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The emergence and re-emergence of plant pathogenic microorganisms are processes

that imply perturbations in both host and pathogen ecological niches. Global change

is largely assumed to drive the emergence of new etiological agents by altering the

equilibrium of the ecological habitats which in turn places hosts more in contact with

pathogen reservoirs. In this context, the number of epidemics is expected to increase

dramatically in the next coming decades both in wild and crop plants. Under these

considerations, the identification of the genetic variants underlying natural variation of

resistance is a pre-requisite to estimate the adaptive potential of wild plant populations

and to develop new breeding resistant cultivars. On the other hand, the prediction of

pathogen’s genetic determinants underlying disease emergence can help to identify

plant resistance alleles. In the genomic era, whole genome sequencing combined

with the development of statistical methods led to the emergence of Genome Wide

Association (GWA) mapping, a powerful tool for detecting genomic regions associated

with natural variation of disease resistance in both wild and cultivated plants. However,

GWA mapping has been less employed for the detection of genetic variants associated

with pathogenicity in microbes. Here, we reviewed GWA studies performed either in

plants or in pathogenic microorganisms (bacteria, fungi and oomycetes). In addition, we

highlighted the benefits and caveats of the emerging joint GWA mapping approach that

allows for the simultaneous identification of genes interacting between genomes of both

partners. Finally, based on co-evolutionary processes in wild populations, we highlighted

a phenotyping-free joint GWA mapping approach as a promising tool for describing the

molecular landscape underlying plant - microbe interactions.

Keywords: genome-wide association mapping, disease resistance, pathogenicity, crops, microbiota, pathobiota,

genome-to-genome analysis, co-evolution

INTRODUCTION

In the last decade theWorld Health Organization (WHO) reported more than 300 newly infectious
diseases that have emerged as threat for human (Jones et al., 2008). In the same trend, a conspicuous
burst of plant diseases has been reported since the beginning of this century (Bartoli et al., 2016).
Newly pathogenic microbes can spill over form reservoirs or newly variants of a pre-existing
pathogen (Elena et al., 2011). Three main driving factors for Emerging Diseases (ED) occurrences
are currently considered in both human and plant pathology: (i) genetic and biological factors
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both acting on the host and the etiological agent (i.e., changes
in host susceptibility and microbial adaptation via genomic
rearrangements), (ii) ecological and environmental factors (i.e.,
climate change, perturbations of the ecological niches of the
pathogens and changes in host demography), (iii) social, political
and economic factors (i.e., land use and international travel;
Smolinski et al., 2003). Whatever the factor we consider the
common line in ED is the evolutionary potential of microbes that
through genetic changes can bypass the host defense system by
spreading over new host populations. However, the evolutionary
genetic change of the pathogen is not sufficient for the occurrence
of ED and ecological perturbations such as habitat modifications
are necessary for the newly pathogen to encounter its host.
For example, agricultural practices can drastically alter the
environment by offering routes for transmission of pathogens
(Institute of Medicine, 2003).

As proposed by (Engering et al., 2013), ED caused by
microbial agents can be divided in three major groups. The
first disease emergence category concerns those pathogens that
emerge in a novel host, a common process that is also called
host jump. Pathogenic lines with flexible genomes (or high
evolvability behavior) and with high environmental survival are
muchmore prone for host jumps (Engering et al., 2013), although
interspecies contact rate—that is burst by the ongoing growth
in human population and consumption of animal products—is
one of the main drivers for host jump occurrence. For example,
the oomycete species Phytophthora infestans responsible for the
Irish potato famine, experienced several host jumps because
of the high rate of genomic rearrangements in non-coding
genomic regions (Raffaele et al., 2010). A second type of disease
emergence involves mutant pathogenic lines that caused more
severe diseases after the acquisition of novel genetic traits. Novel
pathogenicity traits can be the result of mutations or horizontal
gene transfer and both processes increase pathogen’s genetic
variability (Bartoli et al., 2016). In light of this, the barley powdery
mildew, Blumeria graminis, has increased its pathogenicity and
has acquired an obligate biotrophy life-style via retrotransposon
proliferation and gene loss (Spanu et al., 2010). However, the
environment where the pathogenic populations evolve is of
fundamental importance for triggering the evolution of new
traits increasing aggressiveness in a pathogen. For example, the
intensification of antibiotic utilization in agriculture increased
antibiotic resistance gene acquisition as well as virulence in
several bacterial pathogens (Jones et al., 2008). Examples are the
Escherichia coli O157:H7 in which its aggressiveness increased
after the acquisition of the Shiga toxin plasmid, or the rice
fungal pathogen Cochiliobolus miyabeanus responsible of Great
Bengal Famine of 1943 that gaining non-host specific toxins
raised virulence on the rice host (Bruyne et al., 2016). However,
in some cases, resistance to antibiotics can also naturally occur
in pathogens without the selective pressure of the molecule.
For example, in Pseudomonas viridiflava hypermutable variants,
resistant to several antibiotics, spontaneously occur in synthetic
media, as well in planta, in absence of antibiotics (Bartoli et al.,
2015). Also, mutations CYP51 conferring azole resistance in
different fungal pathogens is not always related to the utilization
of fungicides as demonstrated in Fusarium spp (Parker et al.,

