'.\' frontiers
in Plant Science

ORIGINAL RESEARCH
published: 08 May 2017
doi: 10.3389/fpls.2017.00713

OPEN ACCESS

Edited by:
Ruth Grene,
Virginia Tech, USA

Reviewed by:

Vivekanand Tiwari,

Weizmann Institute of Science, Israel
Shaojun Xie,

Purdue University, USA

*Correspondence:
Chuanzhi Zhao
zhaochuanzhi@gmail.com

Specialty section:

This article was submitted to
Plant Abiotic Stress,

a section of the journal
Frontiers in Plant Science

Received: 05 January 2017
Accepted: 18 April 2017
Published: 08 May 2017

Citation:

Wang J, Zhang Q, Cui F, Hou L,
Zhao S, Xia H, Qiu J, Li T, Zhang Y,
Wang X and Zhao C (2017)
Genome-Wide Analysis of Gene
Expression Provides New Insights into
Cold Responses in Thellungiella
salsuginea. Front. Plant Sci. 8:713.
doi: 10.3389/fpls.2017.00713

®

Check for
updates

Genome-Wide Analysis of Gene
Expression Provides New Insights
into Cold Responses in Thellungiella
salsuginea

Jiangshan Wang'2, Quan Zhang?, Feng Cui’, Lei Hou', Shuzhen Zhao', Han Xia’,
Jingjing Qiu™3, Tingting Li', Ye Zhang', Xingjun Wang'? and Chuanzhi Zhao’**

" Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of
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Low temperature is one of the major environmental stresses that affects plant growth
and development, and leads to decrease in crop yield and quality. Thellungiella
salsuginea (salt cress) exhibits high tolerance to chilling, is an appropriate model
to investigate the molecular mechanisms of cold tolerance. Here, we compared
transcription changes in the roots and leaves of T. salsuginea under cold stress using
RNA-seq. We identified 2,782 and 1,430 differentially expressed genes (DEGs) in leaves
and roots upon cold treatment, respectively. The expression levels of some genes were
validated by quantitative real-time-PCR (gRT-PCR). Among these DEGs, 159 (11.1%)
genes in roots and 232 (8.3%) genes in leaves were annotated as various types of
transcription factors. We found that five aquaporin genes (three TIPs, one PIPs, and
one NIPs) responded to cold treatment. In addition, the expression of COR47, ICET,
and CBF1 genes of DREB1/CBF-dependent cold signaling pathway genes altered
in response to low temperature. KEGG pathway analysis indicated that these cold
regulated genes were enriched in metabolism, photosynthesis, circadian rhythm, and
transcriptional regulation. Our findings provided a complete picture of the regulatory
network of cold stress response in T. salsuginea. These cold-responsive genes could be
targeted for detail functional study and utilization in crop cold tolerance improvement.

Keywords: Thellungiella salsuginea, salt cress, cold stress, gene expression

INTRODUCTION

Plants generally are rooted in one place, and have to face drought, salinity, high temperature, cold,
and other adverse stresses which may cause significant loss of crop yield (Boyer, 1982; Kawasaki
and Bohnert, 2001). Low temperature is one of the major environmental stresses that affect plant
growth and development, crop yield and quality. In plant tissues, the intercellular fluid generally
has a higher freezing point than the intracellular fluid. When temperature decreased below freezing
point, intercellular spaces of plant tissues form ice prior to intracellular region. So, the water
potential decreases rapidly outside the cells, and causes the movement of water from inside the
cell to the intercellular spaces. Consequently, cold stress could lead to severe cellular dehydration
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(Thomashow, 1998). In addition, low temperature can lead to the
formation of adhesion between the intercellular ice and the cell
walls and membranes (Levitt, 1980). Low temperature damage
could lead to growth inhibition, wilting, and weak seedling.

During the evolution history, most plants developed the
capacity to tolerate cold. Cold acclimation is a strategy for
the plants to acquire freezing tolerance by a prior exposure
to low nonfreezing temperature (Guy, 1990). To adapt to low
temperature environment, many physiological and molecular
changes occur during cold acclimation (Thomashow, 1999).
Exposure to low temperature, linolenic acid and membrane lipid
unsaturation increased, and the plasma membrane H*-ATPase
activity increased and these changes are essential for the plants
to withstand low temperature (Shi et al., 2008). In addition,
calcium-dependent protein kinase confers cold tolerance via the
regulation of calcium channel in plasma membrane (Xiong et al,,
2002; Komatsu et al., 2007). Early studies identified a number of
genes in plants which were response to cold treatment, and these
genes were known as cold regulated (COR) genes (Thomashow,
1999; Lee et al., 2005). For example, a total of 939 cold regulated
genes were identified in Arabidopsis thaliana (Lee et al., 2005).
The cold regulated genes were involved in a variety of functions
such as metabolism, protein synthesis, signal transduction,
transcription regulation, and hormone biosynthesis and signaling
(Thomashow, 1999; Lee et al., 2005).

