein, and

one gene (GRMZM2G019183) encoding the UDP-Glycosyltransferase. The work will not

only help to understand themechanisms that control yield traits of maize, but also provide

a basis for marker-assisted selection and map-based cloning in further studies.
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INTRODUCTION

Maize (Zea mays) is one of the most important cereal and forage
crops of the world. As a result, high grain yield is a constant topic
and pursuing direction of maize breeders. Most yield related
traits are quantitative in nature and are often controlled by
multiple genes. Grain yield of maize is a complicated agronomic
trait that is mainly determined by 100-kernel weight (KW), ear
length (EAL), ear diameter (EAD), cob diameter (CD), kernel
row number (KRN), corn grains per row (CGR), ear weight
(EW), and grain yield per plant (GWP). Quantitative trait loci
(QTL) mapping has been successfully applied to maize and with
this technology people have identified many loci relevant to yield
and yield component traits (Beavis et al., 1994; Veldboom et al.,
1994; Austin and Lee, 1996; Lima et al., 2006; Messmer et al.,
2009). Combined with map-based cloning, QTL mapping has
also been shown to be an efficient strategy to detect underlying
genes and elements (Bommert et al., 2013). However, the high
complexity of crop genomes and the low-coverage of genetic
markers across chromosomes have posed great challenges for
dissection of quantitative genetic variation by QTL analysis,
especially for detecting small-effect QTL (Wenzl et al., 2006; Yu
et al., 2011).

Along with the appearance of the first maize genetic linkage
map in 1986 based on restriction fragment length polymorphisms
(RFLP) technology (Helentjaris et al., 1986), molecular markers
based on PCR technology, such as simple sequence repeats (SSRs)
(Senior et al., 1996), expressed sequence tags (ESTs) (Davis et al.,
1999), and amplified fragment length polymorphisms (AFLPs)
(Vuylsteke et al., 1999) were further developed and applied in
constructing maize genetic linkage maps. Subsequently, large
number of QTLs for maize complex traits were detected and
mapped on all 10 maize chromosomes based on these linkage
maps (Tsonev et al., 2009; Qiu et al., 2011). However, low
marker density on these maps limits QTL mapping accuracy,
which leads to low QTL mapping resolution (Beavis et al.,
1994; Veldboom et al., 1994). Along with the development
in the next-generation sequencing (NGS) technologies and the
continuous declining cost of genotyping, it is possible to develop
high-quality SNP markers for genotyping of maize mapping
populations. Genotyping-by-sequencing (GBS) (Elshire et al.,
2011) is a popular new method for developing high density SNPs
for constructing genetic linkage maps and has been successfully
utilized for genetic studies in various species (Poland et al.,
2012; Byrne et al., 2013; Sonah et al., 2013; Spindel et al., 2013),
including maize (Chen et al., 2014; Zhou et al., 2016).

Association studies have also been successfully used for
the genetic analysis of yield traits. To date, using different
populations, more than 36 QTLs for traits related to cob
diameter have been identified on all 10 maize chromosomes
except chromosome 6 and most of these QTLs are located on
chromosome 1 and 2 (Gramene QTL database). More than 45
QTLs for traits related to ear diameter have been identified
on all maize chromosomes. More than 149 QTLs for traits
related to 100-kernel weight have been identified. More than
46 QTLs for traits related to ear length have been identified
on all maize chromosomes except chromosome 7. More than

23 QTLs for traits related to kernel row number have been
identified on nine of the 10 maize chromosomes. More than 26
QTLs for traits related to grain number per panicle have been
identified on six of the 10 maize chromosomes. A recent study
of genome-wide dissection of the maize ear genetic architecture
using multiple populations carried out by Xiao et al. (2016)
showed that a total 243 QTLs for maize ear traits have been
mapped. Genome-wide association studies (GWAS) were carried
out for 17 agronomic traits, e.g., 100-grain weight, cob diameter
and ear diameter, with a panel of 513 maize inbred lines and
343 significant loci were reported (Yang et al., 2014). A total
42 associated SNPs were identified, located in 33 genes for 126
trait× environment× treatment combinations (Austin and Lee,
1996).