2014). Lastly, the geographic expansion (or geographic jump)
of a pathogen is also a form of disease emergence that can
rapidly lead to disease epidemics (Engering et al., 2013). As
already mentioned for host jumps, pathogens with more flexible
genomes are obviously more prone to expand their geographic
range because they can rapidly respond to the environmental
conditions of a new habitat. However, human practices are also
responsible for the expansion of pathogens’ geographic area.
In particular, multiple crop epidemics were caused by multiple
introductions pathogen populations from restricted geographic
regions, as reported for the worldwide spread of kiwifruit
bacterial canker caused by the bacterium Pseudomonas syringae
pv. actinidiae originating from China (Kim et al., 2016) and for
P. infestans (Kamoun et al., 2015).

The challenge of understanding and predicting ED
occurrences is even more relevant in the climate change context
which is likely to favor conditions for pathogens’ development
and dispersal (Bergot et al., 2004; Garrett et al., 2006; Tylianakis
et al., 2008). Consequently, climate change scenarios predict
an increase in the number of epidemics in the next coming
decades (Bergot et al., 2004; Evans et al., 2008). However, the
relationships between climate change and ED occurrences is also
related to the life histories and the infection processes of the
pathogens. For example, pathogens living in highly fluctuating
environments (such as epiphytes) should be more favored under
a climatic change scenario than pathogens strictly adapted to
more constant habitats (such as obligate endophytes). Taking
into account the environmental drivers of the pathogen/host
variability that is the central theme for ED occurrence, there is an
increasing need to better identify and understand the genetic and
molecular mechanisms underlying pathogen virulence and plant
resistance in the ecological conditions where both pathogens and
hosts evolve. To our opinion, this ecological genomics approach
can favor the identification of novel, durable, and sustainable
means to prevent crop diseases.

To date, traditional linkage mapping based on genetic
map, has been achieved in the identification of the genetic
basis underlying phenotypic variation in both plants and
pathogenic microbes. Traditional linkage mapping refers to
a diversity of experimental populations ranging from F2
populations to the more recently developed multiparent
advanced generation intercross (MAGIC) lines (Kover et al.,
2009). Because Recombinant Inbred Lines (RILs) are almost
completely homozygous, they can be replicated within an
experiment and/or among several environmental conditions,
thereby making RIL families the most popular experiment
populations for traditional linkage mapping, at least in plants
(Bergelson and Roux, 2010). While few genetic markers are
required for a complete genome scan, traditional linkage
mapping presents several drawbacks including (i) coarse
mapping, (ii) genetic diversity that is limited to the parental
lines of the segregating populations, and (iii) the impossibility
to distinguish between pleiotropic and physically close genes
(Bergelson and Roux, 2010). To address those problems, the
method of genome-wide association (GWA) mapping emerged
through the recent development of next-generation sequencing
(NGS) technologies. Taking advantage of recombination events
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that have accumulated over thousands of generations (Mitchell-
Olds and Schmitt, 2006; Nordborg and Weigel, 2010), GWA
mapping uses natural linkage disequilibrium (LD) to identify
polymorphisms that are associated with phenotypic variation.
Although its power is reduced to detect rare alleles or weak-
effect alleles in GWA mapping populations, this issue is
counterbalanced by the greater advantage of fine mapping (down
to the gene level) and common alleles associated with phenotypic
variation at the species level (Bergelson and Roux, 2010).

The aim of the present review is to summarize recent
progresses on the identification of QTLs underlying plant-
pathogen interactions, through the use of GWA mapping. We
discussed the main experimental and methodological difficulties
that need to be addressed in the future to obtain a thorough
overview of the genetic architecture underlying plant-pathogen
interactions. We also introduced the emerging joint GWA
mapping approach that allows the simultaneous identification of
intergenomic epistatic QTLs underlying the molecular landscape
of plant-pathogen interactions. In this context, we highlighted
the benefits of the joint GWA mapping approach, in particular
when performed in absence of phenotyping.