Among these COR genes, a family of transcription factor
known as C-repeat/dehydration-responsive element-binding
(CBF) was identified as the key factor to regulate response to
cold stress in many plants (Gao et al., 2002; Xiong and Fei, 20065
Nakamura et al., 2011; Wisniewski et al., 2011). In Arabidopsis,
three members of CBFs were identified, including CBFI, CBF2,
and CBF3 (also name as DREBIb, DREBIc, and DREBIa,
respectively). Overexpression of CBFI induced COR genes and
increased freeze tolerance of the transgenic plants (Jaglo-Ottosen
et al., 1998; Yamaguchi-Shinozaki and Shinozaki, 2001). Deletion
of all three CBF genes the transgenic plants are extremely
sensitive to freezing after cold acclimation, suggesting that the
three CBF genes together are essential for cold acclimation
(Zhao et al., 2016). Recently, ICE1 (inducer of CBF expression
1) was identified as an upstream transcription factor regulating
the transcription of CBF, and its overexpression activated the
expression of CBF regulon under cold condition and improved
freeze tolerance of the transgenic plants (Chinnusamy et al.,
2003). However, transcriptome profiling experiments showed
that the number of CBF regulon gene accounts only 6.5 % of the
total number of COR genes, suggesting that other transcription
factors are also involved in the regulation of COR genes and the
low-temperature regulatory network beyond the CBF pathway is
complex and highly interconnected (Park et al., 2015). Recently,
many other COR genes were identified from CBF-independent
pathways. For example, SCOF-1 encodes a cold-inducible zinc
finger protein from soybean, and Osmyb4 encodes a member of
MYB transcription factor from rice, these genes also contributed
to cold tolerance in plants (Kim et al., 2001; Vannini et al,
2004).

Thellungiella salsuginea also named as T. halophile or salt
cress, is a close relative of Arabidopsis. Compare to Arabidopsis,

T. salsuginea exhibits higher tolerance to cold, and it could
complete its life cycles at 5°C, and could survive at extreme low
temperature of —21°C after cold acclimation (Griffith et al., 2007).
Thus, Thellungiella was proposed as an appropriate model to
investigate the molecular mechanisms of plant adapted to cold
stress (Griffith et al., 2007; Amtmann, 2009). To illustrate how
Thellungiella adapts to low-temperature, cold regulated genes
were identified from both the mRNA and protein levels. In a
survey of 3,628 Thellungiella cDNAs, 76 cold induced transcripts
including COR47, ERD10, and CORI15b were identified using
microarray methods (Wong et al., 2006). Northern blot analysis
demonstrated that some cold response genes (CBF1, CORI15a,
and COR47) from Arabidopsis were also induced in Thellungiella
(Griffith et al., 2007). Two-dimensional electrophoresis (2-DE)
approach was used in Thellungiella, and found 66 protein spots
were significantly affected by cold in Thellungiella rosette leaves
(Gao et al, 2009). These studies provided useful clues for
understanding the mechanism of cold tolerance in Thellungiella.
However, due to the limited genomic sequences, these studies fail
to provide a comprehensive interpretation of the transcriptomic
changes of Thellungiella in response to cold. To gain insight into
the molecular networks underlying Thellungiella cold tolerance,
more comprehensive genome-wide gene expression profiling
studies are required.

Recently, the whole genome sequence of Thellungiella was
completed, which provides new opportunity to understand the
cold tolerance mechanism in Thellungiella (Dassanayake et al.,
2011; Wu et al.,, 2012). In this study, we carried out genome-wide
analysis of gene expression in roots and leaves of Thellungiella
under cold treatment using RNA-seq technology. The aim of
the study is to identify cold responsive genes and biological
pathways that may contribute to cold tolerance in Thellungiella.
We identified thousands of cold-responsive genes and provided
an overall picture of the regulatory network in response to cold
stress in Thellungiella. These cold-responsive genes could be
targeted as potential candidates for further functional validation,
and have potential application value for increasing cold tolerance
in crops.