Construction of large advanced crop populations can be
both time consuming and expensive. In addition, Vales et al.
(2005) concluded that early generation population is beneficial
for detecting more QTLs, including small-effect QTLs (Vales
et al., 2005). The purposes of this study were (1) to develop
bin markers from high-throughput GBS data in a set of F2
individuals derived from two maize inbred lines SG-5 and
SG-7; (2) to construct a high-density linkage map based on
these bin markers; (3) to map QTLs for 100-kernel weight,
ear length, ear diameter, cob diameter, kernel row number,
corn grains per row, ear weight, and grain weight per plant
in the F2 population, and to predict candidate genes for the
detected QTLs with small physical intervals using maize gene
annotations.

RESULTS

Genome Wide Identification of SNPs Using
GBS
For genome-wide detection of SNPs from maize using GBS, the
restriction enzymeMse I and Hae III were used to digest genomic
DNA and construct GBS libraries of the F2 lines and the parents
of the intra-specific mapping population (SG-5 and SG-7).
Sequencing was carried out in an Illumina high-throughput
sequencing platform Illumina HiseqTM sequencer and a total
of 1,059,026,818 reads were generated. A total of 1,046,524,604
high quality filtered reads successfully passed the QC steps as the
remaining reads were filtered out due to the lack of proper layout
of barcodes and restriction sites. The average number of reads
per individual was 5,258,918 (Figure S1), which is equivalent
to approximately 0.36-fold coverage of the maize genome. The
overall GC content of the sequences was about 40.43%. Q20
and Q30 scores were about 96.37 and 91.34%, respectively. The
144-mer short reads of parents and F2 individuals were aligned
with the Zea_mays.AGPv3.29 sequence to retrieve the physical
position of each SNP. The SNPs were found to be distributed
across all 10 maize chromosomes as illustrated in Figure 1 and
Table S2. A total of 133,936 polymorphic SNPs between the
two parental lines were identified by low-coverage sequencing
(Table S1). Because the two parents are homozygous inbred
lines with genotypes of aa and bb, only 68,882 homozygous
polymorphic SNPs fell into the aa × bb segregation pattern
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FIGURE 1 | Distribution and structural annotation of SNPs. Distributions of SNPs detected on each maize chromosome (5 kb window size) are shown in the

Circos diagram. Track 1 represents the 10 maize chromosomes (1–10) in different colors. Tracks 2, 3, 4, and 5 represent raw SNPs, filtered SNPs, genes and exons,

respectively. Different tracks are represented by different colors as indicated.

(Figure 2 and Figure S2). The maize genome annotation project
database (ftp://ftp.ensemblgenomes.org/pub/plants/release-29/
fasta/zea_mays/dna/Zea_mays.AGPv3.29.dna.toplevel.fa.gz) was
used to delineate the location of the GBS derived 68,882 SNPs
in the genomic regions: intergenic, genic (exons), intragenic
(introns), and UTRs. Majority (82.8%) of the SNPs were located
in intergenic regions (Figure 2). Of the remaining, the largest
numbers of SNPs were found to be located within introns
(9.2%) followed by downstream (3.2%), upstream (2.6%), and
exons (2.1%). In the F2 population, SNPs should segregate in
a 1:2:1 ratio. SNPs exhibiting significant segregation distortion
(p < 0.001, Chi-square test) were filtered out. Additionally,
SNPs containing abnormal base and with more than 25%

missing values across the genotyped individual were also deleted.
Subsequently, a total of 29,927 SNPs were used to infer bins.
A bin is defined as a perfect linkage disequilibrium (LD) block
within which all SNPs segregate identically. The list of SNPs
along with their flanking sequences are given in Table S3 (number
per 100 kb). The number of raw and filtered SNPs and their
frequencies (number per 100 kb) varied across chromosomes
and closely mirrored the distribution of genes and exons. The
largest number of raw SNPs were found on chromosome 1
(457,898). The highest frequency (154.78) of raw SNPs per
100 Kb occurred on chromosome 10 and lowest frequency
(135.04) on chromosome 6. After filtering, chromosome has the
maximum number of SNPs (4643).
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Genetic Linkage Map with Bin Markers
The recombination maps were divided into skeleton bins (Huang
et al., 2009) for further genetic analysis. A total of 3,305 bins
were formed as described in the Method Section (Figure 3). The

FIGURE 2 | Distribution of SNPs with the aa × bb segregation pattern

on the basis of their locations in different genomic regions.