GWA STUDIES OF PATHOGEN
RESISTANCE IN PLANTS

In this review, we only considered GWAS based on a substantial
number of genetic markers covering the whole plant species
genome, thereby allowing to obtain an unbiased picture of
the genetic architecture driving disease resistance. Also, we
focused on studies where plants were directly challenged
with a pathogen species. We therefore not considered GWAS
of autoactive hypersensitive response (Olukolu et al., 2014).
Based on these criteria, we identified a total of 35 studies
reporting the identification of genomic regions associated with
natural variation of plant response to pathogen infection in 34
pathosystems (Table 1). Despite the limited number of GWAS
of disease resistance, important observations can be still drawn.
Firstly, although the first GWAS of disease resistance—on
Arabidopsis thaliana interacting with the bacterial pathogen P.
syringae—was published in 2005 (Aranzana et al., 2005), almost
half of the GWAS (∼48.6%) have been published in the last
2 years. The recent burst of GWAS is directly linked to the
development of the NGS technologies that occurred in the
last decade. NGS technologies provide sufficient numbers of
genetic markers to fine-map genes underlying natural variation
of complex traits (Bergelson and Roux, 2010). The 35 GWAS
identified here used Single Nucleotide Polymorphisms (SNPs) as
genetic markers for mapping, because of their high frequency
across the genomes and the development of SNP-tilling arrays
containing probe sets for tens (even hundreds) of thousands of
SNPs. While SNP markers remain highly popular, they represent
only a fraction of the available genetic polymorphisms. The
access to structural variants such as copy number variation
(CNV) and insertions-deletions (indels) is already facilitated
by Single Molecule Real-Time (SMRT) sequencing technologies
such as the Pacific Biosciences (PacBio) and Oxford Nanopore

systems (Goodwin et al., 2016; Lee et al., 2016). In addition,
because epigenetic variation can account for a non-negligible
fraction (up to 30%) of the variation in complex traits (Roux
et al., 2011), epigenome characterization at a single-base-pair
resolution for hundreds of plant lines has already started for
a limited number of plant species. For example, a high-quality
single-base resolution genome-wide methylome was recently
reported for 1,107 natural A. thaliana accessions (Kawakatsu
et al., 2016).While combining different types of genomicmarkers
with epigenomic diversity should help the access to causal
variations and to tease apart the relative effect of genetic variants
from epigenetic variants, the inclusion of additional information
ever lead to an increase of false-positive associations between
phenotype and polymorphic markers due to the problem of
large dimensionality. The reduction of false-positive rate requests
the development of statistical methods taking into account the
diversity of polymorphic markers and the inherent kinships
among plant lines, potentially reflecting different aspects of the
demographic history of the plant species considered.

Secondly, the 35 plant GWAS are not evenly distributed
across the three classes of pathogenic organisms considered in
this review (Table 1). Two thirds of the GWAS reported the
mapping of resistance QTLs to fungal pathogens, whereas the
remaining GWAS were split between bacterial pathogens (n =

9) and oomycete pathogens (n = 6). The greater number of
GWAS designed to identify genes decreasing the detrimental
effect of fungal infection on plants is in line with fungal
pathogens being the most widespread and rapidly spreading
crop pathogens, despite their restricted host range in comparison
with bacterial and oomycete pathogens (Bebber et al., 2014).
Although plants are simultaneously and/or sequentially attacked
by a range of pathogens, whether in natural environments or
in crop fields (Kniskern et al., 2007; Davila Olivas et al., 2016;
Roux and Bergelson, 2016), GWAS reporting genomic regions
associated with plant responses to multiple pathogen attacks
remain however scarce. In a first attempt, bymeasuring resistance
to three fungal leaf diseases (i.e., southern leaf blight caused by
Cochliobolus heterostrophus, gray leaf spot caused by Cercospora
zeae-maydis (Czm) and northern leaf blight caused by Cercospora
zeina) on 253 maize inbred lines genotyped for only 858 SNPs
(i.e., 0.0015% SNP sites in maize), Wisser et al. (2011) performed
a multivariate analysis and identified a glutathione S-transferase
(GST) associated with modest levels of resistance to all three
diseases. The recent development of statistical tools to perform
multi-trait GWA mapping would undoubtedly facilitate the
identification of the pleiotropic genetic determinants underlying
multi-pathogen response (Korte et al., 2012; Thoen et al.,
2016). In the era of metagenomics, describing multiple pathogen
infections can be facilitated by the description of the pathobiota
(defined as the complex of microorganisms with the potential to
cause disease on the plant host; Kamada et al., 2013) based on
high throughput sequencing of amplicons of housekeeping genes
with deep taxonomic resolution (such as gyrB gene marker for
bacteria), allowing to distinguish pathogenic from commensal
Operational Taxonomic Units (OTUs) within a given microbe
genus (Barret et al., 2015). A metagenomic approach can help to
estimate the relative fraction of microbial pathogens and can also
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have the advantage of describing multiple pathogen infections
at very early disease stages. Under these considerations, the
next challenge in tracing the plant genomic regions associated
with disease occurrence concerns the developed of GWAS on
the whole pathobiota. While a recent GWA study reported the
identification of genomic regions associated with descriptors
(i.e., species richness, α-diversity, β-diversity, presence/absence
of OTUs) of leaf microbial community in A. thaliana (Horton
et al., 2014), to our knowledge, no GWAS on descriptors of
pathobiota communities have been published so far. Altogether,
mapping genomic regions associated with plant response to
multiple pathogen infections can help to better elucidate the
pathways that ultimately enable a plant to fine-tune its defense
against different aggressors, thereby shedding some light on
downstream components of the complex signaling network
leading to resistance that cannot be revealed by classical mono-
pathogen infection approaches.

