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Invasive weeds are a serious problem worldwide, threatening biodiversity and damaging
economies. Modeling potential distributions of invasive weeds can prioritize locations for
monitoring and control efforts, increasing management efficiency. Forecasts of invasion
risk at regional to continental scales are enabled by readily available downscaled
climate surfaces together with an increasing number of digitized and georeferenced
species occurrence records and species distribution modeling techniques. However,
predictions at a finer scale and in landscapes with less topographic variation may require
predictors that capture biotic processes and local abiotic conditions. Contemporary
remote sensing (RS) data can enhance predictions by providing a range of spatial
environmental data products at fine scale beyond climatic variables only. In this study,
we used the Global Biodiversity Information Facility (GBIF) and empirical maximum
entropy (MaxEnt) models to model the potential distributions of 14 invasive plant
species across Southeast Asia (SEA), selected from regional and Vietnam’s lists of
priority weeds. Spatial environmental variables used to map invasion risk included
bioclimatic layers and recent representations of global land cover, vegetation productivity
(GPP), and soil properties developed from Earth observation data. Results showed that
combining climate and RS data reduced predicted areas of suitable habitat compared
with models using climate or RS data only, with no loss in model accuracy. However,
contributions of RS variables were relatively limited, in part due to uncertainties in
the land cover data. We strongly encourage greater adoption of quantitative remotely
sensed estimates of ecosystem structure and function for habitat suitability modeling.
Through comprehensive maps of overall predicted area and diversity of invasive species,
we found that among lifeforms (herb, shrub, and vine), shrub species have higher
potential invasion risk in SEA. Native invasive species, which are often overlooked in
weed risk assessment, may be as serious a problem as non-native invasive species.
Awareness of invasive weeds and their environmental impacts is still nascent in SEA and
information is scarce. Freely available global spatial datasets, not least those provided
by Earth observation programs, and the results of studies such as this one provide
critical information that enables strategic management of environmental threats such as
invasive species.

Keywords: non-native invasive species, invasibility, MaxEnt, MODIS, native invasive species, species distribution
modeling, Southeast Asia
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INTRODUCTION

Invasive plants have emerged as a serious problem for global
biodiversity. Their infestations can lead to the extinction
(Groves et al., 2003) and endangerment (Wilcove et al., 1998;
Pimentel et al., 2005) of native species and the alteration of
ecosystem processes (Vitousek and Walker, 1989; Simberloff,
2000). Although invasive species that are introduced to a region
receive the greatest attention, it is not necessary for a species to
be non-native to be invasive. Invasive species are defined as those
that are expanding their range (Valéry et al., 2008). Under global
climate change and human disturbance, some native species have
also become aggressive invasive weeds (Avril and Kelty, 1999;
Wang et al., 2005; Hooftman et al., 2006; Valéry et al., 2009; Le
et al., 2012). Given the large impacts that invasive species can have
and the limited possibilities for eradication, early detection and
prevention of the establishment of invasive species should be a
priority in conservation policies (Genovesi, 2005). Identification
of areas that are at potential invasion risk, to either non-native or
native invasive species, can be an effective way to guide efficient
management and prevent further incursion (Kulhanek et al.,
2011).

Species distribution models (SDMs) are currently a popular
method for predicting the geographic distribution of species
(Peterson, 2006). They are developed statistically from the
known occurrences of the species and characteristics of the
environment to identify similar suitable habitats and, thereby,
predict the geographic distribution in unknown regions (Guisan
and Zimmermann, 2000; Peterson and Vieglais, 2001; Peterson,
2006; Pearson, 2010). Given these modest data requirements, they
are especially useful in cases of poorly studied taxa (Kearney and
Porter, 2009). Therefore, SDMs have become an important tool
to investigations of invasibility that aim to predict the potential
distributions of invasive species (Peterson, 2003; Thuiller, 2005).
Since the early study of Peterson et al. (2003) in predicting the
potential distribution of four invasive plants in North America,
SDMs have been increasingly and widely applied all over the
world to predict biological invasions (Guisan and Thuiller,
2005; Underwood et al., 2013), especially exotic plants (Zhu
et al., 2007; Andrew and Ustin, 2009; Barik and Adhikari, 2011;
Fernández et al., 2012; Rameshprabu and Swamy, 2015). In
SDMs, the environmental variables used vary at different scales
(Bradley et al., 2012). At regional to continental scales, forecasts
of invasion risk are often mainly driven by climatic factors
(Pearson and Dawson, 2003). Predictions at a finer scale and in
landscapes with less topographic variation may require predictors
that capture biotic processes (e.g., vegetation productivity) and
local abiotic conditions (e.g., topography, soil type) (Pearson and
Dawson, 2003). However, continuous spatial measurements of
these finer-scaled environmental variables are difficult to acquire
at large spatial extent (Bradley et al., 2012).

Contemporary remote sensing (RS) now provides widely
available data products at multiple spatial and temporal
resolutions that characterize a range of ecologically relevant
patterns and processes (Andrew et al., 2014). These data can
be used to measure habitat properties over a larger area than
can easily be covered by field surveys (Estes et al., 2008) and

augment the array of spatial environmental variables available
to SDMs to characterize abiotic and biotic niche axes beyond
simply climatic factors. Table 1 provides an overview of the
remotely sensed information that has been incorporated into
SDMs as environmental predictor variables, to date, giving an
indication of the evenness of research efforts and the capabilities
of RS that are still relatively under-utilized. The most commonly
used variable extracted from RS data is topography/elevation
(42% of 39 reviewed studies that have developed SDMs of plant
species using RS predictors). Besides, other abiotic predictors
have been developed such as remotely sensed estimates of climate
and weather, including surface temperature from sensors such as
MODIS and rainfall estimates from TRMM and, more recently,
the Global Precipitation Measurement mission, although studies
applying these predictors are limited (Table 1). Soil properties,
one of the most important factors for plant distributions and
species invasion (Radosevich et al., 2007), is rarely studied (He
et al., 2015), although several recent studies have explored the
use of remotely sensed indicators of soil characteristics in SDMs
(Table 1).