RESULTS AND DISCUSSION

High Throughput Sequencing and Gene
Expression Profiles

To gain the profiles of gene expression in Thellungiella under
cold condition, eight cDNA libraries were constructed using roots
and leaves under normal (control) and low temperature (cold)
for 24 h, respectively. The cDNA libraries were sequenced by
IMlumina Hiseq2000 platform using the paired end method. After
removing low quality, N-containing and adaptor-contaminated
reads, a total of 96,305,447 clean reads were generated, with
an average of ~12 million reads per libraries (Table 1).
Approximately 90% reads from leaves and 85% reads from roots
were mapped to the Thellungiella reference genome, and about
7% reads from leaves and 3.5% reads from roots were mapped
to multiple regions, respectively (Table 1). The RNA-seq raw
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9,775,273 (82.48%)
409,762 (3.46%)

9,859,595 (82.88%)
424,530 (3.57%)

9,650,737 (81.76%)
450,812 (3.82%)

9,852,257 (81.19%)
446,875 (3.68%)

9,659,258 (82.58%)
773,057 (6.61%)

10,457,647 (82.95%)
849,133 (6.74%)

9,750,932 (82.36%) 10,387,629 (83.34%)
Multi-position Match 931,284 (7.87%) 899,015 (7.21%)

Unigue match

1,666,199 (14.06%)

1,612,397 (13.55%)

1,704,246 (14.42%)

1,835,944 (15.13%)

607 (10.81%)

1,264

1,178,203 (9.45%) 1,299,935 (10.31%)

1,157,120 (9.77%)

Unmapped reads

sequencing data from this study have been submitted in the SRA
database' under BioProjects: PRINA377594 (SRA: SRP101369).
Among the 29,284 genes deposited in Thellungiella genome
database, 22,414 (76.5%) genes were detected in the control and
cold-treated libraries. A total of 2,782 and 1,430 differentially
expressed genes (DEGs) were identified from leaves and roots,
respectively (Figure 1 and Supplementary Tables S1, S2). Under
cold treatment, 579 and 1,691 genes were up-regulated, 851 and
1,091 genes were down-regulated in roots and leaves, respectively
(Figure 1). Our results demonstrated that the expression patterns
of the majority of DEGs were different in roots and leaves. For
example, among the 1,691 up-regulated genes in leaves, only
269 (15.9%) were also induced in roots (Figure 2). Interestingly,
some genes showed the opposite expression trend in roots and
leaves upon cold treatment. For example, fifteen DEGs were
up-regulated in root, but down-regulated in leaves. There were
68 DEGs down-regulated in root, but up-regulated in leaves
(Figure 2). Moreover, 463 DEGs were with the same expression
trend in roots and leaves, including 269 up-regulated and 194
down-regulated DEGs (Figure 2 and Supplementary Table S1).

Functional Analysis of DEGs

The DEGs were characterized by the assignment of gene ontology
(GO) terms using Blast2GO (Conesa et al., 2005) program.
GO enrichment analysis showed 241 and 374 GO terms were
significant enriched in root and leaf, respectively (Supplementary
Table S3). Then, we employed WEGO web-based tool to
visualize the biological process, molecular function and cellular
component main categories (Figure 3). In the cellular component
category, the terms of “cell”, “cell part”, “organelle”, and
“membrane” were enriched, implying the potential contribution
of cell and cell structure in the process of Thellungiella response to
cold condition. For the category of molecular function, “binding”,
“catalytic activity” and “nucleic acid binding transcription factor
activity” were the top terms. The most abundant terms of

Thttps://www.ncbi.nlm.nih.gov/sra/

1800
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1600 ® down-regulated
T mup-regulated
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FIGURE 1 | Numbers of differentially expressed genes in response to
cold treatment.
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FIGURE 2 | Differentially expressed genes analysis. (a) Venn diagram demonstrated the common and specific differentially expressed genes (DEGs) in roots
and leaves, (b) Heat map demonstrated the expression profile DEGs in roots and leaves.
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FIGURE 3 | Gene Ontology (GO) analysis of differentially expressed genes. Genes were classified into three main categories: biological process, cellular
component, and molecular function. The x-axis indicates the number of genes in a category, and the y-axis means the GO terms.
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biological process were “cellular process”, “metabolic process”,
“response to stimulus” and “single-organism process”, suggesting
a high degree of metabolic activity changes upon cold treatment
(Figure 3).

In order to obtain more biological information for
understanding the molecular mechanism and regulatory
network of Thellungiella cold tolerance, KEGG enrichment
pathway analysis was performed. By applying a cut-off criterion
of Q-value < 0.05 and P-value < 1E~% the result showed that
ten and fifteen pathways were significantly enriched from roots
and leaves, respectively (Table 2). Previous studies demonstrated
that many metabolic changes for enhancing freeze tolerance in
Arabidopsis, such as increasing accumulation of soluble sugars
and other compatible osmolytes (Wanner and Junttila, 1999).
We found six pathways, “biosynthesis of secondary metabolites”,
“metabolic pathways”, “nitrogen metabolism”, “tryptophan
metabolism”, “cysteine and methionine metabolism”, and “sulfur
metabolism” were enriched both in roots and leaves in response
to cold. Interestingly, all these pathways were involved in a
particular metabolic process, suggesting that the metabolic
process was activated via cold treatment (Table 2). Proline is one
of the most effective organic osmolytes in plants, and there is
a positive correlation between proline accumulation and plant

et al., 2012). Previous studies demonstrated that Thellungiella
contained higher levels of proline than Arabidopsis under non-
stressed condition (Kant et al., 2006). Twenty-six genes involved
in “Arginine and proline metabolism” pathway were found to
be regulated by cold in our study. Most of these DEGs (18 of
26) were up-regulated, suggesting that these cold induced genes
might promote the accumulation of proline in Thellungiella to
enhance cold tolerance.