Thirdly, the 35 GWAS involved only 11 plant species
distributed across three botanical families, i.e., Brassicaceae
(A. thaliana and Brassica napus), Fabaceae (Glycine max,
Medicago sativa, Medicago truncatula, Pisum sativum) and
Poaceae (Hordeum vulgare,Oryza sativa, Setaria italica, Sorghum
bicolor, and Zea mays; Table 1). Because of the economic and
environmental cost of crop pathogens, the majority of GWAS
(∼62.8%) was conducted on crop species to speed up the
identification of new sources of disease resistance. The remaining
GWAS were conducted on the two model plant species A.
thaliana (∼33%) and M. truncatula (∼3%). Conducting GWAS
on wild plant species can be a successful starting point to
identify homologous genes in other species belonging or not
to the same botanical family (Huard-chauveau et al., 2013). In
addition, studying the spatial-temporal evolutionary dynamics of
an adaptive resistance gene in an ecologically realistic context can
help drawing new strategies for disease management in crops in
an agro-ecological context (Bergelson et al., 2001; Barrett et al.,
2009; Burdon et al., 2014; Karasov et al., 2014; Roux et al., 2014a).

Fourthly, a large variety of genetic lines, from natural
accessions to elite breeding lines, were used for scoring disease
resistance (Table 1). Noteworthy is the use of the combined
advantages of both traditional QTLmapping and GWAmapping
in a Nested Association Mapping (NAM) population in maize
(for a total of ∼4,000 RILs resulting from 25 crosses between
diverse inbred lines and the reference line B73; Buckler et al.,
2009) in four GWAS (Kump et al., 2011; Poland et al., 2011;
Bian et al., 2014; Benson et al., 2015). Across the 35 GWAS, the
number of genetic lines scored for disease resistance follows an L-
shaped distribution with a median of ∼196 lines (mean number
∼817 lines, minimum number ∼44 lines, maximum number
∼7,431 lines; Table 1). Increasing genetic diversity remains the
major goal in the design of a GWA mapping population and
is mainly achieved by assembling lines collected over the entire
geographic range of a plant species. Such panels may however
increase the effect of population demographic history on the rate
of false-positive phenotype-genotype associations (Zhao et al.,
2007). Statistical methods controlling for population structure
can drastically reduce the inflation of false-positive associations
(Price et al., 2006, 2010; Kang et al., 2010; Zhang et al.,

2010), but with the cost of increasing the rate of false-negative
associations (i.e., when causative variants are lost after applying
a correction for the effects of population structure; Brachi et al.,
2010). In addition, because the same phenotype can be achieved
by different combinations of genes, a higher genetic diversity
increases the probability of genetic and/or allelic heterogeneity
which may in turn limit the detection of polymorphic markers
linked to phenotypic variation (Bergelson and Roux, 2010).
Controlling the effects of genetic and allelic heterogeneity may
be achieved by building panels of lines belonging to the same
genetic cluster that is often geographically restricted. While
of smaller size, those panels can lead to a higher power and
resolution to fine-map loci associated with phenotypic variation.
For example, more significant and neat association peaks for
phenological variation in A. thaliana were found in set of 121
natural accessions collected in the region of Burgundy (France)
than in a set a 167 worldwide natural accessions (Brachi et al.,
2013). It remains to be tested whether a similar pattern is also
observed for disease resistance.

