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Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious
damage and reduction in crop yields. Several economically important genera parasitize
various crop plants. The root-knot, root lesion, and cyst nematodes are the three most
economically damaging genera of PPNs on crops within the family Heteroderidae. It is
very important to devise various management strategies against PPNs in economically
important crop plants. Genetic engineering has proven a promising tool for the
development of biotic and abiotic stress tolerance in crop plants. Additionally, the
genetic engineering leading to transgenic plants harboring nematode resistance genes
has demonstrated its significance in the field of plant nematology. Here, we have
discussed the use of genetic engineering for the development of nematode resistance
in plants. This review article also provides a detailed account of transgenic strategies for
the resistance against PPNs. The strategies include natural resistance genes, cloning of
proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference
to suppress nematode effectors. Furthermore, the manipulation of expression levels
of genes induced and suppressed by nematodes has also been suggested as an
innovative approach for inducing nematode resistance in plants. The information in this
article will provide an array of possibilities to engineer resistance against PPNs in different
crop plants.

Keywords: plant parasitic nematodes, R genes, protease inhibitors, RNAi, plant resistance

INTRODUCTION

The word ‘nematode’ comes from the Greek word ‘nema,’ which means thread. Nematodes are
thread like, long, cylindrical, sometimes microscopic worms, which can be found in a variety
of environments. They belong to a huge phylum of animals called ‘Nematoda’ that comprises
of plant and animal parasites, as well as numerous free-living species. They are omnipresent in
nature inhabiting in all types of environments and habitats (Ali et al., 2015). However, most of the
nematodes are free-living and feed on bacteria, fungi or algae. Some of them invade and parasitize
both vertebrates and invertebrates including human beings, thus causing serious health damage
and even human death, i.e., guinea worm (Dracunculus medinensis) and intestinal worm (Ascaris
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lumbricoides) (Decraemer and Hunt, 2006). On the other hand,
some of these worms are serious parasites of plants and result
in huge crop losses. Phyto-parasitic nematodes count for 7%
of total species of the phylum Nematoda from 197 genera
and 4300 species that can infect a wide range of economically
important crop plants including wheat (Triticum aestivum),
potato (Solanum tuberosum), tomato (Solanum lycopersicum),
maize (Zea mays), soybean (Glycine max), and sugar beets
(Beta vulgaris) (Decraemer and Hunt, 2006).

Most of the nematodes are obligate biotrophic parasites of
plants and their infection results in above-ground symptoms in
plants like leaf necrosis, chlorosis, plant wilting, stunted growth,
and enhanced susceptibility to other pathogens, which mostly
occur in patches (Webster, 1995). Penetration of plant parasitic
nematodes (PPNs) to the root systems results in the hindrance
of translocation of water from roots toward areal plant parts
and translocation of nutrients from leaves toward the plant
roots. The developing nematodes feed on cell sap and hinder
the food supply to the plant physiological systems, which results
in stunted growth, yellowing and drooping of leaves. Generally,
below-ground symptoms include gall and knot formation in
infected roots, root lesions and necrosis and root abbreviations.
Figure 1 demonstrates the above- and below-ground symptoms
on different plant species. Moreover, in addition to direct damage
to crops in the form of yield reduction, these worms serve
as disease transmitting vectors for viruses, thereby resulting
in crucial economic and social impacts worldwide (Ali et al.,
2015).

The members of family Heteroderidae (Superfamily:
Tylenchoidea) are divided into three economically important
genera Meloidogyne, Heterodera, and Globodera, which parasitize
a huge number of crop plants. These are obligate endo-parasites
of host plant roots, enter the plant roots as second stage juvenile
larva (J2 larva) and develop specific feeding cells in the plant
roots. The members of the genus Meloidogyne, known as root-
knot nematodes (RKNs), develop giant cells (Jones and Payne,
1978). On the other hand, the cyst nematodes (CNs) that belong
to the genera Heterodera and Globodera induce a very specialized
feeding cell called syncytium (plural: Syncytia) (Jones, 1981).
Migratory endo-parasitic nematodes are another category that
is economically important. These nematodes follow destructive
mode of feeding by continuously moving through the cells of
root tissues and resulting in enormous tissue necrosis (Moens
and Perry, 2009). The important genera from this category of
nematodes are Pratylenchus, Radopholus, and Hirschmanniella.
Moreover, Aphelenchoides, Ditylenchus, and Anguina are the
main genera that infect above-ground plant parts like leaves,
stem, and grains, respectively.