The “biosynthesis of unsaturated fatty acids” pathway was also
enriched in Thellungiella leaves. A total of 22 genes involved in
this pathway were affected by low temperature (Table 2). Previous
study suggested that membrane lipid composition, especially the
concentration of unsaturated fatty acid, is highly correlated with
plant freezing tolerance (Thomas et al., 2012). The expression
regulation of genes for unsaturated fatty acid synthesis might be
a key factor contributing to cold tolerance in Thellungiella.

We observed that the pathways related to biosynthesis of
phenylpropanoid and flavonoid were enriched in roots of
Thellungiella. In addition, “Photosynthesis - antenna proteins”
and “Photosynthesis” were enriched. Most of the DEGs in
“Photosynthesis-antenna  proteins” and “Photosynthesis”
pathways were down-regulated in leaves, suggesting the adverse
effect of low temperature on photosynthetic carbohydrate

stress tolerance. A number of studies showed that proline played metabolism and photochemical reaction (Supplementary
beneficial roles in plants when exposed to cold condition (Hayat  Table S2).

TABLE 2 | The top enriched pathways of DEGs in roots and leaves.

Pathway DEGs (%) All genes P-value Q-value Pathway ID
Root: 1043 DEGs with KEGG pathway annotation

Biosynthesis of secondary metabolites 217 (20.81%) 1727 (11.11%) 2.99E-21 3.52E-19 ko01110
Metabolic pathways 326 (31.26%) 3484 (22.41%) 4.96E-12 2.93E-10 ko01100
Nitrogen metabolism 22 (2.11%) 76 (0.49%) 2.73E-09 1.07E-07 ko00910
Phenylpropanoid biosynthesis 49 (4.70%) 306 (1.97%) 1.04E-08 3.08E-07 ko00940
Flavonoid biosynthesis 33 (3.16%) 172 (1.11%) 3.47E-08 8.20E-07 ko00941
Phenylalanine metabolism 28 (2.68%) 151 (0.97%) 7.72E-07 1.52E-05 ko00360
Tryptophan metabolism 22 (2.11%) 127 (0.82%) 3.48E-05 5.87E-04 ko00380
Cysteine and methionine metabolism 21 (2.01%) 128 (0.79%) 6.48E-05 8.08E-04 ko00270
Sulfur metabolism 13 (1.25%) 56 (0.36%) 6.51E-05 8.08E-04 ko00920
Galactose metabolism 16 (1.53%) 80 (0.51%) 6.85E-05 8.08E-04 ko00052
Leaf: 2419 DEGs with KEGG pathway annotation

Biosynthesis of secondary metabolites 408 (16.87%) 1727 (11.11%) 7.46E-21 9.55E-19 ko01110
Metabolic pathways 687 (28.40%) 3484 (22.41%) 3.31E-14 2.12E-12 ko01100
Photosynthesis - antenna proteins 16 (0.66%) 27 (0.17%) 2.62E-07 1.12E-05 ko00196
Nitrogen metabolism 29 (1.20%) 76 (0.49%) 1.40E-06 4.47E-05 ko00910
Photosynthesis 30 (1.24%) 81 (0.52%) 1.92E-06 4.92E-05 ko00195
Pyruvate metabolism 40 (1.65%) 125 (0.80%) 3.22E-06 6.87E-05 ko00620
Biosynthesis of unsaturated fatty acids 22 (0.91%) 53 (0.34%) 5.16E-06 9.44E-05 ko01040
Valine, leucine and isoleucine biosynthesis 17 (0.70%) 37 (0.24%) 1.20E-05 1.92E-04 ko00290
Sulfur metabolism 22 (0.91%) 56 (0.36%) 1.49E-05 2.12E-04 ko00920
Amino sugar and nucleotide sugar metabolism 47 (1.94%) 167 (1.07%) 2.30E-05 2.94E-04 ko00520
Glyoxylate and dicarboxylate metabolism 26 (1.07%) 74 (0.48%) 2.70E-05 3.14E-04 ko00630
Cysteine and methionine metabolism 37 (1.563%) 123 (0.79%) 3.48E-05 3.71E-04 ko00270
Circadian rhythm - plant 45 (1.86%) 162 (1.04%) 4.81E-05 4.74E-04 ko04712
Tryptophan metabolism 37 (1.53%) 127 (0.82%) 7.41E-05 6.44E-04 ko00380
Glycine, serine and threonine metabolism 29 (1.20%) 91 (0.59%) 7.55E-05 6.44E-04 ko00260
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In Arabidopsis, environmental temperature affected the
expression of clock component related genes, such as timing
of cab expression 1 (TOCI), GIGANTEA (GI), circadian clock
associated 1 (CCA1), and late elongated hypocotyl (LHY). Here,
our results demonstrated that the pathway of “circadian rhythm
- plant” was enriched in Thellungiella after cold treatment. The
expression of many genes involved in circadian rhythm including
LHY, CCAI, TOCI and GI were also induced or inhibited in
Thellungiella upon cold treatment (Table 2 and Supplementary
Table S2).