Fifthly, the environmental conditions in which phenotyping
of disease resistance was performed are well balanced between
laboratory (greenhouse/growth chamber) controlled conditions
(60%) and field conditions (40%) (Table 1), with only three
GWAS performed both in controlled and/or field conditions
(Chang et al., 2016; Desgroux et al., 2016; Rincker et al., 2016).
Controlled and field conditions are complementary. In the
field, plants are exposed to greater temporal abiotic fluctuations
that may affect plant responses to pathogen invasions than
are typically encountered in laboratory conditions. To limit
the effects of those fluctuations, field experiments are repeated
over several years. Despite recurrent observations of pathogen
infections in natural populations, it is interesting to note that
no GWAS was performed in the model plant species A. thaliana
and M. truncatula in their local habitats. Adding ecology to
the studies of “disease resistance—genotype” association can
however help to better understand the evolutionary trajectories
of a given adaptive resistance gene (Karasov et al., 2014; Roux and
Bergelson, 2016). On the other hand, performing experiments
in controlled conditions can help to test the effect of a specific
abiotic stress on plant resistance to pathogen infection. This is
especially relevant in the context of climate change where (i) the
severity of epidemics is predicted to increase due to the shift
and broadening of geographic distributions of pathogen species
(Evans et al., 2008; Bebber et al., 2014), and (ii) a permanent
increase in temperature was demonstrated to alleviate major
known defense mechanisms in plants (Suzuki et al., 2014). In
addressing this issue, Aoun and colleagues reported a GWAS
performed on A. thaliana challenged with the bacterial pathogen
Ralstonia solanacearum at 27 and 30◦C (Aoun et al., in review).
Based on traditional QTL mapping performed on one RIL
family, the immune receptor pair of TIR-NBS-LRR proteins
RESISTANT TO P. SYRINGAE 4 (RPS4)/RESISTANT TO R.
SOLANACEARUM 1 (RRS1) has been map-based cloned and
identified as the major genetic determinant conferring resistance
to the R. solanacearum GMI1000 strain at 27◦C (Deslandes et al.,
2002). GWA mapping performed on 176 worldwide accessions
of A. thaliana phenotyped at 27◦C revealed a strong and unique
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association peak with the most associated SNP located within
RPS4, suggesting that natural variation for resistance to the strain
GMI1000 is also caused by RPS4/RRS1 at the species level (Aoun
et al., in review). At 30◦C, GWA mapping performed on the
same set of accessions revealed multiple and smaller association
peaks not located in the vicinity of RPS4/RRS1. Based on the
phenotyping of T-DNA knockout mutants, the authors identified
an enzyme encoding a strictosidine synthase (STRICTOSIDINE
SYNTHASE-LIKE 4, SLL4) as underlying one of these small QTLs
(Aoun et al., in review).

Sixthly, the first GWAS of disease resistance were performed
in A. thaliana on natural variation of the hypersensitive response
(HR), i.e., a highly effective local resistance response that is often
associated with hypersensitive cell death (Table 1). This binary
trait was useful to demonstrate the power of GWA mapping in
plants because of previously known resistance genes underlying
HR (Aranzana et al., 2005; Atwell et al., 2010). However,
quantitative resistance (continuum of symptoms) is much
more prevalent than qualitative resistance (presence/absence of
symptoms) in crops and natural plant populations (Young, 1996;
Poland et al., 2008; Roux et al., 2014a). Accordingly, recent
GWAS performed in A. thaliana and M. truncatula and all
GWAS performed in crops were based on a quantitative scoring
of plant response to pathogen infections (but see Rincker et al.,
2016; Table 1). The quantitative genetic architecture was highly
diverse among pathosystems, ranging from the identification
of few medium-effect QTLs to the identification of up to
hundreds (and even thousands) of small-effect QTLs (Corwin
et al., 2016). We should however be cautious on the complexity
of the quantitative genetic architecture described in most
GWAS because the number of QTLs identified might be highly
dependent on the number of genetic lines used, the number
of polymorphic markers genotyped and the accuracy in scoring
the disease symptoms (Table 1). Because the development of
NGS technologies will speed up the accumulation of genomic
resources, the next frontier is high-throughput phenotyping
of precise quantitative disease symptoms. This challenge can
be achieved by the combination of the development of
automated platforms (such as the Toulouse Plant Microbe
Phenotyping Platform) updated by the International Plant
Phenomics Network (IPPN) with the development of image-
based quantification of disease symptoms (Laflamme et al., 2016).

Finally, the major goal of performing GWAmapping in crops
is to accelerate the identification of genetic markers that can
be subsequently used for Marker-Assisted Selection (MAS) in
breeding programs. In this context, GWAS are rarely followed up
by studies aiming at functionally validating the causative genes.
To date, after identification of genomic regions linked to disease
resistance by GWA mapping, genes responsible for the QTL of
interest were functionally validated in only six GWAS (Table 1).
Unsurprisingly, most functional validations were performed in
A. thaliana due to the impressive genetic tools available in this
species, such as the availability of several public collections of T-
DNA mutants, quantitative complementation (i.e., introducing
alternative alleles in genetic lines lacking the candidate gene)
or quantitative knockdown (i.e., gene silencing by amiRNA;
Bergelson and Roux, 2010). Functional validation helped (i) to

identify gene functions that have never been related to defense
against aggressors, as illustrated by the atypical kinase RKS1 gene
and a gene of unknown function, both conferring quantitative
resistance to the bacterial pathogen Xanthomonas campestris
(Huard-chauveau et al., 2013; Roux et al., 2014b; Debieu et al.,
2016), and (ii) to establish the selective forces acting on the
causative gene (Huard-chauveau et al., 2013; Karasov et al., 2014).
In a further step, both analyzing the transcriptional and/or post-
transcriptional regulation of the causative gene and searching for
proteins directly interacting with the causative gene can lead to
the identification of the downstream signaling pathways, thereby
providing an additional list of candidate genes for breeding
programs.