In the last two decades, our understanding of plant–nematode
interactions has increased significantly. The first genome
sequences of two root-knot nematodes species, M. incognita
(Abad et al., 2008) and M. hapla (Opperman et al., 2008),
have been described, which were significantly different from
genome of the free-living nematode Caenorhabditis elegans.
Both M. incognita and M. hapla have definite set of proteins
that determine the virulence in plant species. The secretomes
(set of secreted proteins through the stylets) of different PPNs

have demonstrated a number of effector proteins that are
involved in compatible plant–nematode interactions (Huang
et al., 2003; Bellafiore et al., 2008; Caillaud et al., 2008). In
response to infection of various nematodes, plant’s transcriptome
resulted in increased metabolic activity in the feeding cells
and suppression of defense mechanisms of the plants in
most of the cases (Szakasits et al., 2009; Barcala et al., 2010;
Kyndt et al., 2012; Ali et al., 2015). Most of these studies
revealed considerable progress toward an understanding of
plant–nematode interactions under natural conditions. On the
other hand, many works have been published in the past two
decades regarding the transgenic resistance in model plants,
as well as the crop species using natural resistance (R) genes,
proteinase inhibitors and RNA interference of nematode effector
genes (Bakhetia et al., 2005; Fuller et al., 2008; Gheysen et al.,
2010; Atkinson et al., 2012). In this article, we have focused
on the most recent literature on PPNs with the emphasis on
the use of different conventional and transgenic approaches
to manage PPNs in different plant species of economic
importance.

MANAGEMENT OF PPNs

The management of PPNs has been a big challenge for the
agricultural scientists and farming community. The control of
nematodes below the threshold level is very important for
agricultural sustainability and food security. Several strategies
have been tried for this purpose, which includes management
through cultural, chemical, biological, and transgenic means. The
cultural practices for nematode management include solarization
(Katan, 1981), flooding (MacGuidwin, 1993), fallowing (Brodie
and Murphy, 1975), crop rotation (Westphal, 2011; Dababat
et al., 2015), cover crops (Kirkegaard and Sarwar, 1998), and
a combination of some of these (Singh et al., 2009). Similarly,
the utilization of natural host resistance from various crop
species is a preferred approach for nematode management
because it is environmentally safe and cost-saving option
as compared to chemical control (Williamson and Kumar,
2006; Dababat et al., 2016). In chemical control, fumigants,
organophosphates, and carbamates have been used for inhibiting
nematode populations in the soil. Most of the nematicides
are now being banned due to their high cost and health and
environment issues (Sorribas et al., 2005). Similarly, currently
available organophosphate and carbamate compounds, i.e.,
oxamyl, fosthiazate, and ethoprophos, are at risk of withdrawal by
EU Directive 91/414/EEC due to their hazardous nature (Clayton
et al., 2008).

A lot of work has been carried out and going on to
find biological antagonistic microorganisms like fungi and
bacteria to minimize the effect of pathogens (Kerry, 1980,
1988; Rodriguez-Kabana et al., 1987; Sayre and Walter, 1991;
Stirling, 1991; Sikora, 1992; Dababat et al., 2015). Sayre
(1986) listed nematode fungal parasites Dactylella oviparasitica,
Nematophthora gynophila, and Paecilomyces lilacinus along with
a bacterium Pasteuria penetrans as important candidates for
management of nematodes. Similarly, a Fusarium oxysporum
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FIGURE 1 | Above-ground and below-ground symptoms from different plant species in response to nematode infections. (A) Soybean plants infected
with soybean cyst nematodes (Heterodera glycines) (http://www.extension.umn.edu, reproduced with the permission of Assoc. Prof. Malvick from UMN, US).
(B) Infected and uninfected wheat plants with cereal cyst nematode H. avenae (Courtesy Prof. Honglian Li, China, reproduced with permission from Riley et al.,
2009). (C–E) Roots of sponge gourd, carrots, and okra infected with root-knot nematode Meloidogyne incognita, respectively. (F) Arabidopsis roots showing
development of cysts induced by beet cyst nematode H. schachtii.

strain, Fo162, has been shown promising for controlling
M. incognita in various studies (Dababat and Sikora, 2007a,b;
Martinuz et al., 2012). However, it has been found difficult to
develop a biological control agent that is effective worldwide
for any plant parasitic nematode. Due to high cost and health
hazards, nematicides are losing their value with the passage of
time thus paving the way toward the use of nematode resistance
crop varieties, biocontrol and transgenic strategies for nematode
management.

ENGINEERING PLANTS FOR NEMATODE
RESISTANCE

Recent advancements in biotechnological approaches have
made it possible to incorporate and express indigenous and
heterologous proteins from one organism to another. This
has brought about new era of crop improvements after the
advent of so-called “Green Revolution” in the 1960s. Genetic
engineering of different crop plants has led to improvement
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of both quality and quantity of the produce in addition to
enhancement of tolerance against various stresses. Several disease
and pest resistance genes have been introduced into crop
plants through genetic engineering. The important examples
in this context are Bt cotton (Gossypium hirsutum) resistant
against bollworms (Helicoverpa armigera), herbicide resistance
for weed management, salinity tolerance, and rust resistance in
wheat. Additionally, genetic engineering has been exceptional for
enhancement of nematode resistance in plants. Here, we discuss
different ways of engineering resistance genes in crop plants
to suppress the nematode infection and populations in the soil
below the threshold level.