Validation of RNA-Seq Results Using

Quantitative Real-Time PCR

To validate the RNA-seq data, quantitative real-time PCR (qRT-
PCR) was performed for 25 genes with different expression
levels and functional assignments (Supplementary Table S4).
Among them, seven genes were significantly induced upon
cold treatment both in roots and leaves. Two of these genes
encoded salt and low temperature response protein, one encoded
dehydrin. A putative phosphatidylethanolamine-binding protein
gene, and three genes with unknown function were also selected
for qRT-PCR validation. Other ten selected genes were down-
regulated both in roots and leaves. These genes included
one aquaporin TIP2-1, one NAC domain protein, one stress-
induced stil-like protein coding genes and several genes with
unknown function. In addition, eight genes that down-regulated
in roots but up-regulated in leaves were also selected for
qRT-PCR analysis. These genes included O-methyltransferase
family protein, peroxidase, cytochrome P450, leucine-rich repeat
receptor-like protein kinase, MYB and zine finger AN1 domain-
contain protein coding genes (Supplementary Table S4). The

qRT-PCR results of these 25 genes in leaves were in agreement
with the RNA-seq data. The relative expression level (log,
cold/control) estimated by RNA-seq and qRT-PCR were strongly
correlated (R2=0.9695) in leaves (Supplementary Table S4 and
Figures 4, 5). In roots, the majority of genes (23 of 25)
showed similar expression patterns except Thhalv10004977m
and Thhalv10002333m, which were down-regulated in RNA-seq,
but up-regulated in qRT-PCR. In roots, the Pearson’s coeflicient
was 0.7664 which was lower than that in leaves (Figure 4 and
Supplementary Figure S2).

Cold Related Transcription Factors

Studies showed that transcription factors played important roles
in plant response to low temperature and other adverse stresses
(Singh et al., 2002; Chen and Zhu, 2004; Agarwal P.K. et al,
2006). We observed that many transcript factors were response to
cold in Thellungiella. Among the 1,430 DEGs in roots, 159 genes
(11.1%) were annotated as different types of transcription factors
(Table 3). About half of these transcription factor genes (74 of
159) were up-regulated, the rest 85 genes were down-regulated.
According to functional annotation, these transcription factors
were classified into 18 categories, such as abscisic acid responsive,
NAC, Zinc finger domain, AP2, MYB, bHLH and WRKY etc.
The transcription factors Zinc finger domains (27 genes, 17.0%),
ethylene responsive (11 genes, 6.9%) and calcium ion binding (10
genes, 6.3%) were the three major families of the cold-regulated
transcription factors in roots.

Among the 2,782 DEGs in leaves, 232 (8.3%) were
transcription factors, including 131 up-regulated and 101
down-regulated genes. These transcription factors were classified
into 18 categories (Table 3). Among these differential expressed
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FIGURE 4 | Pearson’s correlation of RNA-seq and qRT-PCR results. gRT-PCR validation of DEGs in roots and leaves under cold condition. The correlation of
the fold change analyzed by RNA-Seq (x-axis) with data obtained using gRT-PCR (y-axis).
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TABLE 3 | Cold-regulated transcription factors.

Category Number of transcription factors in root Number of transcription factors in leaf
Total Up-regulated Down-regulated Total Up-regulated Down-regulated

Abscisic acid responsive 4 3 1 1 1 0
AP2 1 0 1 2 1 1
Auxin-responsive 4 2 2 5 2 3
Basic leucine zipper 3 1 2 1 0 1
bHLH 4 0 4 4 1 3
BTB and TAZ domain 1 1 0 1 0 1
Calcium ion binding 10 0 10 6 5 1
Ethylene responsive 11 4 7 5 3 2
F-box 5 1 4 5 0 5
Heat shock protein 1 0 1 9 5 4
Homeobox-leucine zipper 1 1 0 4 0 4
Leucine-rich repeat 6 1 5 7 2 5
MADS-box 2 2 0 1 0 1
MYB 6 3 3 10 3 7
NAC-domain 2 1 1 9 7 2
WRKY 3 0 3 12 ihl 1
Zinc finger domain 27 15 12 43 33 10
Ulassification 68 39 29 107 57 50
Total 159 74 85 232 131 101

