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Hyperspectral reflectance derived vegetation indices (VIs) are used for non-destructive
leaf area index (LAI) monitoring for precise and efficient N nutrition management. This
study tested the hypothesis that there is potential for using various hyperspectral VIs for
estimating LAI at different growth stages of rice under varying N rates. Hyperspectral
reflectance and crop canopy LAI measurements were carried out over 2 years (2015
and 2016) in Meichuan, Hubei, China. Different N fertilization, 0, 45, 82, 127, 165, 210,
247, and 292 kg ha−1, were applied to generate various scales of VIs and LAI values.
Regression models were used to perform quantitative analyses between spectral VIs
and LAI measured under different phenological stages. In addition, the coefficient of
determination and RMSE were employed to evaluate these models. Among the nine
VIs, the ratio vegetation index, normalized difference vegetation index (NDVI), modified
soil-adjusted vegetation index (MSAVI), modified triangular vegetation index (MTVI2)
and exhibited strong and significant relationships with the LAI estimation at different
phenological stages. The enhanced vegetation index performed moderately. However,
the green normalized vegetation index and blue normalized vegetation index confirmed
that there is potential for crop LAI estimation at early phenological stages; the soil-
adjusted vegetation index and optimized soil-adjusted vegetation index were more
related to the soil optical properties, which were predicted to be the least accurate for
LAI estimation. The noise equivalent accounted for the sensitivity of the VIs and MSAVI,
MTVI2, and NDVI for the LAI estimation at phenological stages. The results note that
LAI at different crop phenological stages has a significant influence on the potential of
hyperspectral derived VIs under different N management practices.

Keywords: rice, LAI, phenology, N-nutrition, hyperspectral reflectance

INTRODUCTION

The application of remote sensing technology inprecision agriculture management has become
increasingly prevalent among farmers due to its ability to optimize crop status by facilitating sound
crop monitoring (Pei et al., 2014). In recent decades, the development of crop canopy sensors
has enabled precision agriculture to be used for non-destructive estimation of crop biophysical
attributes in fields or even at the regional scale (Diacono et al., 2013). Remote sensing can generate
useful spectral reflectance data that provide rapid means for monitoring growth status through
various biophysical, physiological, or biochemical crop parameters. For crop dynamic monitoring,
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timely observation of the plant biophysical properties and
ecophysiological status, e.g., leaf area, light use efficiency,
chlorophyll, and nitrogen contents, has become crucially
important to enhance nutrition and improve yield for universal
food sanctuary and sustainable development (Zhao et al., 2013).

Rice (Oryza sativa L.) is a staple food crop for global food
security, providing food for over 3 billion people and more than
20% of their daily calorie intake (Luck et al., 2011; Seck et al.,
2012). During rice canopy development, a photosynthetic photon
flux density (PPFD) gradient can provide accurate description
of the physiological relationship between nitrogen content and
leaf area distribution vertically in canopy (Yang et al., 2014). But
the construction of PPFD is time-costing and difficult to measure
parameters. The leaf area index (LAI), the one-sided green leaf
area per unit ground surface area, is a key biophysical variable
that is directly involved with canopy functioning processes,
such as photosynthesis and respiration (Casa et al., 2012). It is
a necessary parameter used by crop physiologists to remotely
estimate canopy cover, crop growth and yield. Moreover, it is
functionally linked to the canopy spectral reflectance (Jin et al.,
2013).