length of bin markers ranges from 50 Kb to 21.65 Mb, with a
mean of 622.2 Kb, and a median of 350 Kb. In total, 71.5% of
bin markers are less than 0.6 Mb in length. There are 255 bins
larger than 1.5 Mb in size and six bins longer than 10.0 Mb
dispersed on chromosomes 2 (mk746, mk749, and mk750), 4
(mk1562 and mk1563), and 10 (mk3222) (see Figure S3). A high-
density genetic map was constructed by mapping these 3,305 bin
markers onto the 10 maize chromosomes (Figure S4). The total
length of the linkage map is 2236.66 cM with LG2 (382.80 cM)
being the largest and LG10 (139.51 cM) being the smallest. The
average distance between two adjacent markers is 0.68 cM. The
number of markers per linkage group varies from 120 (LG10) to
623 (LG1), with an average of 330.5 markers per linkage group.
The average marker density with LG1 having the highest marker
density (0.497 cM per interval) and LG2 having the lowest density
(1.190 cM per interval). Few gaps were observed, most of which
are between 5 and 10 cM in length with the largest being 34.51 cM
on LG2 (Table S4). A summary of the constructed genetic map is
presented in Table 1.

Evaluation of Phenotypic Data
Phenotyping data were collected for 100-kernel weight (KW), ear
length (EAL), ear diameter (EAD), cob diameter (CD), kernel

FIGURE 3 | Recombination bin-map of the F2 population. Bin-map consists of 3,305 bin markers inferred from 29,927 high quality SNPs in the F2 population.

Physical position is based on the Zea_mays.AGPv3.29 sequence. Red, SG5 genotype; Blue, SG7 genotype; Yellow, heterozygote.
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TABLE 1 | Summary statistics of the maize intra-specific genetic linkage

map constructed using F2 individuals derived from the cross of SG5 and

SG7.

Chromosome Number of

bins

Chromosome

size (cM)

Ave Gap

(cM)

Max Gap

(cM)

1 623 309.26 0.50 12.32

2 324 382.80 1.19 34.51

3 450 228.78 0.51 9.92

4 415 279.34 0.67 20.83

5 381 189.79 0.50 5.98

6 141 153.86 1.10 7.65

7 291 185.30 0.64 13.30

8 253 167.92 0.67 5.18

9 307 200.09 0.65 13.23

10 120 139.51 1.17 13.53

Total 3,305 2,236.66 0.68 34.51

row number (KRN), corn grains per row (CGR), ear weight
(EW), and grain weight per ear (GWP) in 2014 for the F2
mapping population (Zea mays L. SG5 × Zea mays L. SG7).
Significant differences for eight traits were observed within the
F2 population and between the parental genotypes. Descriptive
statistics of the traits analyzed in this study are summarized in
Table 2. Bell shaped normal distribution was observed for all
the traits analyzed (Figure S5). Pearson’s correlation coefficients
between the phenotypic traits are given in Table 3 along with
their significance tests. The highest correlation occurs between
GWP and EW (0.974).

Identification of QTLs
Using the 3,305 bin-markers mapped on the intra-specific linkage
map, we performed QTL mapping for the eight traits using
the composite interval mapping (CIM) method and the LASSO
method. Manhattan plot of the result is shown in Figure 4

for the CIM method. The corresponding plots for the LASSO
method are shown in Figures 5, 6 for the additive effect test and
dominance effect test, respectively. For CIMmethod, a total of 28
QTLs were identified for the following eight traits: EAL, EAD,
CD, KRN, CGR, EW, GWP, and KW: four of them influence
KW and are distributed on chromosomes 3, 4, 6, and 8; four
of them influence EAL and are distributed on chromosomes 1,
6, and 10; five of them influence EAD and are distributed on
chromosomes 1, 4, and 7; two of them influence CD and are
distributed on chromosomes 1 and 2; one of them influences
KRN and is located on chromosome 8; three of them influence
CGR and are distributed on chromosomes 4 and 6; five of
them influence EW and are distributed on chromosomes 4
and 7; five of them influence GWP and are distributed on
chromosomes 4, 6, and 7. The confidence intervals for these
28 QTLs spanned physical distances from 0.2 to 40.7 Mb by
comparison to the Zea_mays.AGPv3.29 genome. The phenotypic
variation explained by each QTL ranged from 6.4 to 19.7% of
the variation in a trait, with means of 9.4, 8.43, 8.48, 12.85, 7.6,
9.33, 11.28, and 9.68% for KW, EAL, EAD, CD, KRN, CGR, EW,

and GWP, respectively. The identified QTLs are distributed on
all the LGs except LG5 and LG9. The LOD scores range from
4.0 (qEAD-4 and qCGR-3) to 9.1 (qCD-1). Information of the
identified QTLs is summarized in Table 4.