WHY SO FEW GWAS OF PATHOGENICITY
IN BACTERIA, FUNGI AND OOMYCETES?

Similarly to plants, we only considered in this study GWAS
based on a substantial number of genetic markers covering
the whole genome of the pathogen species. As described
above, GWA mapping started to be extensively used to
fine map resistance genes in plants. By contrast, since the
publication of the first plant pathogenic bacterium genome
(Xylella fastidiosa) in 2000 (Simpson et al., 2000), the first
plant pathogenic fungal species Magnaporthe grisea in 2005
(Dean et al., 2005) and the first oomycete species Phytophthora
ramorum in 2006 (Tyler et al., 2006), as well the establishment
of the Fungal Genome Initiative (FGI) (Galagan et al.,
2005), only five studies employed GWA mapping to identify
candidate pathogenic genetic determinants in bacterial (Monteil
et al., 2017) and fungal pathogens (Dalman et al., 2013;
Gao et al., 2016; Talas et al., 2016, Wu et al., 2017)
and to our knowledge, no GWAS was reported yet on
a phytopathogenic oomycete. Several explanations can be
advanced for this paucity of studies. Firstly, comparative
genomics has been proved as a very efficient tool to identify
important pathogenic genetic determinants and to elucidate
the mechanisms that microbial phytopathogens employ during
pathogenesis (Klosterman et al., 2016). As recently summarized
by Sundin et al. (2016), comparative genomics performed
on an ever-growing number of phytopathogenic sequenced
genomes was extremely useful for the discovery of type III
secretion system (T3SS) effectors and transcription activator-
like effector nuclease (TAL-effector) of the three most important
studied plant pathogenic bacteria P. syringae, X. campestris and
R. solanacearum (Mansfield et al., 2012). Though powerful,
comparative genomics has also several limitations. Comparative
genomics is a powerful tool to compare closely related epidemic
strains showing few genomic differences but it can be hardly
applied to “reservoir populations” carrying a high degree of
diversity among them. In addition, comparative genomics is
mainly employed to detect phenotypic differences that are
based on the presence/absence of genes, thereby strongly
limiting the potential for identifying SNPs associated with
natural variation of virulence/aggressiveness among microbial
pathogenic populations.
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Secondly, despite the presence of several molecular
mechanisms that can generate genetic variation in microbes
(i.e., frequent mutation events, homologous recombination,
and horizontal gene transfer; Bartoli et al., 2016), fine mapping
in GWAS can be limited by the long LD observed in many
pathogen species (Read andMassey, 2014). In human pathogenic
microbes, long LD is mainly observed in pathogen species with
a clonal reproduction system and/or in sets of epidemics strains
with limited genetic diversity (Chen and Shapiro, 2015; Read
and Massey, 2014). While to our knowledge no LD extent has
been estimated in phytopathogenic bacteria and oomycetes, a
rapid LD decay was observed in two phytopathogenic fungi, i.e.,
Fusarium graminearum (mean LD ∼1 kb) and Parastagonospora
nodorum (mean LD∼5–10 kb; Gao et al., 2016; Talas et al., 2016),
thereby allowing fine mapping of pathogenic determinants (see
below).

Thirdly, as previously observed in plants, genomic diversity
of pathogenic microbes can be strongly shaped by population
stratification (Power et al., 2017). Such population stratification
is particularly encountered in haploid and asexual bacteria
and/or pathogenic microbes with limited dispersal (Chen
and Shapiro, 2015). Because population structure can
impede the identification of genomic regions associated
with virulence/aggressiveness in pathogenic microbes, various
methods have been recently developed to limit the rate of
false positives (Sheppard et al., 2013; Earle et al., 2016).
When applied in the field of human pathology, these methods
allowed the identification of genes related to host specificity
in the Campylobacter human pathogen (Sheppard et al.,
2013) and genes associated with antibiotic resistance in both
Mycobacterium tubercolosis and Streptococcus bacterial species
(Read and Massey, 2014).