transcription factors in leaves, Zinc finger domain, WRKY and
MYB are enriched. Heat shock proteins (HSPs) were implicated
in plant heat stress tolerance (Nover et al., 2002). Here, we found
five HSPs were up-regulated and four HSPs were down-regulated
upon cold treatment. WRKY transcription factors played
important roles in plant responses to biotic and abiotic stress
(Eulgem et al., 2000). Twelve differentially expressed WRKY
transcription factor genes were identified in leaves, and eleven
of them were up-regulated. NAC transcription factors were
involved in many aspects of plant growth and development,
and response to abiotic stress (Nuruzzaman et al, 2013). In
our RNA-seq data, nine and three differentially expressed NAC
transcription factor genes were identified in leaves and roots,
respectively. These results indicated that HSE WRKY and
NAC transcription factors were involved in plant responses
to various stresses, and suggested that cold stress might share
common molecular mechanism with other abiotic stresses. In
addition, we noticed that the expression of ten calcium ion
binding transcription factors was all suppressed in roots upon
cold treatment, while most of them were induced in leaves,
implying that these genes might be functioning in different ways
in roots and leaves (Table 3 and Supplementary Table S1). These
results suggested the existence of differences in cold responsive
regulatory networks between roots and leaves in Thellungiella.
Previous studies showed that some MYB transcription factors
were involved in cold stress tolerance, such as AtMYBI5 in
Arabidopsis (Agarwal M. et al., 2006), MYB55 and OsMYBS3
in rice (Su et al, 2010; Elkereamy et al., 2012). In our data,
the expression of six and ten MYB genes was altered after
cold treatment in roots and leaves, respectively (Table 3 and
Supplementary Tables S1, S2). Interestingly, Thhalv10008152m

encoding a MYB transcription factor displayed opposite
expression trend in roots and leaves. In roots, the expression of
this gene was inhibited by cold treatment, while it was induced in
leaves (Figure 5).

Basic helix-loop-helix (bHLH)-type transcription factors
played important regulatory roles in diverse biological processes
in plants (Toledoortiz et al., 2003). The latest evidences showed
that bHLH transcription factor acted as positive regulators of
CBF-pathway and conferred cold tolerance in plants (Feng et al.,
2012; Peng et al,, 2013; Xu et al,, 2014). We found that the
expression of four and four bHLH genes was altered after
cold treatment in Thellungiella roots and leaves, respectively
(Table 3 and Supplementary Tables S1, S2). However, only
one of these bHLH gene (Thhalv10025656m) was induced by
cold, and the others were down-regulated in response to cold
treatment. Functional annotation showed that Thhalv10025656m
was homologous of bHLH69 of Arabidopsis, and named as
TsbHLHG69. In Arabidopsis, b(HLH69 contributed to the regulation
of circadian periodicity by reducing the expression of LHY
and TOCI (Hanano et al., 2008; Harmer, 2009). These data
suggested that the cold-induced TsbHLH69 might participate in
the regulation of rhythm of Thellungiella under cold condition.

Cold Regulation of Genes Related to

Plant Hormone Biosynthesis and

Signaling

In this study, we found that the expression of many genes related
to plant hormone biosynthesis and signaling were altered upon
cold treatment (Supplementary Tables S1, S2). A total of 134
DEGs were related to plant hormone biosynthesis and signaling
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in leaves, 71 of which were up-regulated and 73 of which were
down-regulated. DELLA, an key factor in gibberellins (GA)
signaling, was also involved in the signal transduction of other
hormones suggesting that DELLA functions as a modulator of
plant development and response to stresses (Achard et al., 2003;
Willige et al., 2007). Studies showed that DELLA contributed
to CBFl-induced cold acclimation and was considered as
components of CBF1l-mediated cold stress response (Achard
et al.,, 2008). We found the expression of a DELLA encoding
gene (Thhalv10015535m) was slightly induced in both roots
(1.40 fold) and leaves (1.39 fold) upon cold treatment.
Meanwhile, gibberellin 2-oxidase (Thhalv10008179m), an
enzyme inactivating the bioactive gibberellins (GAs), was
significantly induced (2.6-fold) (Supplementary Table S2).
These results implied that GA metabolism and signaling might
contribute to cold stress tolerance in Thellungiella.