In addition to abiotic properties of the environment, biotic
characteristics also play an important role in shaping species’
spatial patterns (Wisz et al., 2013). RS can estimate many
properties of the vegetated environment, and applications of
products such as land-cover data or vegetation proxies to SDMs
are on the rise (Table 1). Land cover has been considered as
the primary determinant of species occurrences at a finer spatial
resolution than climate (Pearson et al., 2004). Various studies
(20% of 39 reviewed studies; Table 1) have applied land cover
products derived from a variety of sensors (especially MODIS
and Landsat) to SDMs. However, most of the current land
cover information is in categorical format, which can lead to
the propagation of classification errors (Cord and Rödder, 2011;
Tuanmu and Jetz, 2014) and may not effectively represent the
classes most relevant to the species of interest. In contrast,
remotely sensed estimates of continuously varying ecosystem
properties related to land cover and novel continuous land cover
products can be used in SDMs and may avoid these limitations.
Recent studies have found better performance from continuous
estimates of vegetation properties and land cover rather than
categorical representations (Wilson et al., 2013; Cord et al., 2014b;
Tuanmu and Jetz, 2014). A range of remotely sensed measures of
vegetation has been explored in SDMs, such as vegetation indices
(Normalized difference vegetation index (NDVI), Enhanced
Vegetation Index), phenology, and canopy moisture in order
to evaluate variation in habitat quality at fine scales and
in climatically homogenous regions (Table 1). Of vegetation
metrics, NDVI, a useful measure of vegetation properties, has
been extensively used as a predictor in SDMs (25.6%; Table 1).
It represents photosynthetic activity and biomass in plants and
is indirectly related to net primary production (Bradley and
Fleishman, 2008). However, a study of Phillips et al. (2008) noted
that while NDVI had high correlation with MODIS GPP (Gross
primary production) and NPP (Net primary production), it was
a less effective surrogate of productivity in areas of either sparse
or dense vegetation. They found GPP to be better able to predict
biogeographic patterns of species richness (Phillips et al., 2008),
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but we know of no studies that have used GPP in SDMs. Value-
added science products, such as the MODIS primary productivity
products, may provide more meaningful depictions of vegetation
processes and improved environmental predictor variables for
spatial models of biodiversity (Phillips et al., 2008).

In addition to the typical niche axes used to inform variable
selection for SDMs of plant species, there is a large body of
literature determining the ecosystem properties that influence
invasibility of a system, and these can be used to guide
applications of SDMs to evaluating invasion risk. Resource
availability (e.g., light, CO2, water, nutrients) often facilitates
successful invasion. Invasibility is predicted to be greater in sites
with more unused resources (Davis et al., 2000). By damaging
the resident vegetation, disturbance reduces resource uptake
and competition, increasing resource availability (Hobbs, 1989;
D’Antonio, 1993). Therefore, invasions by invasive plant species
are often associated with disturbance (e.g., Fox and Fox, 1986).
However, distributions of invasive species are typically modeled
using static environmental datasets that may poorly proxy these
dynamic processes (Franklin, 2010b; Dormann et al., 2012).
Temporal summaries of GPP may provide useful indicators.
GPP estimates total ecosystem photosynthesis, the cumulative
response of the vegetation to its environment, and may be used

as a spatial proxy of resource ability. As well, the variability
of GPP over time can reflect disturbance processes (Goetz
et al., 2012). Hence, quantitative spatial measurements of GPP
are expected to be relevant predictor variables for modeling
invasibility. Also, including soil properties in SDMs may be useful
as numerous studies have shown that soil properties, including
nutrient availability, relate to invasibility (Huenneke et al., 1990;
Burke, 1996; Harrison, 1999; Suding et al., 2004).

In this study, we hypothesize that the inclusion of recently
developed global remotely sensed data products providing
quantitative estimates of vegetation productivity and its
dynamics, land cover, and soil properties, in addition to climatic
layers, will enable a more complete representation of species’
ecological niches by SDMs. To test the hypothesis, bioclimatic
data and RS data were used in isolated and combined models
predicting the distribution of selected invasive plants across
Southeast Asia (SEA).

Southeast Asia is an important region to global biodiversity;
it has four of the world’s 25 biodiversity hotspots (Sodhi et al.,
2004). However, much biodiversity is being lost (Peh, 2010) due
to threatening processes such as habitat loss, degradation, climate
change, and pollution (Pallewatta et al., 2003). In addition,
and operating in synergy with these anthropogenic changes,

TABLE 1 | Applications of remote sensing data as environmental variables in plant distribution models.

Predictor variables RS data source Reference

Abiotic predictors

Topographic data/elevation ASTER, Quickbird-2 and
WorldView-2, LiDAR, SRTM

Rew, 2005; Bradley and Mustard, 2006; Buermann et al., 2008;
Hoffman et al., 2008; Parviainen et al., 2008, 2013; Prates-Clark et al.,
2008; Saatchi et al., 2008; Andrew and Ustin, 2009; Zellweger et al.,
2013; Pottier et al., 2014; Pradervand et al., 2014; Questad et al.,
2014; van Ewijk et al., 2014; Pouteau et al., 2015; Campos et al., 2016

Climate observations MODIS, TRMM, NASA Saatchi et al., 2008; Waltari et al., 2014; Deblauwe et al., 2016

Soil properties Landsat, MODIS Parviainen et al., 2013; Wang et al., 2016

Other physical variables (water, fire) MODIS, NASA Stohlgren et al., 2010; Cord and Rödder, 2011; Pau et al., 2013; Cord
et al., 2014a

Land cover/land use MODIS, Landsat Pearson et al., 2004; Thuiller et al., 2004; Stohlgren et al., 2010;
Morán-Ordóñez et al., 2012; Wilson et al., 2013; Cord et al., 2014b;
Sousa-Silva et al., 2014; Tuanmu and Jetz, 2014; Gonçalves et al.,
2016

Vegetation productivity

Normalized difference vegetation index (NDVI) Landsat, SPOT, MODIS Morisette et al., 2006; Zimmermann et al., 2007; Prates-Clark et al.,
2008; Evangelista et al., 2009; Feilhauer et al., 2012; Engler et al.,
2013; Parviainen et al., 2013; Schmidt et al., 2013; Zellweger et al.,
2013; van Ewijk et al., 2014

Leaf area index (LAI) MODIS Buermann et al., 2008; Prates-Clark et al., 2008; Saatchi et al., 2008;
Cord and Rödder, 2011; Engler et al., 2013

Enhanced Vegetation Index (EVI) MODIS Morisette et al., 2006; Stohlgren et al., 2010; Cord and Rödder, 2011;
Schmidt et al., 2013; Cord et al., 2014a,b