To limit the negative effects of long LD and population
structure on the identification of pathogenic genetic
determinants, we advise the use of a local/ regional set of
microbial strains collected on wild plant species. Such a strategy
should increase the level of genetic diversity that is available
in the natural plant reservoirs, while limiting the problem of
population stratification.

If the last 4 years are documented by a speed in the
increasing of studies employing GWAS to detect genes important
for pathogenicity in human pathogens (Power et al., 2017),
GWA mapping is still poorly used in plant pathology to
identify genes related to microbial pathogenicity phenotypes.
To our knowledge, the study from Monteil et al. (2017) is
the only one that attempted to apply GWA mapping to a
phytopathogenic bacterium. By using a GWA mapping method
previously developed for human bacterial pathogens and that
takes into account both core and pan-genome while controlling
for population structure (Sheppard et al., 2013; Pascoe et al.,
2015; Yahara et al., 2017), the authors found that the T3SS
effectors hopQ1 and hopD1 have probably shaped the adaptation
of the ubiquitous plant pathogenic bacterium P. syringae to
crops. In plant-fungus pathosystems, we identified four studies
reporting the identification of genetic determinants associated
with virulence/aggressiveness. Dalman et al. (2013) adopted a
GWA mapping approach to identify the genetic components

underlying virulence in the fungal necrotrophic pathogen
Heterobasidion annosum sensu stricto that is responsible of
severe damages in forest conifers. Based on 23 haploid whole-
genome sequenced H. annosum isolates collected in different
geographic European countries, the authors used 33,018 non-
singleton SNPs to run GWA mapping on virulence scored on
both Scots pine and Norway spruce in controlled conditions.
Although the size of the mapping population was limited, 12
SNPs were found to be significantly associated with virulence on
both host plants. In the study of Talas et al. (2016), 119 isolates of
the fungal pathogen F. graminearum collected in Germany were
phenotyped for aggressiveness on wheat under field conditions in
two locations over 2 years (Talas et al., 2016). Based on ∼29,000
SNPs and a short LD of <1 kb, the authors finely mapped 50
SNPs significantly associated with aggressiveness. Interestingly,
highly significant interactions between the isolates and the field
phenotyping conditions suggested an environment-dependent
genetic architecture of F. graminearum. In the study of Gao et al.
(2016), 191 isolates of the fungal necrotrophic wheat pathogen
P. nodorum were phenotyped for virulence on two wheat lines
and genotyped for ∼3,000 SNPs distributed across the genome
as well as genetic markers in candidate genes. The identification
of the two previous cloned effector genes SnToxA and SnTox3
confirmed the power of GWA mapping to fine map virulence
factors in P. nodorum. In a recent study, Wu et al. (2017) used
a combined method between comparative genomics and GWA
mapping by using 20 newly sequenced isolates of Puccina triticina
from Australia. Based on 306,474 SNPs, the authors identified a
polygenic architecture corresponding to 302 genes harboring at
least one SNP associated with leaf rust virulence on wheat.

All the studies mentioned above were performed in controlled
conditions or in common gardens with conditions that strongly
differ from the habitats where the pathogenic microbes co-
evolved with their natural hosts. Therefore, one of the next
challenges is to perform phenotyping of the pathogenic trait of
interest in more ecologically realistic conditions. In addition,
because phytopathogenic microbes can be controlled by several
members of the microbiota (Roux and Bergelson, 2016), it
would be worthwhile to identify the genetic determinants in
the pathogen species that are involved in the arms races with
microbiota. Finally, as previously advised for plants, functional
validation remains the gold standard to test whether the
candidate genes identified by GWA mapping truly confer the
aggressive/virulent phenotype to the microbial pathogen under
study.

A JOINT GWA MAPPING APPROACH TO
DRAW A PICTURE OF THE NETWORK OF
GENETIC INTERACTIONS BETWEEN
PLANTS AND PATHOGENS

Plant GWAS have been demonstrated to be successful in
identifying genomic regions associated with disease resistance
(Table 1), whereas microbial GWAS reporting genomic regions
associated with pathogenicity are still in the starting blocks.
Despite this increasing number of GWAS, it is interesting
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to note that GWA mapping has never been performed
on the two counterparts of the plant pathosystem, either
separately or jointly. Characterizing the molecular landscape

of plant-pathogen interactions can considerably increase our
knowledge on the co-evolutionary processes driving adaptive
dynamics of plant species in plant communities (Allen et al.,

FIGURE 1 | Hypothetical 3D-Manhattan plot of joint GWA mapping between the genome of a host plant and a pathogen species.