Other Cold-Regulated (COR) Genes

Studies demonstrated that the expression of COR genes was
strongly induced after plants were shifted to cold temperature
(Hajela et al., 1990; Griffith et al., 2007). RNA-seq results revealed
five COR genes including COR27, COR47, and three CORI5
were dramatically induced in both roots and leaves under cold
treatment (Table 4). Interestingly, we found that the expression
levels of all three CORI5 increased by 1,000-fold in leaves after
cold treatment. Among all these COR genes, CORI5 represented
the most induced genes, whose expression level increased more
than 8,000-fold to compare with the control. Sequence alignment
results showed that the DNA sequences of these three CORI15
genes were highly similar, implying these genes might have the
same functions in cold tolerance (Supplementary Figure SI).
The COR47 gene encoding a member of dehydrin has been
isolated in several plant species. Previous studies showed that
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TABLE 4 | The expression profile of cold-regulated genes.

Gene Annotation Relative expression level (cold/control) Expression trend
log2 (leaf) Q-value (leaf) log2 (root) Q-value (root)
Thhalv10017395m Cold response protein (COR15) 13.40 1.000 3.36 0.830 Up
Thhalv10017393m Cold response protein (COR15) 10.73 0.961 7.44 0.540 Up
Thhalv10017394m Cold response protein (COR15) 10.22 0.943 8.1 0.932 Up
Thhalv10003264m COR27 9.26 0.979 1.18 0.809 Up
Thhalv10008706m COR47 6.80 0.999 6.54 0.998 Up
Thhalv10027405m CBF/DREB1 2.85 0.89 1.61 0.90 Up

the promoter region of COR47 contained C-repeat, dehydration-
responsive element, low temperature-responsive element
(CRT/DRE/LTREs) and ABA regulatory element (ABRE). COR47
was the downstream gene of CBF/DREBI, and CBF/DREBI binds
to the promoter of COR47 to induce its expression (Jaglo-Ottosen
et al., 1998). Functional annotation and sequence alignment
showed that Thhalv10027405m, a TSCBF/DREBI gene, was a
homolog of Arabidopsis CBF1/2/3. RNA-seq data revealed that
Thhalv10027405m was up-regulated in both roots and leaves
under cold treatment (Table 4 and Supplementary Table S2). The
expression profiles of TSCBF/DREBI and COR47 in Thellungiella
was consistent with their counterparts in Arabidopsis, suggesting
that CBF/DREB1 and COR47 genes might play important roles in
DREBI1/CBF-dependent cold signaling pathway in Thellungiella.

In addition, our RNA-seq data indicated that there might be
more genes involved in DREBI/CBF pathway in Thellungiella.
For example, we found DREB2B gene (Thhalv10021161m) was
up-regulated in leaves under cold treatment (Supplementary
Table S2). In addition to COR47 gene, we observed other two
dehydrin genes, Thhalv10010821m and Thhalv10008313m were
also induced by cold treatment (Figure 5 and Supplementary
Table S2).

In Arabidopsis, INDUCER OF CBF EXPRESSION 1 (ICEI)
could induce CBF3 expression by binding to its promoter. It
was an important upstream regulatory factor in DREBI1/CBF
signaling pathway (Chinnusamy et al., 2003). In Thellungiella,
we observed that the expression of ICEI (Thhalv10004059m)
were up-regulated in roots upon cold treatment (1.57-fold).
However, the expression level of ICEl was similar in cold
treated and control samples in leaves. These results indicated
that the function of ICEI might be different in Arabidopsis and
Thellungiella.

Aquaporins (or water channel proteins) played a crucial role
in plant water relations. According to their distinct sub-cellular
localization, aquaporins could be divided into four subgroups, the
tonoplast intrinsic proteins (TIPs), plasma membrane intrinsic
proteins (PIPs), Nod26-like intrinsic membrane proteins (NIPs)
and small basic intrinsic proteins (SIPs). TIPs were abundantly
expressed in vacuole (Maurel, 2007) and played an important
role in maintenance of the intracellular space by controlling
the water influx in vacuole (Leitio et al, 2014). A member
of tonoplast intrinsic proteins GhTIPI;1 was responsive to
cold stress and contributed to freezing-tolerance in cotton
(Li D.D.etal, 2009). In the current study, five cold regulated
aquaporin genes including three TIPs, one PIPs and one NIPs

were identified. RNA-seq and qRT-PCR results demonstrated that
TIP2-1 (Thhalv10021303m) was significantly down-regulated in
both roots and leaves when the plants were under cold treatment.
Another two TIP genes, Thhalv10011730m (also annotated as
TIP2-1) and Thhalv10002084m (TIP4-1), were also significantly
down-regulated upon cold treatment. These results suggested
that the decreased expression of TIP genes might be beneficial
to reduce water in/out of vacuole which is important for
maintaining the stability of the cells in cold condition (Figure 5
and Supplementary Tables S1, S2). Moreover, we observed that
the expression of PIP2-7 (Thhalv10025940m) was significantly
decreased, suggesting that the water in/out of the cell might be
reduced.