Phenology MODIS, Landsat Bradley and Mustard, 2006; Morisette et al., 2006; Tuanmu et al., 2010;
Gonçalves et al., 2016

Vegetation structure

Tree height LiDAR van Ewijk et al., 2014

Canopy roughness QSCAT Saatchi et al., 2008

Other vegetation properties

Canopy moisture Hyperspectral sensor, QSCAT Buermann et al., 2008; Prates-Clark et al., 2008

Spectral heterogeneity/functional types Hyperspectral sensor, Landsat Morán-Ordóñez et al., 2012; Schmidt et al., 2013; Henderson et al.,
2014; Pottier et al., 2014
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invasive species damage the biodiversity and economy of the
region (Peh, 2010; Gower et al., 2012; Nghiem et al., 2013).
Although impacts of invasive species in SEA are apparent,
research on the level and types of impacts caused by invasive
species is still limited (Nghiem et al., 2013). There are also
few applications of SDM methods, either for invasive species
or in general, in the region. Among studies about species
distributions worldwide, Porfirio et al. (2014) found only a small
fraction were conducted in Asia (∼3%). The absence of research
in this field is hindering SEA in providing a comprehensive
assessment of invasive species (Peh, 2010; Gower et al., 2012),
and in effectively managing this aspect of global environmental
change.

The goal of this study is to provide an overview of
potential invasibility to 14 priority invasive plants in SEA. To
generalize estimates of invasion risk across species traits that may
require different management approaches, we divided studied
species into different life forms (herb, vine, and shrub). Such
groupings based on life-history attributes have been widely
used to understand the invasion process and propose tailored
management strategies (McIntyre et al., 1995; Bear et al., 2006;
Garrard et al., 2009). In addition, species were grouped by
their origin status (native and non-native invasive species).
Through evaluating SDMs by life forms and origin status, and
using different environmental predictor variable sets, our study
addresses the following questions:

(i) Which life forms of invasive plant species pose the greatest
risk to SEA?

(ii) Are native weeds as great of a potential threat as non-
native invasive species?

(iii) Do remotely sensed environmental predictor variables
improve predictions of invasion risk over models
constructed with climate variables alone?

(iv) Do the benefits of incorporating remotely sensed
predictors in invasion risk models differ by species life
form or by origin status?

MATERIALS AND METHODS

In order to evaluate the potential distributions of selected invasive
plant species in SEA and to assess the contributions of remotely
sensed environmental predictors to SDMs, we developed three
model sets: models constructed along climate data only (CLIM),
models with RS only (RS) and models with both climate and RS
data (COMB). CLIM models used well-established bioclimatic
datasets. The compiled RS predictor set covered a diverse range
of surface parameters, namely topography, soil properties, global
land cover, and vegetation productivity (GPP). Models used
the Maximum Entropy (MaxEnt) algorithm. Model comparisons
were based on the AUC score of model performance, average
predicted areas, the level of spatial agreement in predicted
distributions between model results, and the usage of RS and
CLIM variables. The evaluation of invasion risk across life
forms and origin status used predictions of suitable habitat
area for individual species and predicted maps of invader

richness. These datasets and methods are described in more detail
below.

Study Species and Occurrence Data
In this study, we modeled the potential distributions of 14
invasive species (Table 2) identified from the lists of native
and non-native invasive species known in SEA (Matthews and
Brand, 2004) and Vietnam (Ministry of Natural Resources
and Environment and Ministry of Agriculture and Rural
development, 2013).

Species occurrences were collected from the Global
Biodiversity Information Facility1. Records were cleaned
for obvious spatial errors (e.g., points that occurred in the ocean
for terrestrial species) in ArcMap and duplicate records in the
dataset were discarded (following Barik and Adhikari, 2011). All
species modeled had more than ten occurrence records within
the study area. The species occurrence records span lengthy
collection periods. For each of the 14 species studied, the median
years of the observations occurred in the period 1956–2005.

Climate Data
Bioclimatic variables were obtained from the WorldClim
database (Version 1.4), interpolated from measurements
recorded during the period 1960 to 1990 from ∼46,000 climate
stations worldwide (Hijmans et al., 2005). Eleven temperature
and eight precipitation metrics, at 1 km resolution, were used,
including annual means, seasonality, and extreme or limiting
climatic conditions (Table 3). This dataset has been widely used
for studies of plant species distributions (Pearson et al., 2007;
Hernandez et al., 2008; Cord and Rödder, 2011; Zhu et al., 2017).

Remote Sensing Data
A Digital Elevation Model (DEM) was derived from GTOPO302

at 30 arc second resolution (approximately 1 km) (USGS,
1996). Ten soil layers representing soil physical and chemical
properties (Hengl et al., 2014) (Table 3) at 1 km resolution were
extracted from ftp://ftp.soilgrids.org/data/archive/12.Apr.2014/.
This dataset was empirically developed from global compilations
of publicly available soil profile data (ca. 110,000 soil profiles) and
a selection of ∼75 global environmental covariates representing
soil forming factors (mainly MODIS images, climate surfaces,
Global Lithological Map, Harmonized World Soil Database and
elevation) (Hengl et al., 2014).

We also included the consensus land cover layers developed
by Tuanmu and Jetz (2014). They provide a continuous estimate
of the probability of the occurrence of each of 12 land cover
classes in each pixel, calculated from the agreements between four
global land cover products. These estimates have been shown
to have a greater ability to predict species distributions than
the original categorical land cover products (Tuanmu and Jetz,
2014). These land cover data have a 1 km spatial resolution and
are available online at http://www.earthenv.org/landcover. They
represent consensus conditions incorporating estimates from the

1http://www.gbif.org/
2http://earthexplorer.usgs.gov/
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time period 1992–2006, but with greater weight to the later dates
(Tuanmu and Jetz, 2014).

To quantify spatial and temporal variation in vegetation
productivity, we used global annual MODIS17A3 (version
005) Gross primary productivity (GPP) data for 14 years
(2001–2014) at 1 km resolution (Running et al., 2004). The
Primary Production products are designed to provide an accurate
regular measure of the yearly growth of the terrestrial vegetation
(Heinsch et al., 2003). Data were downloaded from the Numerical
Terradynamic Simulation Group (NTSG) at the University
of Montana3. The mean and coefficient of variation of GPP
(inter-annual variability) were calculated over the time series at
each pixel and supplied to the SDMs.