FIGURE 2 | Illustration of the four steps of the free-phenotyping joint GWA mapping approach. Step 1: paired sampling of plants and microbiota in wild

populations. Each color corresponds to a different plant population. Step 2: isolation of putative pathogenic strains. The green circle corresponds to the putative

pathogenic strain whereas gray circles correspond to other members of the microbiota. Steps 3 and 4: whole-genome sequencing of both plants and microbial

strains and genome-to-genome statistical analysis.
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2004; Karasov et al., 2014; Roux and Bergelson, 2016),
thereby increasing our understanding and predictions on ED
(Lambrechts, 2010; Roux et al., 2014a).

To study co-evolutionary quantitative genetics, the first
step will require (i) estimating the respective contributions
of plant and pathogen genetic variation to disease variation
and (ii) estimating the heritability of plant × pathogen
interactions (H2

GxG) that can be calculated by dividing the
phenotypic variance associated with “plant genotype—by—
pathogen genotype” interactions by the total phenotypic variance
across genotypes of both biotic partners (Roux and Bergelson,
2016). Because extensive phenotypic data sets are required
for estimating the joint genetic effect of the plant and the
pathogen, studies reporting heritability estimates of plant ×

pathogen interactions remains scarce in the scientific literature.
This observation reinforces the need for the development of
automated high-throughput phenotyping platforms.

The next step requires the characterization of the genetic
architecture of plant-pathogen interactions; that is the number
of intergenomic epistatic QTLs, their physical locations in their
respective genomes and their corresponding effect (Figure 1).
Quantitative genetic methods have been developed to identify
host-by-pathogen QTL interactions (Wang et al., 2006; Yang
et al., 2008). These traditional QTL mapping based methods may
however not be adapted to genome scans on both interacting
species. New statistical methods must be developed with the
challenge of performing joint GWA mapping by taking into
account simultaneously the information provided by the genome
sequences of the plant and the pathogen (Roux and Bergelson,
2016). An additional challenge relies on the correction for the
effects of population structure of both interacting partners, by
including separately the additive polygenic random effects of the
plant species and the pathogen species.

While technically challenging, identifying in both biotic
partners the genes (and more precisely the causative variants)
that confer the quantitative phenotypic variants likely retained
by natural selection will help to understand and predict co-
evolutionary dynamics between a host and its pathogen either in
natural populations or in crop fields.

AN ECOLOGICAL GENOMICS APPROACH
TO IDENTIFY NATURAL GENETIC
VARIANTS DRIVING THE INTERACTIONS
BETWEEN PLANTS AND MICROBIAL
PATHOGENS: A FREE-PHENOTYPING
JOINT GWA MAPPING APPROACH

Based on coevolution signatures in host and pathogen genomes,
an innovative free-phenotyping strategy was recently developed
for global genome-to-genome analysis and employed in the
human-HIV pathosystem (Bartha et al., 2013). Using paired
human and viral data from 1,071 individuals, HIV-1 sequence
variants were used as “phenotypic” traits to finely map human

genetic variants in interaction with viral genetic variants. The
authors demonstrated that using HIV-1 sequence variants was
much more powerful than viral load to finely map human SNPs
in the major histocompatibility complex (MHC) region that
was already reported as implicated in human-HIV coevolution.
By adopting an ecological genomics approach, this strategy can
also be applied in plant pathosystems. Here, we propose four
steps to detect highly significant associations between plant DNA
polymorphisms and pathogen sequence variation, without the
need to obtain large phenotypic data sets (Figure 2). Firstly,
plants are sampled across a given geographic area in conjunction
with the corresponding microbiota. If the demographic history
of the plant species has been reported, the sampling should
be limited to genetically homogeneous subgroups, allowing a
reduction of false positives due to population structure during
the genome-to-genome statistical analysis. Secondly, our method
requires the isolation of one representative strain (putative
representative pathogen strain) on each plant individual.
Traditional microbiological methods for strain isolation and
identification can be time- and material-consuming. However,
the systematic identification of a conspicuous number of
microbial strains can be strongly facilitated by combining
community-based culture collections (CBC), housekeeping gene
amplicon pooling (16S or gyrB for bacteria, 18S for fungi, ITS
for fungi and oomycetes) and NGS technologies (Armanhi et al.,
2016). With ever-cheaper genome-sequencing SMRT methods,
the third step consists in generating paired plant and pathogen
genomic data. The fourth step consists in performing joint
association analysis using both host and pathogen genomes,
with the lofty goal of identifying genetic polymorphisms in
strong LD across the two genomes. Similarly to joint GWA
mapping approaches based on phenotypic data, new statistical
methods must be developed for testing gene-gene interaction
while accounting for population structure including interactions
between the genetic backgrounds of the two organisms.

Based on co-evolutionary processes, combining paired plant,
and pathogen genomic information represents therefore an
exciting opportunity, especially in wild species, to describe the
molecular landscape underlying plant–pathogen interactions.
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