In the past, several transgenic strategies have been used for
enhancement of nematode resistance in plants. The resistance
genes from natural resources have been cloned from numerous
plant species and could be transferred to other plant species, for
instance, Mi gene from tomato for resistance against M. incognita,
Hs1pro−1 from sugar beet (Beta vulgaris) against H. schachtii,
Gpa-2 from potato against Globodera pallida and Hero A from
tomato against G. rostochiensis (reviewed by Fuller et al., 2008).
The overexpression of different protease inhibitors (PIs) such
as cowpea trypsin inhibitor (CpTI), PIN2, cystatins, and serine
proteases has been used for producing nematode resistant plants
(Lilley et al., 1999). Another main strategy was the targeted
suppression of important nematode effectors in plants using
RNA interference (RNAi) approach. Unlike these strategies, some
recent researches have suggested that nematode resistance could
be enhanced in plants by modifying the expression of particular
genes in syncytia (Klink and Matthews, 2009; Ali, 2012; Ali et al.,
2013a,b). An overview of various transgenic strategies aimed at
nematode resistance is provided in Table 1.

PLANT NATURAL RESISTANCE GENES

Natural resistance genes could exist in both polygenic manner
and single dominant nature. The resistance conferred by host
plant single dominant resistance genes, the R genes from plants,
interacts specifically with corresponding avirulence (Avr) genes in
the nematode, resulting in a so-called ‘gene-for-gene’ interaction.
This type of interaction initiates a cascade of defense responses
in the plants. A short summary of natural nematode resistance
genes is recently given by Fuller et al. (2008) to provide the basis
for this kind of resistance in plants.

Several natural host resistance genes have been cloned from
some plant species and could be transferred to other plant species.
For instance, Mi-1.2 from tomato against M. incognita (Milligan
et al., 1998; Williamson, 1998), Hs1pro−1 from Beta procumbens
against beet cyst nematode H. schachtii (Cai et al., 1997), Gpa-2
from potato against potato cyst nematode (PCN, Globodera
pallida) (van der Vossen et al., 2000) and Hero A from tomato
against G. pallida and G. rostochiensis (Sobczak et al., 2005) and
Cre loci from Aegilops spp. against cereal cyst nematodes in wheat
(Williams et al., 1994; Safari et al., 2005) are some examples that
could be used in future to develop cyst nematode resistance in
crop plants. Transgenic expression of resistance proteins also
induces the expression of PR (pathogenesis related) proteins

to establish nematode resistance in plants. The potato roots
expressing Hero A gene showed high levels of several salicylic
acid (SA)-dependent PR genes in the incompatible interaction
with PCN at 3 dpi (Uehara et al., 2010). They confirmed that
SA inducible PR-1(P4) was a hallmark for the cultivar resistance
conferred by Hero A against PCN and that nematode parasitism
resulted in the inhibition of the SA signaling pathway in the
susceptible cultivars. Similar effects were found in resistant line of
hexaploid wheat carrying Cre2 gene, which showed upregulation
of ascorbate peroxidase coding gene in response to cereal cyst
nematode (H. avenae) when compared with the expression in the
susceptible lines (Simonetti et al., 2010).

Another example is Gro1-4, the constitutive expression
of which has increased resistance in potato plants against
G. rostochiensis pathotype Ro1 (Paal et al., 2004). Rhg1
is another natural resistance gene identified in soybean
against soybean cyst nematode (SCN), H. glycines (Kandoth
et al., 2011). A recent study has shown that map-based
cloning of a gene at the Rhg4 locus, which is a major
quantitative trait locus (QTL), contributing resistance against
SCN (Liu et al., 2012). In that study, the Rhg4 mutant was
analyzed through transgenic complementation, which revealed
that this gene confers resistance in soybean by encoding a
serine hydroxymethyltransferase. This was further confirmed
through overexpression of serine hydroxymethyltransferase in
soybean roots that demonstrated 45% decrease in the number
of mature cyst nematode (Matthews et al., 2013). In the same
study, overexpression of nine other putative resistance genes
(including short chain dehydrogenase, ascorbate peroxidase,
lipase, β-1,4-endoglucanase, calmodulin, DREPP membrane
protein, and three proteins with unknown function) resulted
in more than 50% decrease in the number of adult females in
soybean roots. Similarly, Hero A gene gives almost complete
resistance (>95%) against root cyst nematode (G. rostochiensis),
while it provides around 80% of resistance against G. pallida
(Ernst et al., 2002). Transgenic expression of Hs1pro−1 (resistance
gene against H. schachtii) from B. procumbens into sugar beet
led to nematode resistance, but unluckily was linked with the
genes that were negatively correlated with beet yield (Panella
and Lewellen, 2007). Moreover, the R genes are typically effective
against one or limited range of nematode species/pathotypes.
Another limitation with this strategy is the development
of different nematode pathotypes, which have the effectors
(avr genes) that would not be recognized by the R genes (Jung
et al., 1998).

USE OF PROTEINASE INHIBITOR
CODING GENES

Proteinase inhibitors/PIs are molecules, mostly protein in nature,
which inhibit the function of proteinases/proteases released by
the pathogens. After the attack of herbivores and wounding, a
variety of proteinase inhibitors are produced into the plants.
In case of PPNs, these PIs become active against all the four
classes of proteinases from nematodes, i.e., serine, cysteine,
metalloproteinases, and aspartic. The PIs used for nematode
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TABLE 1 | Various transgenic strategies used for nematode resistance in plants.