For LASSO method, a total of 29 QTLs were identified for
the eight traits: ten of them influence KW and are distributed
over all chromosomes except 9; four of them influence EAL
and are distributed on chromosomes 3, 4, 5, and 10; three of
them influence EAD and are distributed on chromosomes 1,
2, and 7; three of them influence CD and are distributed on
chromosomes 1 and 2; three of them influence KRN and are
distributed on chromosomes 2, 5, and 8; one of them influences
CGR and is located on chromosome 4; three of them influence
EW and are distributed on chromosomes 4, 6, and 7; two of them
influence GWP and are distributed on chromosomes 4 and 7.
The−Log10(p)-value ranges from 1.31 (qEAD-1 and qCGR-2) to
4.57 (qKW-2). Information of the identified QTLs is summarized
in Table 5. These QTL are distributed on all the chromosomes
except LG9 (Table 5). Among the QTLs identified, 16 of them
were detected by both CIM and LASSO (see Table 4).

Candidate Gene Prediction
The small physical intervals of qCGR-1, qKW-2, and qGWP-4
encompass 14, 24, and 20 protein coding genes, respectively (see
Table 4 and Table S5), according to the maize gene annotation
database accessible at MaizeGDB (http://www.maizegdb.org).
Recent work in Arabidopsis and rice have shown that the F-
box protein coding gene possibly regulates multiple aspects
of flower development and leads to increased grain number
(Ni et al., 2004; Ikeda et al., 2007). In addition, studies in
Arabidopsis showed that WD40-repeat protein gene possibly
plays an important role during the mitosis process of pollen
nucleus and may regulate seed mass and seed size (You et al.,
2011). Red color 1 (Pilu et al., 2012), involved in regulating
anthocyanin pigmentation in different maize tissues, is also
an enhancing gene for ear weight and plant height. UDP-
Glycosyltransferase genes have been proven to be the key genes
regulating anthocyanin biosynthesis in grape (Boss et al., 1996a,b;
Kobayashi et al., 2001). Among the candidate genes in the
intervals of qCGR-1, one gene (GRMZM2G139872) is an F-box
family protein gene. Among the candidate genes in the intervals
of qKW-2, three genes (GRMZM2G180811, GRMZM5G828139,
and GRMZM5G873194) are the WD40-repeat protein genes.
Of the candidate genes in the intervals of qGWP-4, one gene
(GRMZM2G019183) is the UDP-Glycosyltransferase gene.

DISCUSSION

The GBS technology is able to produce genotypes of a large
number of markers with potentially less ascertainment bias than
standard single nucleotide polymorphism (SNP) arrays (Crossa
et al., 2013). The technology represents a novel application of
the NGS protocol for detecting and genotyping SNPs in fields
of crop improvement (He et al., 2014). It is a simple highly
multiplexed system for constructing reduced representation
libraries for the Illumina NGS platform developed in the Buckler
lab (Elshire et al., 2011). Large numbers of SNPs can be identified
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TABLE 2 | Descriptive statistics of traits in the F2 mapping population of maize derived from the cross of SG5 and SG7.

Trait SG5 (P1) SG7 (P2) Min Max Mean Std. Dev.

Ear length (cm) 14.38 12.72 9.10 26.00 14.49 2.27

Ear diameter (cm) 3.72 5.02 3.10 5.40 4.45 0.36

Cob diameter (cm) 2.53 3.24 2.10 3.90 2.94 0.28

Kernel row number 9.00 16.00 7.00 18.00 12.24 1.81

Grain number per row 23.23 17.23 7.33 33.67 24.44 4.86

Ear weight (g) 142.87 72.96 47.97 233.84 132.49 34.07

Grain weight per cob (g) 111.07 51.12 24.24 186.69 98.18 28.30

100-kernel weight (g) 34.79 26.41 20.00 44.36 34.09 4.39

TABLE 3 | Pearson correlations for yield related traits of maize from the F2 population of SG5 × SG7.