All predictor variable layers were aligned to a common 1 km
grid and projected in the Asia South Albers Equal Area Conic
system using nearest neighbor resampling. Spatial environmental
layers were pre-processed in the TerrSet software (Eastman,
2015).

Selection of Environmental Predictions
To minimize predictor multicollinearity and its impact on
subsequent analyses, we evaluated the inter-correlations among
the 44 variables for all terrestrial pixels and retained a subset
of uncorrelated (|r| < 0.75) predictor variables for species
distribution modeling. Including too much flexibility may make
it difficult for the model to distinguish noise from the true species
response in real data sets (Baldwin, 2009; Merow et al., 2013).
Minimizing correlation among variables, therefore, is assumed to
increase the performance of species modeling (Austin, 2002). In
this way, we reduced the number of predictors used per species
to 7 climatic (out of 19) and 14 RS (out of 24) variables. All soil
estimates were highly correlated across the study area, so only one
was retained. See Table 3 for the full list of initial variables, and
those that were retained for modeling.

Modeling Habitat Suitability of Species
To model habitat suitability, we used MaxEnt (version 3.3.3), a
general-purpose machine learning method (Phillips et al., 2006).
Among species distribution modeling techniques, MaxEnt is one
of the most popular algorithms due to its predictive accuracy
and ease of use (Elith et al., 2006; Phillips and Dudík, 2008).
There are some characteristics that make MaxEnt highly suitable
to modeling species distributions such as use of presence-only
species data, flexibility in the handling of environmental data –
including both continuous and categorical variables, and an
ability to fit complex responses to the environmental variables
(Phillips et al., 2006). Notably, MaxEnt is less sensitive to sample
size, which makes MaxEnt a preferred predictive model across all
sample sizes (Wisz et al., 2008).

In this study, we developed SDMs based only on the
less-correlated climate and/or remotely sensed predictors with
MaxEnt. To reduce overfitting, the regularization multiplier was
set at 4. This parameter determines how strongly increases in
model complexity are penalized during model optimization;
higher values produce simpler models that are less overfit to

3http://www.ntsg.umt.edu/project/mod17

TABLE 3 | Environmental variables.

Variables Type of data Source

Bedrock Soil Hengl et al., 2014

Bulk density Soil Hengl et al., 2014

Cation exchange capacity Soil Hengl et al., 2014

Soil texture fraction clay Soil Hengl et al., 2014

Coarse fragments volumetric Soil Hengl et al., 2014

Soil organic carbon stock Soil Hengl et al., 2014

Soil organic carbon content Soil Hengl et al., 2014

Soil pH Soil Hengl et al., 2014

Soil texture fraction silt Soil Hengl et al., 2014

Soil texture fraction sand Soil Hengl et al., 2014

Evergreen/deciduous needle
leaf trees

Land cover Tuanmu and Jetz, 2014

Evergreen broadleaf trees Land cover Tuanmu and Jetz, 2014

Deciduous broadleaf trees Land cover Tuanmu and Jetz, 2014

Mixed/other trees Land cover Tuanmu and Jetz, 2014

Shrubs Land cover Tuanmu and Jetz, 2014

Herbaceous vegetation Land cover Tuanmu and Jetz, 2014

Cultivated and managed
vegetation

Land cover Tuanmu and Jetz, 2014

Regularly flooded vegetation Land cover Tuanmu and Jetz, 2014
Urban/built-up Land cover Tuanmu and Jetz, 2014
Snow/ice Land cover Tuanmu and Jetz, 2014

Barren Land cover Tuanmu and Jetz, 2014
Open water Land cover Tuanmu and Jetz, 2014
Gross primary productivity
coefficient of variation
(GPP_CV)

Vegetation
productivity

Heinsch et al., 2003

Gross primary productivity
(GPP_Mean)

Vegetation
productivity

Heinsch et al., 2003

Digital elevation model Elevation USGS, 1996

Annual mean temperature Climate Hijmans et al., 2005
Mean diurnal temperature
range

Climate Hijmans et al., 2005

Isothermality Climate Hijmans et al., 2005
Temperature seasonality Climate Hijmans et al., 2005

Max temperature of warmest
month

Climate Hijmans et al., 2005

Min temperature of coldest
month

Climate Hijmans et al., 2005

Temperature annual range Climate Hijmans et al., 2005

Mean temperature of wettest
quarter

Climate Hijmans et al., 2005

Mean temperature of driest
quarter

Climate Hijmans et al., 2005

Mean temperature of warmest
quarter

Climate Hijmans et al., 2005

Mean temperature of coldest
quarter

Climate Hijmans et al., 2005

Annual precipitation Climate Hijmans et al., 2005

Precipitation of wettest
month

Climate Hijmans et al., 2005

Precipitation of driest month Climate Hijmans et al., 2005

Precipitation seasonality Climate Hijmans et al., 2005

Precipitation of wettest quarter Climate Hijmans et al., 2005

Precipitation of driest quarter Climate Hijmans et al., 2005

Precipitation of warmest
quarter

Climate Hijmans et al., 2005

Precipitation of coldest quarter Climate Hijmans et al., 2005

Bold text indicates the variables used as input for MaxEnt modeling.
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the training data. Radosavljevic and Anderson (2014) found
that regularization multiplier values from 2.00 to 4.00 were
generally appropriate to minimize overfitting. For all 14 species,
we created 10 random data partitions with 70% of the point
localities assigned for training and 30% for testing and ran the
three scenarios (see below) with each of these replicate partitions.
Random samples of 10,000 background points were also used to
develop each model.

MaxEnt model performance was evaluated using the area
under the receiver operating characteristic curve (AUC) assessed
on the withheld set of test points. AUC values range from
0 to 1. Values of 0.5 indicate that the model performs no better
than expected by chance, while an AUC of 1 suggests perfect
discriminatory abilities. Models with AUC > 0.7 are considered
to achieve acceptable performance (Swets, 1988). Mean values,
averaging across the 10 replicate runs and across species, of the
resulting AUC distributions were used to compare the model
scenarios run with different predictor sets. Continous MaxEnt
outputs were converted to binary maps of habitat suitability
using the tenth percentile training presence threshold (Escalante
et al., 2013) in order to estimate the area of suitable habitat
for each species predicted by each model. Variable usage by the
models was determined with (1) a variable importance measure
estimated as the decrease in model performance when a given
variable was randomized, and (2) marginal variable response
curves, which plot the predicted suitability for a species across
the range of values for a given variable while all other variables
are held at their mean values.