Molecular
strategy

Name of gene Source Trangenic plant Effective against Resistance response Reference

Natural resistance
genes

Mi-1.2 Wild tomato
(S. peruvianum)

Tomato (Solanum
lycopersicum)

M. incognita Triggering of HR before
significant establishment of
giant cells on roots

Milligan et al.,
1998;
Williamson,
1998

Hs1pro−1 wild beet (B.
procumbens)

Sugar beet
(B. vulgaris)

H. schachtii Abnormal syncytium
development leading to
starvation of nematodes
beyond J2 stage

Cai et al., 1997

Gpa-2 Potato Potato (Solanum
tuberosum)

G. pallida Development of stagnated
and translucent female
nematodes on plant roots

van der Vossen
et al., 2000

Hero A Tomato Potato G. pallida
G. rostochiensis

Hypersensitive response
after the initiation of
syncytia which become
abnormal and necrotic due
to degeneration of
surrounding cells

Sobczak et al.,
2005

Gro1-4 Potato Potato G. rostochiensis
pathotype Ro1

Unknown Paal et al.,
2004

Rhg1 Soybean (Glycine
max)

Soybean H. glycines Hypersensitive response
leading to abnormal
syncytia and necrosis due
to degeneration of cells
surrounding syncytia

Kandoth et al.,
2011

Rhg4 Soybean Soybean H. glycines Hypersensitive response
following the initiation of
syncytia, which become
abnormal and necrotic due
to degeneration of
surrounding cells this HR
breaks down with the
passage of time

Liu et al., 2012;
Matthews et al.,
2013

Cre loci Aegilops spp. Wheat (Triticum
aestivum)

H. avenae Unknown Williamson,
1998;
Safari et al.,
2005

Proteinase/
protease inhibitors

CpTI

SpTI-1

Cowpea (Vigna
unguiculata)
Sweet potato
(Ipomoea batatas)

Potato

Sugar beet

G. pallida
M. incognita
H. schachtii

Effect on the sexual fate of
newly established G. pallida
and reduce the fecundity of
females of without inhibition
of growth and development
of female H. schachtii

Hepher and
Atkinson, 1992;
Cai et al., 2003

PIN2 Potato Wheat H. avenae Unknown Vishnudasan
et al., 2005

Oc-I1D86 Rice (Oryza sativa) Potato G. pallida
M. incognita

Reduced reproductive
success of PPNs

Urwin et al.,
1995, 2003;
Lilley et al.,
2004

Arabidopsis
thaliana

H. schachtii
M. incognita
R. reniformis

-do- Urwin et al.,
1997, 2000

Rice M. incognita -do- Vain et al.,
1998

Cavendish dessert
bananas (Musa
acuminata)

Radopholus similis -do- Atkinson et al.,
2004

Lily (Lilium
longiflorum)

Pratylenchus penetrans -do- Vieira et al.,
2015

(Continued)
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TABLE 1 | Continued

Molecular
strategy

Name of gene Source Trangenic plant Effective against Resistance response Reference

Eggplant (Solanum
melongena)

M. incognita -do- Papolu et al.,
2016

CeCPI Taro (Colocasia
esculenta)

Tomato M. incognita Interferes with nematode
ability of sex
determination and gall
formation

Chan et al.,
2010, 2015

CCII Maize (Zea mays) Plantain
(Musa spp.)

R. similis,
Helicotylenchus
Multicinctus, and
Meloidogyne spp.

Anti-feedant, reduces the
reproductive success of
nematodes

Roderick et al.,
2012;
Tripathi et al.,
2015

Lectins lectin GNA Snowdrop
(Galanthus nivalis)

Arabidopsis,
oilseed rape
(Brassica napus),
and potato

G. pallida,
Pratylenchus bolivianus,
M. incognita

Decrease in number of
females and galls
developed on plant roots

Burrows et al.,
1998;
Ripoll et al.,
2003

Bt toxins Cry6A, Cry5B B. thuringiensis Tomato M. incognita Significant reduction in
nematode reproduction

Li et al., 2007,
2008

Anti-invasion
peptides

ACHE-I-7.1 Synthetic Potato G. pallida Inhibits nematode
acetylcholinesterase
(ACHE) leading to
disorientation of invading
J2s

Winter et al.,
2002;
Liu et al., 2005;
Lilley et al.,
2011

LEV-I-7.1 Synthetic Potato G. pallida Results in
chemodisruption of J2s
and avoids invasion

Winter et al.,
2002;
Liu et al., 2005

nAChRbp Synthetic Plantain
(Musa spp.)