Trait EAL EAD CD KRN CGP EW GWP KW

EAL 1

EAD 0.080 1

CD 0.033 0.572** 1

KRN −0.010 0.472** 0.339** 1

CGR 0.618** 0.128 0.016 0.000 1

EW 0.682** 0.461** 0.206** 0.238** 0.712** 1

GWP 0.652** 0.433** 0.132 0.275** 0.720** 0.974** 1

KW 0.352** 0.285** 0.114 −0.228** 0.094 0.384** 0.359** 1

**Significantly different from 0 at alpha = 0.05.

for genotyping and genetic analyses (Beissinger et al., 2013).
Key features of this system include low cost, reduced samples,
fewer PCR and purification steps, no size fractionation, no
reference sequence limits, efficient barcoding, and easiness to
scale up (Davey et al., 2011). The low cost of GBS makes it
an attractive approach to saturating a mapping or breeding
population with high density of SNP markers. GBS has become
a cost-competitive alternative to other whole genome genotyping
platforms. As an ultimate marker assisted selection (MAS) tool
and a cost-effective technique, GBS has been successfully applied
to genome-wide association study (GWAS), genomic diversity
study, genetic linkage analysis, molecular marker discovery, and
genomic selection under large scales of plant breeding programs
(He et al., 2014). The bin-map strategy has proven to be efficient
in generating ultrahigh density of bin markers and detecting
QTLs with high resolution in crop species (Yu et al., 2011; Zou
et al., 2012; Xu, 2013). Compared with conventional molecular
markers such as RFLP/SSR and single SNP markers, bin markers
are the most informative, and parsimonious set for a given
population (Chen et al., 2014). In the current study, we reported
such a large-scale SNP discovery by GBS with low cost and
simultaneous genotyping of F2 of an intra-specific mapping
population of maize. The SNP calling and imputation processes
were conducted by comparing the clean reads generated by
GBS and reference genome Zea_mays.AGPv3.29 information.
In one of our previous studies, a genetic map with 250 SSR
markers was constructed based on 114 BC1F1 plants in a soybean
intra-specific backcross population (Su et al., 2010). The average
genetic distance between two adjacent markers was 11.85 cM,

corresponding to a physical distance of about 4.4 Mb. In this
study, a genetic map was generated by mapping 3,305 bin
markers which consist of 29,927 filtered SNPs onto the 10 maize
chromosomes. The length of bin markers ranged from 50 Kb to
21.65 Mb, with a mean of 622.2 Kb, and a median of 350 Kb. In
total, 71.5% of the bin markers are less than 0.6 Mb in length.
The average distance between two adjacent bin-markers is 0.68
cM, corresponding to a physical distance of about 0.69 Mb. We
have shown that the identified QTLs can be narrowed down to
relative small physical intervals of the target genome.

Results of QTL mapping depend on many factors, e.g., type of
population, characteristics of traits, sample size, marker density,
QTLmapping procedure, and so on. Understanding these factors
can help investigators choose an optimal design of experiment
and an optimal procedure for data analysis. For example, QTL
for low heritability traits are often hard to detect. QTL for highly
polygenic traits are also hard to detect, even if the traits may be
highly heritable. Results fromOlakojo and Olaoye (2011) showed
that the heritability of kernel row number and grain yield in
maize were only 5.7 and 16.22%, respectively. QTL mapping
for these traits may be very hard. The genetic background
also affects the power of QTL detection. A polygenic trait may
have a very heterogeneous genetic background. Without proper
control of the heterogeneous background, statistical power of
QTL detection can be very low (Gallais, 2003). In one of
our previous studies, a small-effect QTL Flwdt7 conferring
flowering time of soybean was mapped on LG C2 and it only
contributed 11.0% of the phenotypic variance in the BC1F3
genetic background while in the advanced residual heterozygous

Frontiers in Plant Science | www.frontiersin.org 6 May 2017 | Volume 8 | Article 706

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Su et al. QTLs Studies on Maize Yield

FIGURE 4 | Plots of test statistic −Log10(p) against genome location for eight traits of maize using the CIM method. The horizontal blue line of each panel

is the critical value of the test statistic generated from 1,000 permuted samples. The eight traits are: ear length (EAL), ear diameter (EAD), cob diameter (CD), kernel

row number (KRN), corn grains per row (CGR), ear weight (EW), and grain yield per plant (GWP).

line (RHL) populations the contribution increased to 36.8%
(Su et al., 2010). In present study, we used two QTL mapping
methods procedures, CIM and LASSO. The CIM method is
an ad hoc method because the model only tests one marker
at a time, although multiple loci are included in the model
but they are used to control the background. One attractive
feature of CIM is that it can handle markers with extremely
high density. With 3,305 bin-markers in this study, LASSO can
easily handle this many markers. Therefore, we also analyzed
the data using the LASSO method. Because LASSO deals with

a multiple marker model where all marker effects are estimated
simultaneously, the result should be more reliable than the
CIM method. The only limitation of LASSO is the inefficiency
of handling extremely large number of markers. When the
number of markers reaches more than 100,000 and the sample
size is relatively small, the program tends to fail (Hu et al.,
2012).