To test the contribution of RS data to modeling invasive
species distributions, we ran MaxEnt with climate and satellite
layers in separation and combination. Three scenarios were
evaluated: MaxEnt runs with (1) climate data only (CLIM),
these include the three temperature and four precipitation layers

from the final reduced subset; (2) remote sensing data only
(RS), with two GPP layers, one soil layer (pH) and eleven land
cover classes from the reduced subset; and (3) climate and
RS data combined (COMB) using all 21 layers of the reduced
subset (see Table 3). The evaluation was based on (i) the AUC
score; (ii) average predicted areas; (iii) % agreement in predicted
distributions between model results; and (iv) differences in
variable importance for the RS and CLIM variables. These
comparisons were performed for all species overall, and when
grouping by life forms and origin status. For the assessment
of invasion risk, binary maps of habitat suitability for each
species from the COMB model runs were used to determine
the predicted habitat area and combined into maps of invader
richness to compare the relative level of invasion risk among plant
life forms and native/non-native invasive species.

RESULTS

Model Performance
Overall, species distributions were generally predicted
successfully. All species were successfully modeled (AUC > 0.7)
by at least one predictor set (Table 4). Species with few occurrence
records (less than 20), such as Bauhinia touranensis, Mimosa
pigra, and Merremia boisiana, tended to be less successfully
modeled in some of the model scenarios (AUC < 0.7). The
remaining species with greater data availability achieved “good”
(AUC > 0.8) to “excellent” (AUC > 0.9) performance (Table 4),
according to the classification of Swets (1988).

Across all species, the performance of the CLIM and COMB
models was roughly equivalent (test AUC = 0.84 ± 0.08).
Thus, along this metric alone, CLIM models may be preferable,
as they are more parsimonious. On average, the RS models

TABLE 4 | Variability (mean and standard devation) of species-specific AUC (area under the curve) scores, evaluated against the withheld test set of 30%
of the presence records, for fourteen invasive weeds in 10 partition runs.

Species Number of
occurrences

CLIM RS COMB

Ageratum conyzoides 360 0.81 ± 0.01 0.74 ± 0.02 0.84 ± 0.02

Bauhinia touranensis 19 0.85 ± 0.03 0.51 ± 0.16 0.76 ± 0.07

Cenchrus echinatus 110 0.85 ± 0.04 0.88 ± 0.03 0.86 ± 0.04

Chromolaena odorata 167 0.88 ± 0.03 0.77 ± 0.03 0.89 ± 0.03

Eichhornia crassipes 81 0.65 ± 0.05 0.84 ± 0.04 0.84 ± 0.06

Lantana camara 162 0.90 ± 0.02 0.77 ± 0.04 0.88 ± 0.02

Leucaena leucocephala 192 0.85 ± 0.03 0.82 ± 0.02 0.87 ± 0.03

Merremia boisiana 13 0.74 ± 0.08 0.50 ± 0.10 0.72 ± 0.07

Microstegium ciliatum 96 0.86 ± 0.03 0.72 ± 0.06 0.86 ± 0.03

Mikania micrantha 171 0.92 ± 0.02 0.81 ± 0.04 0.93 ± 0.02

Mimosa diplotricha 54 0.86 ± 0.06 0.78 ± 0.07 0.85 ± 0.05

Mimosa pigra 19 0.73 ± 0.09 0.66 ± 0.06 0.64 ± 0.09

Parthenium hysterophorus 76 0.97 ± 0.02 0.85 ± 0.04 0.97 ± 0.01

Pueraria montana 417 0.89 ± 0.02 0.83 ± 0.02 0.84 ± 0.03

Mean 0.84 ± 0.08 0.75 ± 0.12 0.84 ± 0.08

Three variable sets were used for each species. CLIM includes only bioclimatic predictors; RS includes only remote sensing predictors; COMB includes variables in CLIM
and RS. AUC values for the best-performing model for each species are indicated in bold.
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FIGURE 1 | Test AUC by life forms (A) and by origin (B) among models. CLIM includes only bioclimatic predictors; RS includes only remote-sensing predictors;
COMB includes variables in CLIM and RS. The error bars are standard deviations.

were the least successful (test AUC = 0.75 ± 0.12) (Table 4).
However, the rankings differed somewhat for individual species
and between species categories. CLIM models were preferred
for 8 species, RS for 2, and COMB for the remaining
4 (Table 4). RS models were found to perform worst in
predicting vine species (Figure 1) and native invasive species
(Figure 1).

COMB models generally predicted smaller areas of suitable
habitat than either CLIM or RS models. This pattern was
consistent across life forms and origin status, but strongest for
herbs, shrubs, and non-native invasive species (Figure 2). CLIM
and RS models tended to predict similar areas of suitable habitat,
except for the case of vines and native invasive species. The RS
models for these groups predicted larger areas of suitable habitat
than did CLIM models (Figure 2).

In general, spatial agreement in predicted habitat was greatest
for pairwise comparisons with the COMB models (Figure 3).
As an exception to this pattern, the agreement between COMB
and RS was as low as between CLIM and RS for vines and
native invasive species. At the individual species level (Supporting
Information S2), COMB tended to be most similar to the
individual model set (CLIM or RS) that performed better in the
AUC evaluations (Table 4) – typically CLIM.

The average relative variable importance varied
considerably among the predictors within the variable
sets. In the CLIM set, mean diurnal temperature range
(importance = 32.5% ± 22.0 and precipitation of warmest
quarter (importance = 23.8% ± 17.4) were most important
(Table 5). On average, other temperature variables (isothermality
and annual mean temperature) have an importance around
12–13% and other variables contributed less than 10%. Of the
variables in the RS predictor set, herbaceous vegetation land
cover (importance = 16.7% ± 8.8) was the most important.
Evergreen broadleaf tree, cultivated vegetation and GPP_CV
were also important variables, with permutation importance
ranging from 10 to 12% on average. In the COMB predictor
set, the contribution of variables was similar to the CLIM and
RS scenarios (Table 5). All variables had reduced importance
in COMB than in either CLIM or RS, due to the inclusion of a
larger number of variables in these models, but the rankings of
variables within each predictor were generally consistent.