R. similis
H. multicinctus
Meloidogyne spp.

Disrupts chemosensory
function of invading J2s

Roderick et al.,
2012;
Tripathi et al.,
2015

Dual resistance CpTI + Oc-I1D86 Cowpea and rice Arabidopsis
thaliana

G. pallida and
H. schachtii

Abnormal sexual
development PPNs

Urwin et al.,
1998

Oc-I1D86 +
nAChRbp

Rice + Synthetic Potato G. pallida Reducedreproductive
success of PPNs coupled
with disruption of
chemosensory function of
invading J2s

Green et al.,
2012

CeCPI + PjCHI-1 Taro and
Paecilomyces
javanicus fungus

Tomato M. incognita Reduced chitin content
and retardation in
embryogenesis in the
nematode eggs

Chan et al.,
2015

CCII + nAChRbp Maize + Synthetic Plantain
(Musa spp.)

R. similis
H. multicinctus
Meloidogyne spp.

Anti-feedant and an
anti-root invasion plants
with reducedreproductive
success of PPNs coupled
with disruption of
chemosensory function of
invading J2s

Tripathi et al.,
2015, 2017

resistance studies are CpTI (Hepher and Atkinson, 1992),
sweet potato (Ipomoea batatas) serine PI (sporamin or SpTI-1)
(Cai et al., 2003), PIN2 (Vishnudasan et al., 2005), rice (Oryza
sativa) cystatin (Oc-I1D86) (Urwin et al., 1997, 1998), and
some others cystatins from maize (Zea mays), taro (Colocasia
esculenta), and sunflower (Helianthus annuus) (Fuller et al., 2008;
Chan et al., 2015).

The anti-nematode potential of plant PIs was firstly described
in transgenic potato expressing the serine PI, the cowpea (Vigna
unguiculata) trypsin inhibitor (CpTI) against PCN (G. pallida)

(Hepher and Atkinson, 1992). Similarly, the Arabidopsis plants
overexpressing cystatin Oc-I1D86 suppress both the growth and
fecundity in H. schachtii and M. incognita (Urwin et al., 1997).
Oc-I1D86 was effective against different nematode species in
various plants species (Urwin et al., 1995, 2000, 2003; Vain et al.,
1998; Atkinson et al., 2004; Lilley et al., 2004).

Moreover, the combinations of different PIs could be helpful
to couple specificity with wide range of resistance. Transgenic
expression of two proteinase inhibitors, CpTI and Oc-I1186,
as a translational fusion protein in Arabidopsis resulted in an
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additive effect against G. pallida and H. schachtii (Hepher and
Atkinson, 1992; Urwin et al., 1998). Other important proteinase
inhibitors are sporamin (SpTI-1) (Cai et al., 2003) and PIN2
(Vishnudasan et al., 2005), which have shown good resistant
response in plants.

As compared to other proteinase inhibitors, cystatins from
different plant species have met the promise of enhancement of
nematode resistance in a variety of crop plants (Urwin et al.,
1997, 1998; Chan et al., 2010, 2015; Green et al., 2012; Tripathi
et al., 2015; Papolu et al., 2016). Heterologous expression of a taro
cystatin established considerable degree of resistance in tomato
against M. incognita infection by interference with nematode
ability of sex determination and gall formation (Chan et al.,
2010). Recently, a dual strategy has been used to control PCN
without affecting the soil quality (Green et al., 2012). In the
first approach, a peptide was precisely targeted under control
of a root tip-specific promoter that disrupts chemoreception of
nematodes and suppresses root invasion without a lethal effect in
both containment as well as under field trial (Lilley et al., 2011).
In addition to this chemoreception disruptive peptide, OcI1D86
cystatin from rice was incorporated to control the invading
larvae that are able to cross the barrier of chemodisruptive
peptide. This approach establishes that a combination of these
genes offers distinct bases for the transgenic plant resistance to
G. pallida without harmful impact on the non-target nematode
soil community (Green et al., 2012). This rice cystatin has
also shown good control in lily (Lilium longiflorum cv. ‘Nellie
White’) against lesion nematode (P. penetrans) (Vieira et al.,
2015).

Recently, an anti-feedant maize cystatin and an anti-root
invasion synthetic peptide were transformed into plantain (Musa
spp., cv. Gonja manjaya), individually and in combination
(Tripathi et al., 2015). The field trials of the best transgenic
event containing the peptide only demonstrated 186% more yield
in addition to 99% control against R. similis, H. multicinctus,
and Meloidogyne spp. as compared to non-transgenic control.
Moreover, transgenic expression of proteinase inhibitor from
maize and synthetic chemodisruptive peptide resulted in enhance
yield and nematode resistance in plantain. Similarly, dual
overexpression a taro cysteine proteinase inhibitor (CeCPI)
and a fungal chitinase (PjCHI-1) in tomato under the control
of a synthetic promoter, pMSPOA, (with NOS-like and SP8a
elements), had negative effects on reproduction of M. incognita
(Chan et al., 2015). This study further revealed that dual gene
transformation had more inhibition of nematodes than plants
transformed with a single gene. This advocated that the use
of gene pyramiding could be employed for developing and
improving nematode resistance in plants (Chan et al., 2015;
Tripathi et al., 2015, 2017).