In the current study, 29 QTL have been detected with LASSO
and 28 detected with CIM. Of these detected QTL, 16 of them
overlapped (detected by both methods). The two methods seem

Frontiers in Plant Science | www.frontiersin.org 7 May 2017 | Volume 8 | Article 706

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Su et al. QTLs Studies on Maize Yield

FIGURE 5 | Plots of the additive effect test statistic −Log10(p) against genome location for eight traits of maize using the LASSO method. The

horizontal blue line is the critical value of the test statistic at the nominal level of −Log10(0.05) = 1.3. Note that LASSO is a multiple marker model and no adjustment

for the critical value of test statistic is required.

to be quite consistent. All the detected QTLs may be used in
the future for follow up studies. Recently, Xiao et al. (2016)
conducted a GWAS for genetic architecture of ear in multiple
advanced generations of maize. They detected 243 QTLs for
maize ear traits and these QTL are distributed overall all 10
chromosomes. Another GWAS of maize was carried out by
Yang et al. (2014) for 17 agronomic traits with a panel of
513 maize inbred lines. A total of 343 significant loci were
detected for the 17 traits. Compared with these results, the
majority of QTL identified in this study (qKW-8, qKW-10, qEAL-
4, qEAD-1, qEAD-2, qEAD-5, qCD-1, qCD-3, qKRN-1, qKRN-2,

qKRN-3, qCGR-3, qEW-1, qEW-2, qGWP-3, and qGWP-1) are
either overlapping with the QTLs detected by Xiao et al. (2016)
and Yang et al. (2014) or in the vicinity of those QTLs (see
Tables 4, 5).

CONCLUSION

In this study, an ultra-high density genetic map of maize
was constructed based on markers identified with the GBS
technology from an intra-specific F2 population of maize.
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FIGURE 6 | Plots of the dominance effect test statistic −Log10(p) against genome location for eight traits of maize using the LASSO method. The

horizontal blue line is the critical value of the test statistic at the nominal level of −Log10(0.05) = 1.3. Note that LASSO is a multiple marker model and no adjustment

for the critical value of test statistic is required.

The results revealed a higher degree of synteny between
SNPs identified here and the reference genome. This implies
that this map is accurate enough for efficient QTL mapping.
QTLs conferring eight yield traits of maize were identified
based on this genetic linkage map. A total of five candidate
genes of qCGR-1 (one gene), qKW-2 (three genes), and
qGWP-4 (one gene) were successfully predicted. The work
will not only help to understand the genetic mechanisms of
how yield traits are controlled, but also provide a basis for
marker-assisted selection and map-based cloning in further
studies.

MATERIALS AND METHODS

DNA Extraction
A segregating population of 199 F2 plants derived from an intra-

specific cross between Zea mays L. SG5 and Zea mays L. SG7

was grown in November 2014 at the Panxian Maize Breeding

Station in Guizhou, China. Young healthy leaves from the two

parents and each of the 199 F2 individuals were collected and
frozen in liquid nitrogen, and then transferred to a −80◦C
freezer. Genomic DNA from the F2 population and parents
were extracted following the manufacturer’s protocols with the
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TABLE 5 | QTL identified for nine traits of maize using high-density SNP bin-map from the LASSO method.

Trait QTL Chr Flanking marker Positions (Mb) Add/Dom Effect –Log10(p) CIMa QTL-MI References