Habitat Suitability
To assess the habitat suitability of species, we used results
from COMB models. Response curves of each species (response
curves are provided in Figure 4 for a selected species of
each life form that was best modeled by the COMB variable
set, and for all species in Supporting Information S1) in
COMB models reveal that, across species, sites were generally
predicted to have high suitability (>0.6) in areas with low mean
diurnal temperature range and moderate to high isothermality.
The highest suitability (0.9–1) was also generally found in
areas with high precipitation in the warmest season. Many
modeled species (Chromolaena odorata, Cenchrus echinatus,
Eichhornia crassipes, Lantana camara, Mimosa diplotricha) were
not predicted to invade closed areas such as forests (negative
responses to high canopy land-cover classes), although the
aggressive vine Pueraria montana is a notable exception. In
addition, for species models with important contributions from
the productivity variables, suitability was generally found to be
highest in environments with high GPP and low variability of
GPP (Supporting Information S1).

Herb species receive the greatest area predicted to be at
risk of invasion by one or more species (5.3 million km2,
versus 4.9 million km2 and 4.3 million km2 for shrubs
and vines, respectively), however, the area vulnerable to the
greatest invader richness is fairly concentrated around the
north and north center of Vietnam (Figure 5). Response
curves of herb species (Ageratum conyzoides, Cenchrus echinatus,
Microstegium ciliatum, and Parthenium hysterophorus) indicate
they prefer high rainfall in the warmest quarter (more than
>1500 mm), however, this variable was generally less important
for herbs than it was for other life forms (Supporting
Information S1). Additionally, herb species prefer habitat with
diurnal temperature ranges less than 10◦C and isothermality
from 20 to 70%. Of the land cover variables, invasibility to
herbs was more strongly related to the evergreen broadleaf and
mixed forest classes, and to the cultivated class than were the
other life forms. Response curves indicated that relationships
with these cover classes were generally negative (Supporting
Information S1).

Shrub species were predicted to have the greatest area at
risk from multiple invaders: 1.3 million km2 were predicted
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FIGURE 2 | Average predicted area by life forms (A) and by origin (B) among models. Predicted value is identified based on 10% logistic threshold. CLIM
includes only bioclimatic predictors; RS includes only remote-sensing predictors; COMB includes variables in CLIM and RS. The error bars are standard deviations.

FIGURE 3 | Percentage of agreement in predicted area by life forms (A) and by origin (B) among models. CLIM includes only bioclimatic predictors; RS
includes only remote-sensing predictors; COMB includes variables in CLIM and RS. The error bars are standard deviations.

to be suitable for four or more shrub species, as opposed
to only 0.6 million km2 for herbs and 86 thousand km2

for vines (although note that only four vine species were
modeled). Unlike the other life forms, regions suitable for
multiple shrub invaders extended into countries in the south
of the region such as Indonesia, Malaysia, and Philippines, as
well as west to Bangladesh (Figure 5). Diurnal temperature
range and precipitation of the warmest quarter were the
most important factors for the distribution of these shrub
species (e.g., Chromolaena odorata, Lantana camara, Leucaena
leucocephala). Overall, models were more influenced by RS
variables, especially land cover, for shrub species than for the
other life forms. Shrubs exhibited generally negative associations
with forested habitat (for all classes except the mixed forests) as
well as with herbaceous land cover (Supporting Information S1).

In contrast to the other groups, large areas were predicted
to be invasible to a single vine species. Areas vulnerable to
greater richness of invasive vines were much more restricted,
tending to occur in north and north-central Vietnam and Taiwan
(Figure 5). While Mikania micrantha and Pueraria montana
have less predicted area in SEA, Bauhinia touranensis and
Merremia boisiana were predicted to invade much of the region
(Supporting Information S2), especially in south China and north

Vietnam. Unlike herbs and shrubs, distributions of vine species
were generally unrelated to land cover (except for moderate
influences of herbaceous land cover). Vine species received
greater importance of climate factors, especially variables related
to precipitation, than did the other life forms (Supporting
Information S1).

Results of average predicted area at the species level showed
that as large areas are vulnerable to invasion by native as
non-native invasive species (ca. 2 million km2) over the whole
region (Figure 2). Cumulative levels of invasion risk are difficult
to compare, since over twice as many non-native than native
species were modeled, but substantial areas are at risk of
invasion by one or more species of each origin status (6 million
km2 and 4.3 million km2, for non-native and native invasive
species, respectively). Native invasive species richness was mainly
concentrated in the north and north center of Vietnam; non-
native species had wider range of distribution and may potentially
invade the whole region (Figure 6).

Comparing the total area predicted by the COMB models to
be susceptible to the invasion of the 14 invasive species suggests
which of the modeled species may be the greatest threats to the
region. Ageratum conyzoides, Eichhornia crassipes, Leucaeana
leucocephala and Microstegium ciliatum had the highest
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TABLE 5 | Summary of the mean permutation importance (PI) of fourteen
invasive plant species.

COMB CLIM RS

Mean ± SD Mean ± SD Mean ± SD

GPP_CV 2.1 ± 2.49 10.76 ± 10.24

GPP_Mean 2.83 ± 3.21 8.41 ± 8.2

Soil pH 1.32 ± 0.95 2.51 ± 5.34

Barren 1.21 ± 1.2 2.63 ± 2.09

Cultivated vegetation 3.83 ± 5.64 11.22 ± 7.51

Deciduous broad leaf trees 5.17 ± 4.81 8.86 ± 8.25

Evergreen broad leaf trees 7.1 ± 9.11 12.37 ± 9.93

Evergreen needle leaf trees 4.42 ± 9.24 6.19 ± 9.4

Herbaceous vegetation 7.05 ± 7.38 16.71 ± 8.62

Mixed trees 3.7 ± 4.99 8.46 ± 6.18

Open water 0.79 ±0.8 1.2 ± 0.77

Regular flooded vegetation 0.98 ± 1.6 2.53 ± 4.86

Shrubs 1.77 ± 1.46 6.56 ± 9.19

Urban 1.07 ± 1.19 1.6 ± 1.49

Annual mean temperature 4.32 ± 6.57 13.27 ± 14.57

Mean diurnal temperature range 17.65±16.04 32.48 ± 22.02

Isothermality 7.72 ±6.84 12.46 ± 10.98

Annual precipitation 7.53 ± 14.12 9.06 ± 13.86

Precipitation of wettest month 1.54 ± 1.94 3.26 ± 2.52

Precipitation seasonality 3.67 ± 4.9 5.66 ± 6.56

Precipitation of warmest quarter 14.23 ± 9.93 23.81 ± 17.41

SD is standard deviation. Mean values were calculated from the average of 14
species. Values in bold indicate variables with above-average importance in COMB
(4.8%), CLIM (14.3%), and RS (7.1%).

predicted area. Lantana camara and Mimosa diplotricha followed
next. Parthenium hysterophorus had the lowest predicted area
(Supporting Information S2).