Very recently, a modified rice cystatin (Oc-I1D86) was
expressed in the roots of eggplant (S. melongena) under the
control of the root-specific promoter, TUB-1 (Papolu et al.,
2016). Five putative transformants containing this cystatin
exhibited detrimental effects on both the development and the
reproduction of M. incognita in eggplant. In that study, a single
copy transgenic event showed 78.3% reduction in reproductive
success of M. incognita. This concludes that proteinase inhibitors

are potential candidates for induction of nematodes resistance in
a variety of crop plants to increase crop yield and minimize the
damage caused by these parasitic worms.

NEMATICIDAL PROTEINS

These proteins could be characterized as anti-nematode proteins
because these are directly involved in inhibiting the nematode
development on the plants. Lectins, some antibodies, and Bt
Cry proteins are some examples of these proteins. The toxicity
of lectins is characterized by their ability to obstruct intestinal
function of organisms exhibiting or ingesting them (Vasconcelos
and Oliveira, 2004). The defense mechanism conditioned by the
lectins is vital as several lectins bind with glycans (Peumans and
van Damme, 1995). Overexpression of a snowdrop (Galanthus
nivalis) lectin GNA driven by cauliflower mosaic virus promoter
(CaMV35S) has been exploited to exhibit anti-nematode activity
in several plants, i.e., Arabidopsis, oilseed rape (Brassica napus),
and potato, in response to RKNs, CNs and lesion nematodes
(Burrows et al., 1998; Ripoll et al., 2003).

Plantibodies are the antibodies expressed in plants and also
potential candidates for the development of nematode resistance.
These are important because the establishment of a compatible
plant–nematode interaction engages a series of processes against
which plantibodies may be directed. RKNs and CNs depend on
secretions of their pharyngeal glands to mimic re-differentiation
of plant cells into specialized nematode feeding sites like giant
cells or syncytia. Direction of plantibodies opposite to the active
proteins from these secretions could be attenuated to suppress
the parasitic ability of the nematode. There are only a few
reports available in the literature regarding the use of plantibodies
for nematode resistance (Fioretti et al., 2002; Sharon et al.,
2002).

In addition to lectins and plantibodies, different variants of
Bt toxins (Cry proteins) derived from Bacillus thuringiensis have
shown promise to induce plant resistance against nematodes.
These variants of Bt toxins are, however, more frequently
used against phytophagous insects. Bt toxin was firstly used
as an anti-nematode protein by Marroquin et al. (2000), when
C. elegans was exposed to Cry5B and Cry6A which resulted in
the reduction in nematode fertility and viability. The PPNs use
feeding tube at the stylet orifice while feeding on the plants
roots. The feeding tube operates as molecular sieve, allowing
the uptake of certain molecules and excluding the others.
The ultrastructure of feeding tubes from root-knot and cyst
nematode differ which is based on the observation that root-knot
nematodes are able to ingest larger proteins compared with cyst
nematodes (Hussey and Mims, 1990; Böckenhoff and Grundler,
1994; Urwin et al., 1998; Sobczak et al., 1999; Li et al., 2007).
Transgenic expression of 54 kDa Cry6A and Cry5B proteins
in tomato hairy roots affected the reproduction of root-knot
nematode M. incognita (Li et al., 2007, 2008). Western blotting
technique showed that the 54 kDa Cry6A protein was shown
to be ingested by M. incognita. On the other hand, this large
protein could not be ingested by cyst nematodes (i.e., H. schachtii)
due to small orifice of the feeding tube having the size limit up
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to approximately 23 kDa (Urwin et al., 1998). This limitation
severely restricts the agronomic application of these toxins
against PPNs.

CHEMODISRUPTIVE PEPTIDES

Plant parasitic nematodes are highly dependent on their
chemoreceptive neurons to sense distinct chemical stimuli for
invasion into the plants. Nematodes use acetylcholinesterase
(AChE) and/or nicotinic acetylcholine receptors for proper
functioning of the nervous system. Chemodisruptive peptides
are another important strategy to minimize the invasion of
PPNs into the plant roots. Two peptides have been shown
to bind with these receptors to inhibit their proper function
(Winter et al., 2002). Both of these peptides disrupted nematode
ability of chemoreception by blocking their reaction to chemical
signal at very minute concentrations of up to 1 nm. Transgenic
potato plants expressing a secreted peptide that inhibited
nematode AChE leading to disorientation of invading nematode
G. pallida, which resulted in a 52% decline in the number of
female nematodes (Liu et al., 2005). The peptide is considered
effective after its uptake from chemoreceptor sensillae through
retrograde transport along nematode neurons to cholinergic
synapses. Costa et al. (2009) has demonstrated that cyst nematode
acetylcholinesterase gene (AChE) is expressed in chemo-and
mechanosensory neurons of C. elegans, which further supports
this hypothesis. Similarly, Wang et al. (2011) reported indirect
evidence to support the mechanism by which such peptide
disrupts chemosensory function in cyst nematodes. The peptide
exhibits disulphide-constrained 7-mer with the amino acid
sequence CTTMHPRLC that binds to nicotinic acetylcholine
receptors. Incubation in the peptide solution or root-exudate
from transgenic plants that secrete the peptide disrupted
normal orientation of infective cyst nematodes to host root
diffusate.