KW qKW-6 2 mk945 235.75 A −0.86 1.88

qKW-1 3 mk1316 204.35 A −1.73 1.60 Yes

qKW-3 6 mk2202 5.6 A 2.03 2.83 Yes

qKW-7 7 mk2622 174.9 A −1.69 1.38

qKW-4 8 mk2776 119.75 A −1.95 2.66 Yes

qKW-8 1 mk322 193.55 D 1.33 1.55 208.09 Xue et al., 2013

qKW-2 4 mk1709 205.85 D 2.24 4.57 Yes

qKW-9 5 mk1844 7.15 D 1.60 1.64

qKW-5 6 mk2203 6.25 D 2.29 2.14 Yes

qKW-10 10 mk3249 124.8 D 1.54 1.49 124.73/125.11/125.9 Xue et al., 2013

EAL qEAL-4 3 mk963 2.15 D −0.92 1.73 2.6–2.8 Xiao et al., 2016

qEAL-5 4 mk1413 3.7 D 0.93 1.35

qEAL-6 5 mk1903 30.2 D 1.00 1.86

qEAL-3 10 mk3287 145.75 D 1.15 3.64 Yes

EAD qEAD-1 1 mk334 196.85 A 0.14 1.31 Yes 184.9–187.4 Xue et al., 2013

qEAD-6 2 mk945 235.75 A −0.20 1.59

qEAD-5 7 mk2542 154.1 D 0.23 1.58 Yes 147.16 Xue et al., 2013

CD qCD-1 1 mk300 180.55 A 0.17 1.45 Yes 187.4 Xue et al., 2013

qCD-3 1 mk336 197.2 A −0.17 1.54 187.4 Xue et al., 2013

qCD-2 2 mk707 37.05 D 0.17 2.70 Yes

KRN qKRN-2 2 mk680 22.65 A 0.83 1.35 18.5–18.6 Xiao et al., 2016

qKRN-1 8 mk2826 160.7 A 0.70 1.72 Yes 163.9–164.1 Xiao et al., 2016

qKRN-3 5 mk2162 210.3 D 0.70 1.62 213.1–213.3 Xiao et al., 2016

CGR qCGR-2 4 mk1417 5 D 2.72 1.31 Yes

EW qEW-2 4 mk1653 185.6 A 13.72 1.89 Yes 186.1–187.4 Xiao et al., 2016

qEW-6 6 mk2254 85.7 A 14.91 1.62

qEW-4 7 mk2470 108.05 D 20.46 2.06 Yes

GWP qGWP-1 4 mk1653 185.6 A 12.14 1.65 Yes 186.1–187.4 Xiao et al., 2016

qGWP-4 7 mk2470 108.05 D 16.86 1.40 Yes 107.4–108.2 Xiao et al., 2016

a Indicates whether or not the QTL has been identified by the CIM method.

Plant Genomic DNA Kit (TIANGEN, Beijing, China). DNA
degradation and contamination were monitored on 1% agarose
gels. DNA purity was checked using the NanoPhotometer R©

spectrophotometer (IMPLEN, CA, USA). DNA concentration
was measured using Qubit R© DNA Assay Kit in Qubit R© 2.0
Flurometer (Life Technologies, CA, USA).

Genotyping by Sequencing
Genotyping-by-sequencing (GBS) is an efficient method of high-
throughput genotyping, which is based on RRL and high-
throughput sequencing. First, we performed a GBS pre-design
experiment. The enzymes and sizes of restriction fragments were
evaluated using training data. Three criteria were considered:
(i) the number of tags must be suitable for the specific
needs of the research project; (ii) the enzymatic tags must be
evenly distributed through the sequences to be examined; (iii)

repeated tags must be avoided. These considerations improved
the efficiency of GBS. Next, we constructed the GBS library in
accordance to the pre-designed scheme. Genomic DNAs from
each of the F2 individuals and the parents were incubated at
37◦C with MseI (New England Biolabs, NEB), T4 DNA ligase
(NEB), ATP (NEB), and MseI Y-adapter N containing barcode.
Restriction-ligation reactions were heat-inactivated at 65◦C, and
then digested for additional restriction enzyme HaeIII (NEB)
at 37◦C. The restriction ligation samples were purified with
Agencourt AMPure XP (Beckman). The PCR amplifications
were performed using purified samples and Phusion Master Mix
(NEB) in a single tube after adding universal primer and index
primer to each sample. The PCR productions were purified and
pooled using Agencourt AMPure XP (Beckman) and then run
out on a 2% agarose gel. Fragments with 400–425 bp (with
indexes and adaptors) in size were isolated using a Gel Extraction
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Kit (Qiagen, Valencia, CA). These fragment products were then
purified using Agencourt AMPure XP (Beckman) and further
diluted for sequencing. Finally, the 150-bp pair-end reads with
insert sizes of 265–290 bp sequencing were performed upon
the selected tags using an Illumina high-throughput sequencing
platform Illumina HiseqTM by the Novogene Bioinformatics
Institute, Beijing, China. SNP genotyping and evaluation were
then performed.