DISCUSSION

Model Performance
Quantitative comparisons of models with various predictor
sets showed that models built with incorporation of RS and
climatic data layers substantially reduced predicted areas across
all life forms and origin status compared to models with
climate and RS data alone (Figure 2). The mapped predictions
for individual species reflect this pattern spatially (Supporting
Information S2). Suitable habitat modeled with climate variables
alone are quite smooth and generalized, while the inclusion
of remotely sensed predictor variables adds more nuanced
spatial detail to this overall pattern. The most widely used
bioclimatic predictors, including those evaluated in this study, are
derived from station data; interpolation introduces smoothing,
producing generalized portrayals of environmental variability.
As well, climate generally varies continuously over broad spatial
scales. Thus, exclusively climate-based distribution models are
unable to capture variations of species diversity at the landscape
level (Saatchi et al., 2008). As a consequence, large areas of
predicted suitability are often seen (Thuiller et al., 2004). In
contrast, while the biotic niche axes estimated by RS can further

inform distribution models and enable dynamic models, they are
unable to replace climatic factors in identifying suitable habitat
as bioclimatic conditions are still essential driving factors for
species distributions (Thuiller et al., 2004; Cord and Rödder,
2011). The high percentage agreement of spatial predictions
between models based on climatic predictors only and climatic
and RS predictors found in this study, as well as the high variable
importance scores given to climatic predictors in the combined
models, also supports the indispensability of climate in shaping
the distribution of invasive plant species. Similar studies have also
found that using either climatic-derived or RS-derived predictors
alone often leads to the overprediction of species distributions
(Buermann et al., 2008; Saatchi et al., 2008; Cord and Rödder,
2011; Cord et al., 2014a). By incorporating complementary
limiting environmental conditions, combined models of climatic
and remotely sensed predictor variables reduce predicted areas,
thereby refining modeled species distributions.

Although clearly refining the spatial patterns of predicted
species distributions, in general, COMB models did not achieve
higher accuracy than models with climate variables alone;
RS models were often relatively poor. These results are in
line with other studies (Zimmermann et al., 2007; Cord and
Rödder, 2011; Cord et al., 2014a) that found that models based
on RS data had the lowest AUC, compared to models with
climate-derived predictors and climatic and RS predictors. Some
explanations can be proposed for this. First, there may be
temporal mismatch between occurrence data and environmental
data. This is likely to be a more severe problem for remotely
sensed predictors, which generally capture snapshots in time,
rather than climatological averages, and which often describe
environmental conditions, such as vegetation patterns, that
vary over shorter time frames than does climate. Many of the
occurrence records within museum or herbarium collections,
comprising GBIF, are older; the land cover and vegetation
productivity present at those sites at the time of the species’
presence may not be represented by remotely sensed current
conditions. To test for this problem, we repeated our models
with recent records only (collected after 1992). Removing older
species records reduced model performance overall, likely due
to the much smaller samples available to train the models.
Remotely sensed predictors received slightly higher importance
values in the COMB models than previously, but were still
secondary to climatic variables (Supporting Information S3).
Although temporal correspondence among species occurrences
and environmental variables is a concern and should be
considered in further studies, it does not seem to contribute to
our conclusions.

Alternatively, the quality and information content of the RS
products may influence model performance. The consensus land
cover product was used in this study because it was expected
to be more reliable than traditional global land cover datasets.
Additionally, its continuous estimates of the probability of class
presence may avoid errors associated with categorical data and
provide some level of subpixel land cover information. However,
it still has limitations related to the input datasets. Global land
cover products are constrained to a relatively simple legend, with
broad classes. The consensus product is further constrained to
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FIGURE 4 | Marginal response curves of Ageratum conyzoides (a non-native herb best modeled by COMB), Leucaena leucocephala (a non-native
shrub best modeled by COMB) and Mikania micrantha (a non-native vine best modeled by COMB) for variables with importance >5% for each
species in COMB models. The orange curve in each plot is average response curve and the blue is standard deviation across all 10 partition runs. See other
species in Supporting Information S1.
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FIGURE 5 | Maps of predicted richness of invasive species by life form produced with COMB set (combing climate and remote sensing data).
(A) Herb, (B) Shrub and (C) Vine. The browner the color, the higher the predicted richness of invasive species.

a simplified legend that harmonizes each of the input products.
The generality of these classes may not capture regionally relevant
differences and limit their usefulness to SDMs. The consensus
land cover product is also limited by quality of the individual

products it integrates (Tuanmu and Jetz, 2014). In land cover
products, classification errors are not evenly distributed across
space and classes (Strahler et al., 2006). For instance, lower
accuracy for land cover classes of GlobCover products was found
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FIGURE 6 | Maps of predicted richness of invasive species by origin produced with COMB set (combing climate and remote sensing data). (A) Native,
(B) Non-native species. The browner color, the higher predicted richness of invasive species.

FIGURE 7 | Uncertainty in global land cover products revealed by the maximum class probability value, excluding the open water class, received in a
pixel in the Consensus Land Cover dataset (Tuanmu and Jetz, 2014). Low maximum probability values indicate a great deal of disagreement between
individual land cover products.
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in some areas with limited data coverage (e.g., some areas in
Amazonia) or in rugged terrain such as Laos (Bicheron et al.,
2008). Also, cloud cover reduces the quality of the RS data,
especially in tropical regions (Bradley and Fleishman, 2008).