Moreover, chemosensory disruptive peptide that inhibits
AChE has recently been expressed under the control of the
constitutive CaMV35S promoter and the root tip-specific
promoter in Arabidopsis and potato plants, where it confers
resistance against H. schachtii and G. pallida (Lilley et al.,
2011). This root tip-specific promoter from Arabidopsis gene
(MDK4-20; At5g54370) directed expression of the nematode
repellant peptide only at the sites of cyst nematode invasion
and has shown strong level of resistance against PCN.
This strategy has now been combined with the transgenic
expression of a rice cystatin in potato to maintain high
level of resistance against PCN without affecting soil quality
(Green et al., 2012). By using the same technique, The
International Institute of Tropical Agriculture (IITA), in
partnership with the University of Leeds, UK, developed
transgenic plantain for nematode resistance using maize
digestive protease inhibitor cystatin and synthetic nematode
repellent peptides (Roderick et al., 2012; Tripathi et al., 2013).
Furthermore, pyramiding of cystatins and chemodisruptive
peptide into different crop plants has shown high degree
of nematode resistance and enhanced crop yields against

root-knot nematodes (Chan et al., 2015; Tripathi et al., 2015,
2017).

UTILIZATION OF RNA INTERFERENCE
TO SUPPRESS NEMATODE EFFECTORS

RNA interference has emerged as a very useful tool for
gene-silencing aimed at functional analysis of different genes
by suppressing their expression in a wide variety of organisms
including PPNs. In this strategy, the nematodes uptake
double-stranded RNA (dsRNA) or short interfering RNAs
(siRNAs) from the plants expressing these RNAs, which elicit
a systemic RNAi response in nematodes. A schematic diagram
elaborating the mechanism of in planta RNAi is shown in
Figure 2. The transgenic expression of dsRNA targeting a
specific nematode effector gene could be handful to suppress
the expression of that effector gene, which is crucial for
infection process. There are many review articles mushroomed
out recently emphasizing the usefulness and application of
RNAi technology to induce nematode resistance in plants by
silencing the expression of nematode effectors mainly (Gheysen
and Vanholme, 2007; Lilley et al., 2007; Fuller et al., 2008;
Rosso et al., 2009; Maule et al., 2011; Tamilarasan and Rajam,
2012). In a recent review article most of the aspects of the
RNAi application in nematode resistance are reviewed (Lilley
et al., 2012). Lilley et al. (2012) have reviewed various features
ranging from in vitro assays with C. elegans to delivering RNAi in
planta as an important strategy for crop protection against cyst
nematodes.

Recently, Youssef et al. (2013a) have tested this approach
by silencing the H. glycines gene HgALD, encoding
fructose-1,6-diphosphate aldolase important in the conversion
of glucose into energy and actin-based motility during parasite
invasion into its host. Transgenic soybean roots expressing
an RNAi construct targeted to silence HgALD revealed 58%
reduction of females formed by H. glycines. Very recently,
Tripathi et al. (2017) have reviewed the application of RNAi
for the enhancement of nematode resistance by suppression of
important effector proteins. Nevertheless, RNAi has become an
established experimental tool for the enhancement of resistance
against PPNs and also offers the prospect of being developed into
a novel control strategy when delivered from transgenic plants.

OTHER STRATEGIES FOR NEMATODE
RESISTANCE IN PLANTS

The manipulation of expression of genes from the plants
could also be useful for induction of resistance against cyst
nematodes. Transgenic plants that overexpress genes correlated
with resistance or have silenced genes which are important to
syncytium development and nematode success are two obvious
areas to explore (Klink and Matthews, 2009; Ali, 2012). This
could be achieved by using precise delivery of transgene into the
feeding sites as the constitutive overexpression or suppression of
a particular gene could have detrimental effects on the growth and
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FIGURE 2 | The mechanism of RNA interference (RNAi), the double-stranded RNA (dsRNA) is processed by the plant dicer enzyme (A) into (B). Once
the dsRNA is uptaken by the nematode from the plant cell while feeding (C), the processing from dsRNA to short interfering RNA (siRNA) can be executed by the
nematode dicer. Then, the siRNA is recognized by the RNA-induced silencing (RISC) complex of the nematode (D) and its unwinding into sense and antisense
strands takes place. A proportion of the RISC complex loaded with the antisense strand interacts with the corresponding mRNA in the nematode (E) as a result the
mRNA is cleaved by the RISC (F) and subsequently degraded (G). Moreover, the targeted mRNA can be made double-stranded after binding of the siRNA, and this
dsRNA is then processed to produce additional siRNAs, intensifying the initial silencing signal (Gheysen and Vanholme, 2007).

development of the plants (Ali et al., 2013b). For this purpose,
promoters that are specifically expressed in the feeding sites of
PPNs, i.e., Pdf2.1 or MIOX5, could be used (Siddique et al., 2009,
2011). Although constitutive promoters can deliver the gene of
interest or suppress the genes which are important for compatible
interaction (Ali and Abbas, 2016), however, it could be lethal
for the plants to silence the genes which are also important for
other physiological processes in addition to establishment of the
nematodes. The promoters of the genes like Pdf2.1 or MIOX5 are
specially and highly expressed in syncytia and several studies have
shown the utility of these promoters to overexpress and silence
the genes of interest specially into the feeding sites (Siddique
et al., 2009, 2011; Ali et al., 2012, 2013b, 2014). In addition to
syncytia specific promoters, root and root tip-specific promoters

have also been used to drive site specific expression of proteinase
inhibitors and nematode chemodistruptive peptides in several
plant species (Lilley et al., 2011; Atkinson et al., 2012; Green et al.,
2012).