Sequence Data Grouping and SNP
Identification
The sequences of each F2 individuals were sorted according to
the barcodes. To make sure that reads are reliable and without
artificial bias (low quality paired reads, which mainly resulted
from base-calling duplicates and adapter contamination) in the
following analyses, raw data (raw reads) of fastq format were first
processed through a series of quality control (QC) procedures
in-house C scripts. The QC standards were: (1) removing reads
with≥10% unidentified nucleotides (N); (2) removing reads with
>50% bases having phred quality <5; (3) removing reads with
>10 nt aligned to the adapter, allowing ≤10% mismatches; (4)
removing reads that contain the HaeIII sequence.

Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2009)
was used to align the clean reads of each F2 individual against
the reference genome with settings “mem -t 4 -k 32 -M -R,”
where -t is the number of threads, -k is the minimum seed
length, -M is an option used to mark shorter split alignment
hits as secondary alignments, and -R is the read group header
line. Alignment files were converted to BAM files using
the sort setting in the SAMtools software (Li et al., 2009).
We only kept the pair with the highest mapping quality if
multiple read pairs have identical external coordinates. Variants
calling were performed for all samples by using the SAMtools
software. SNPs were filtered by the Perl script. The software
tool ANNOVAR (Wang et al., 2010) was used to annotate SNPs
based on the GFF3 files from the Zea_mays.AGPv3.29 sequence
(ftp://ftp.ensemblgenomes.org/pub/plants/release-29/fasta/zea_
mays/dna/Zea_mays.AGPv3.29.dna.toplevel.fa.gz). Polymorphic
markers between the parents were classified into eight
segregation patterns, such as ab × cd, ef × eg, hk × hk, lm
× ll, nn × np, aa × bb, ab × cc, and cc × ab, but only the aa ×
bb type between the parents was chosen as the parents of the F2
population.

Bin Map Construction
Chi-square (χ2) tests were conducted for all SNPs to detect
segregation distortion. Markers with segregation distortion test
p < 0.001 or containing abnormal base were filtered out. All
markers were deleted if there were more than 25% individuals
with missing genotypes. A sliding-window approach was applied
for variant calling errors and to calculate the ratio of SNP alleles
derived from the two parental lines, SG-5 and SG-7 (Huang
et al., 2009). Genotypic data were scanned with a window size
of 15 SNPs and a step size of 1. For each individual, the ratio of
SNP alleles from the two parental lines within the window was
calculated. Windows with 11 or more SNPs from either parent
were considered to be homozygous, while those with less SNPs
from a single parent were considered heterozygous. Adjacent

windows with the same genotypes were combined into a single
block, whereas adjacent blocks with different genotypes were
assumed to be at or near a recombination breakpoint. A bin
marker was designated when consecutive 100-Kb intervals lacked
a recombination event in the entire population. For construction
of the linkage map, the genetic distance between bin markers was
calculated using the Kosambi mapping function implemented in
the est.map function of the R/qtl package (Broman et al., 2003). A
Perl SVG module was used to generate the linkage map.

Plant Materials and Phenotyping
The F2 population of 199 individuals was derived from the cross
of maize inbred lines SG5 and SG7. The 100-seed weight of the
two parents are 34.79 and 26.41 g, respectively, for SG5 and SG7.
Detailed information of the trait measurements for the parents
are listed in Table 3. Phenotypic data for 100-kernel weight, ear
length, ear diameter, cob diameter, kernel row number, corn
grains per row, ear weight, and grain weight per plant were
collected from the F2 individuals. Plants grown in a field trial in
2014 at the Panxian of Guizhou Maize Breeding Station, Hainan,
China.

QTL Analysis
QTL analysis was performed using two methods: (1) CIM
implemented with QTL Cartographer v2.5 using the stepwise
regression for co-factor selection; (2) least absolute shrinkage
and selection operator (LASSO) method implemented with the
GLMNET/R software package (citation). For the CIM method,
the LOD score threshold was determined by the result of 1,000
permutations for each trait. The software also estimated the
percentage of phenotypic variance, additive effect and dominance
effect explained by a QTL for a trait. For the LASSO method, the
p= 0.05 was used as the threshold of the p-value, which translates
into −log10(p) = 1.3 in this scale. The reason for not using
permutation test for the LASSO method is that it is a multiple
regression model with severe shrinkage on each marker effect.
The nominal level of 0.05 applies to multiple regression analysis
(Hu et al., 2012).
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