CONCLUSION

In this study, we compared the transcriptome of Thellungiella
roots and leaves in response to cold treatment using RNA-seq.
We identified a number of cold-responsive genes which were
involved in different pathways closely related to environmental
adaptation and other biological processes, suggesting the
complex responses of Thellungiella toward cold stress (Figure 6).
Our findings provided an overall picture of the regulatory
network in response to cold stress in Thellungiella. These cold-
responsive genes could be targeted as potential candidates for
further functional validation, and have potential application value
for increasing cold tolerance in crops.

MATERIALS AND METHODS

Plant Materials

Seeds of T. salsuginea (Shandong ecotype) were surface-sterilized
and plated on 1/2 MS-agar plates for synchronize germination
at 4°C for a week. The plates were moved to growth chamber
with 16 h light at 26°C with light intensity of 3000 1x and 8 h
dark at 22°C. Seven-day-old seedlings were transferred to soil
for 5 weeks. For cold treatment, seedlings were exposed to a
growth chamber under a 16/8 h light/dark regime at 8/4°C for
24 h. For the control, the seedlings were grown at 22/16°C.
Leaves and roots of control and cold treated seedlings were
collected, frozen immediately in liquid nitrogen, and stored
at —80°C. To minimize the plant to plant variation, nine
individuals were used as one biological replicate, the tissue from
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FIGURE 6 | Simple model deduced based on the transcriptome data.

nine individuals were pooled into one independent biological
replicate. For both leaves and roots, three biological replicates
were prepared.

RNA Isolation, cDNA Library

Construction, and Sequencing

Total RNA was isolated from leaves and roots using RNAiso
Reagent (Takara, China), and treated with DNase I (Takara,
China) to remove the contaminated genomic DNA according
to the manufacturer’s protocols. RNA quality was detected
by electrophoresis on 1.0% agarose gels and NanoDrop. The
mRNA was enriched and cleaved into short fragments (about
200 nt). The mRNA fragments were used as templates to
synthesize the first strand ¢cDNA using random hexamer-
primer. The first strand cDNA was further incubated with DNA
polymerase I, buffer, dNTPs and RNase H to synthesize the
second strand. Following end repair, a single nucleotide (adenine)
was added, and then sequencing adaptors were ligated to the
fragments. Finally, the fragments were purified and enriched with
PCR amplification to construct cDNA library. Two biological
replicates of each sample were used for RNA-Seq via Illumina
HiSeq™2000 platform by Beijing Genomics Institute (BGI).

Bioinformatics Analysis of RNA-Seq Data

To acquire clean reads, the low-quality reads, adaptor sequences,
and empty reads were removed. All clean reads were mapped
with the genome sequences of T. salsuginea’® using SOAP2
program under the criterion of no more than two mismatches
in the alignment (Li R. et al., 2009). The gene expression level
was calculated using RPKM (Reads per Kb per Million reads)

Zhttp://www.phytozome.net/thellungiella.php

method according to previous studies (Morrissy et al., 2009; Qu
et al,, 2016). The relative gene expression level between different
samples was calculated by log, ratio. Differentially expressed
genes (DEGs) were identified using NOIseq under the criteria
of probability >0.8 and the absolute value of log’Ratio > 1.
The probability (P-value) was calculated according to the
manufacturer’s protocol with the default parameters (Tarazona
etal., 2011).

Gene Ontology annotation was conducted using Blast2GO
(Conesa et al, 2005) by comparing all DEGs with GO
terms in the database, which covered three domains: cellular
component, molecular function and biological process’. The
significantly enriched GO terms in DEGs were identified using
hypergeometric test comparing to the genome background under
the standard of p-value < 0.05. Then GO picture was generated
using WEGO* (Web Gene Ontology Annotation Plot) (Ye et al.,
2006). KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway analysis was performed by mapping the DEGs to
specific biochemical pathways in KEGG database®. Significantly
enriched metabolic pathways or signal transduction pathways
were identified using enrichment analysis by comparing DEGs
with the whole genome background.

qRT-PCR Validation of RNA-Seq Results

The primers used for qRT-PCR validation were designed using
primer premier 5.0 software® and were listed in Supplementary
Table S5. The primers were designed according to the transcript

*http://www.geneontology.org/
*http://wego.genomics.org.cn/cgi-bin/wego/index.pl
*http://www.genome.jp/kegg/

Swww.premierbiosoft.com
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sequences of T. salsuginea downloaded from database’. qRT-
PCR was performed in ABI7500 Real Time System (Applied
Biosystems) using SYBR Green I (Roche) with the following
reaction: 94°C 10 min; 94°C 15 s, 60°C 10 s and 72°C
25 s for 40 cycles. All reactions were performed in biological
triplicates, ubiquitin, and actin were used as internal reference
genes. The relative expression of genes was calculated by the
software of ABI7500 Real-Time PCR System using the 2724t
method.
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