The transcriptomes of various plant species infected with
different nematode species demonstrated the upregulation
of genes important for development of nematode feeding
structures in the plant roots. The knockout mutants of
two endo-1,4-β-glucanases, which were highly upregulated in
syncytia, revealed less susceptibility in Arabidopsis in response
to beet cyst nematode (Wieczorek et al., 2008). Likewise, an
ATPase gene from Arabidopsis (At1g64110) was reported to be
induced in syncytia caused by H. schachtii (Ali et al., 2013b). The
knocking down of this gene using syncytia specific promoters
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(prom.AtPDF2.1 and prom.AtMIOX5) supported less number of
nematodes.

Conversely, the nematodes are smart enough to suppress the
defense mechanisms of the plants as most of the genes involved
in defense related pathways were downregulated in the feeding
sites revealed by plant transcriptomes in response to nematode
infection (Szakasits et al., 2009; Barcala et al., 2010; Kyndt
et al., 2012; Ali et al., 2015). One strongly downregulated group
comprised peroxidase gene family, as out of top 100 differentially
expressed genes with the strongest decrease in expression, 14
were peroxidases (Szakasits et al., 2009). Similarly, ethylene
responsive transcription factor from Arabidopsis, AtRAP2.6, was
one of the strongly downregulated transcripts in syncytia. This
gene was driven through the constitutive promoter CaMV35S to
overexpress in Arabidopsis at the global level, which resulted in
reduced susceptibility in overexpression lines (Ali et al., 2013a).
This also supports the debate of use of CaMV35S promoter to
expression gene of interest in the syncytia induced by beet cyst
nematodes in Arabidopsis roots (Ali and Abbas, 2016).

Another strategy is the expression of the genes involved
in the defense pathways like camalexin and callose synthesis
in plants (Hofmann et al., 2010; Millet et al., 2010; Mao
et al., 2011; Birkenbihl et al., 2012). Recently, expression of
AtPAD4 under the control of FMV-sgt promoter has resulted
in enhanced resistance against soybean cyst and root-knot
nematodes in soybean (Youssef et al., 2013b). Expression of
AtPAD4 in soybean roots decreased the number of mature
H. glycines females and M. incognita galls up to 68 and
77%, respectively. We have recently dissected the pathway
of camalexin synthesis in plant–nematode interactions based
on infection assays of AtWRKY33 and AtPAD3 mutants and
overexpression lines (Ali et al., 2014). In this report, the syncytia
specific overexpression of WRKY33 resulted in the suppression
of susceptibility in Arabidopsis. Similarly, the overexpression of
a soybean salicylic acid methyltransferase (GmSAMT1) gene is
found to confer resistance to SCN (Lin et al., 2013).

CONCLUSION REMARKS

As a consequence of enormous yield losses in crop plants
imposed by the PPNs, the understanding of plant–nematode
interaction is becoming of utmost importance. The nematode
effectors include, for instance, cell wall degrading enzymes,
the genes involved in molecular mimicry of plant genes for
both compatible and incompatible plant–nematode interactions.
Targeted silencing of known nematode effector proteins through
in planta RNAi technology holds a great potential for plant

resistance against various species of nematodes (Gheysen and
Vanholme, 2007). A recently developed virus-induced gene
silencing (VIGS) method provides a new tool to identify genes
involved in soybean–nematode interactions (Kandoth et al.,
2013). Similarly, the application of bioinformatics in the form
of approaches like OrthoMCL could be very important for
computational identification and analysis of effector proteins
from PPNs (Williams et al., 1994). The development of
population specific markers along with character compatibility
method for diagnosis and phylogenetic inference of inter and
intra specific populations of nematodes could also be done (Phiri
et al., 2013). During the compatible plant–nematode interaction,
nematodes are somehow able to suppress the defense related
genes, the overexpression of which has led to enhanced resistance
(Ali et al., 2013a). In addition to CaMV-35S promoter, several
syncytia specific promoters could be used to overproduce the
defense related genes in the feeding sites of the nematode to
enhance resistance (Ali et al., 2013a, 2014; Ali and Abbas, 2016).
This could be the interesting starting point for further studies
to explicate how nematodes are able to suppress systemic plant
defense mechanisms. It is concluded that the use of different
transgenic strategies has shown good promise for nematode
resistance. These have been helpful for reduction of nematode
population on the plants on individual basis; however, by stacking
all these molecular strategies together in the one plant will
result in additive resistance, almost near to immunity against
nematodes in crop plants.
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