Classification errors do seem to be contributing to the
performance of RS variables in our study. Unexpectedly, species
associations with land cover classes, when they were found to
be important to models, were overwhelmingly negative. There
is no ecological or logical reason for this. Instead, because the
consensus land cover product estimates the certainty that a class
is present, given the individual land cover datasets, this suggests
that habitat suitability tends to be greatest for the modeled species
in areas with high land cover uncertainty. Such uncertainty
may be due to inadequacies in the class definitions in this
region, fine-scaled mosaics of land cover classes within a 1 km
pixel, or simply poor classification performance. Indeed, using
the maximum estimated probability of class membership as an
indicator of certainty supports this interpretation. Large areas of
SEA, including many of the same locations with high-predicted
invasibility, exhibit low certainty of the land cover information
(Figure 7). Further work is necessary to validate the consensus
land cover products in SEA and, especially, to determine the
meaning of areas with great class uncertainty. This is troubling
and argues against the use of global land cover products in
SDMs. Quantitative remotely sensed estimates of ecosystem
structure and function may overcome some of the problems of
categorical datasets, and we strongly advocate for their expanded
use and continued evaluation in SDM contexts. Interestingly,
the quantitative measures of vegetation productivity used in this
study, while making important contributions to the RS model
set, generally dropped out of the COMB models. This may be
because of interdependencies between climate variables and the
photosynthetic efficiency term used in the MODIS GPP product,
which relies on both temperature and moisture (Running et al.,
2004), and thus would not be detected by the simple univariate
correlation analysis used to screen input variables.

Another limitation to model performance in this study is
the sample size of the species occurrence records. Performance
of SDMs in the study varied among species. Species with few
occurrence records occurring in a wide range of habitats, such
as Mimosa pigra, have lower performance than others. This
is because SDMs perform better with larger sample sizes and
for species occupying a narrow environmental niche than for
generalist species (Hernandez et al., 2006). Although Mimosa
pigra has been recorded as one of the most invasive plants in
many countries in SEA (Thi, 2000; MacKinnon, 2002; Vanna
and Nang, 2005; Nghiem et al., 2013), the number of occurrence
records of this species in SEA is still limited. This reflects
lack of research and awareness of the public and government
for invasive species detection in the region, which should
be more encouraged. Also, using hyperspectral RS to detect
invasive species occurrences (Andrew and Ustin, 2008; Hestir
et al., 2008) can be a solution for developing high-quality,
unbiased occurrence data inputs (He et al., 2015), and also
may reduce temporal mismatch between species occurrences
and environmental variables. In addition to model development,
sample size influences model evaluation. Performance measures

such as the AUC provide a single spatial summary value. AUC has
been criticized for its inability to convey information about the
spatial pattern of predictions or uncertainty (Franklin, 2010a).
Yet spatial variation can be considerable. Because AUC is often
calculated from a tiny proportion of the pixels modeled, wildly
different spatial predictions can receive similar, and indeed very
high, AUC estimates (Synes and Osborne, 2011). For this reason,
we prefer to present a suite of evaluation tools, including total
predicted area and estimates of spatial agreement, in addition to
the AUC.

Habitat Suitability
Both non-native and native invasive species were predicted to
occur across large areas of SEA, and thus may pose similar
risk to the region. Among life forms, shrub species potentially
pose greater risk because of the predictions of high shrub
invader richness over large areas, based on the set of species
assessed. Most countries in the region have suitable habitat for
these species. In general, shrubs exhibited weaker environmental
associations than the other life forms (as seen in the lower
variable importance scores), suggesting they may be tolerant
of a broader range of conditions. Relative to shrub and herb
species, vine species’ distributions were most strongly driven by
climatic factors. This may facilitate their spread under climate
change. Invasive species may disproportionately benefit from
global climate change (Dukes and Mooney, 1999), and vines
may be a good example of these concerns. Climate projections
for the region include increases in annual temperature and in
summertime precipitation (Christensen et al., 2007), the latter
variable was important to nearly all vine species distributions, all
of which showed positive associations. Without strong controls
by biotic factors such as land cover, vines may invade valuable
evergreen broadleaf trees forests in SEA. A native vine, Merremia
boisiana is an example. In the past decade, the vine has spread
dramatically over South China (Wang et al., 2005; Wu et al.,
2007) and the north and center of Vietnam (Le et al., 2012) and
our results reveal that more than 1.6 million km2 are invasible
to this species, largely concentrated in China and Vietnam.
These findings suggest that awareness of invasive species and
prevention and eradication efforts should not overlook the life
form or origin status of the species of concern.

Interestingly, in contrast to our expectations, we found that
for some species (Microstegium ciliatum and Mimosa diplotricha)
suitability was negatively related to the variability of GPP
(GPP_CV), which was used to proxy disturbance processes. This
suggests that invasion is possible even with low disturbance,
contradicting knowledge summarized by Lozon and MacIsaac
(1997) that the establishment and spread of invasive plants are
associated with disturbance. Although disturbance is certainly a
factor in many invasions, an over-generalization that invasion
requires disturbance can lead to low awareness of invasion in
intact areas. Further field-based studies about invasibility of these
species under difference disturbance levels should be conducted.
The effectiveness of GPP variability as an indicator of diverse
disturbance processes and diverse ecosystems should also be
evaluated. The relatively short duration of the satellite archive
from which it was computed is certainly a limitation.
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Given that many of the study species were identified from
Vietnam’s invasive weed list, it is not surprising that we found,
within the region, north and north central Vietnam were most
susceptible to the invasion of weeds (Figures 5, 6). However, it is
worth emphasizing that many of the invasive weeds predicted in
this region also have high invasibility in China, where outbreaks
have been recorded (Yan et al., 2001). Biological invasions are a
trans-border issue. Similarly, provinces (Guangxi, Quangdong,
and Yunnan) sharing borders with Vietnam, Lao, and Myanmar
are listed as areas with a high number of invasive species in China
(Xu et al., 2012). Effective management requires that invasions
be considered in the context of the region (SEA), rather than a
country (Paini et al., 2010). Studies such as ours can help the
Vietnamese and other governments to prioritize management
actions for invasive species within the country and also to inform
biosecurity policy across borders.

CONCLUSION

This study demonstrated that although the environmental
attributes derived from RS data did not strongly improve the
accuracy of SDM predictions, they did provide more landscape-
level detail that refined species distribution predictions in
space. Therefore, the inclusion of remotely sensed variables in
SDMs likely is worthwhile. Furthermore, our results highlight
shortcomings of land cover products, which are widely used
in SDMs. There are widespread uncertainties in global land
cover products and, disconcertingly, those sites with the greatest
uncertainty also seem to be consistently ecologically important
to the modeled species. We caution against continued use of

land cover information in SDMs, which may propagate errors
and confound interpretation. Greater adoption of quantitative
remotely sensed datasets estimating ecosystem structure and
function may mitigate the weaknesses and limited utility of
RS observed in this study. From the standpoint of biodiversity
management, our findings have implications in targeting
management to susceptible areas, providing initial data for
invasive species risk assessments, and proposing biosecurity
policy in the region.
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