A healthy plant canopy visually appears green because the
leaf pigments strongly absorb blue and red light and reflect
green light, and the reflectance curve in the red and blue
region shows a valley. Thus, increased reflectance at the near
infrared region was more related to the vegetation cover,
biomass, leaf internal cell structure, water content of the leaf,
and LAI, while the boundary of the red region has strong
absorption due to the leaf chlorophyll, N concentration, and
reflection due to mesophyll cells in growing plants (Datt,
1998). A number of approaches have been used to address
the relationship between biophysical parameters and canopy
reflectance (Lemaire et al., 2008; Gitelson et al., 2014; Padilla
et al., 2014), but recently two main strategies have use to
estimate the LAI estimation using spectral data: (1) the empirical
relationship between spectral vegetation indices (VIs) and
biophysical variables and (2) inversion of canopy radiative
transfer models, such as PROSAIL model (Jacquemoud et al.,
2009). The latter strategy uses complicated models because
they do not account for as much of the optimized variability
caused by the large spatial coverage of biophysical variables
(Ryu et al., 2009). However, more effective ways to predict
the LAI from spectral data are based on the first strategy to
explore the empirical relationship between VIs verses LAI (Xie
et al., 2014). These methods are computationally undemanding
and sequentially simple to employ while capturing broad array
of variation in crop canopy features, and widely used to
estimate vegetation biophysical variables, including the LAI
(Le Maire et al., 2008). However, broad-band VIs (band
width > 50 nm) are often affected by high soil and water
background reflectance when the vegetation canopy is sparse.
Furthermore, the integrating processing of spectra to derive
broad-band data result in loss of detail of vegetative spectral
response (Broge and Leblanc, 2000). So, the narrow-band indices
(band width < 10 nm) were considered as promising ways for
improve accuracy of estimation of canopy parameters (Li et al.,
2012).

Hyperspectral reflectance provides measurements over
numerous narrow wavelength bands (<10 nm) that contain
additional bands within the visible, near infrared, and short
wave infrared region of the spectrum (400–2500 nm). Moreover,
hyperspectral reflectance data make it possible to collect
more than 100 bands at high resolution (Sahoo et al., 2015).
Hyperspectral reflectance has thus been used to identify the
regions of the spectrum that are sensitive to the LAI and least
affected by exogenous factors (Ryu et al., 2011). Thus, the
selection of important wave bands in hyperspectral data for
the constriction of more specific VIs is the key to maximizing
the efficacy of LAI estimation (Ryu et al., 2009). Moreover,
combinations of these wave bands provide optimal information
about LAI characterization with the phenological stages of
the crop under varying environmental conditions and cultural
practices (Nakanishi et al., 2012).

Agronomically, rice has three growth stages: vegetative,
reproductive pre-heading, and reproductive post-heading. The
vegetative stage is phase from germination to panicle initiation,
the pre-heading phase is from panicle initiation to heading, and
the post-heading phase is from heading to maturity. Canopy
spectral reflectance at the phenological stage of tillering and
elongation under different canopy sensors shows that some VIs
are significantly associated with the rice phenological stages
(Bajwa et al., 2010). The relationship between VIs and the LAI
at these phenological stages greatly contributes to estimating
biomass accumulation and evaluating the N status of rice plants
(Motohka et al., 2010). Consequently, it is indispensable for
investigating the relationship between VIs and phenological
stages under diverse nitrogen dynamics (Sadras and Lemaire,
2014). In our study, the main objective was to evaluate the
potential of various VIs in relation to the LAI at phenological
stages using data collected over 2 years. This study also focuses
on the variation of LAI over phenological periods, which is
important for N fertilization management. The expected results
would help to provide a technical approach for non-destructive
LAI monitoring and to develop a simple, rapid, and cost-
effective N management strategy at different phenological stages
of rice.

MATERIALS AND METHODS

Experimental Site
Two-year field experiments were conducted in two different fields
at the experimental station of Huazhong Agricultural University
in Meichuan town, located (30◦ 06′ N, 115◦ 35′ E) in Wuxue,
Hubei, China, from May to October in 2015 and 2016 (Figure 1).
The area has a subtropical moist monsoon climate with a mean
annual temperature and precipitation of 17.7C and 1903 mm,
respectively, with summer being the driest period and autumn
being the wettest period. The pH of the soil is 5.14. The soil
contained 26.50 g/kg organic matter, 1.57 g/kg total N, 11.6 mg/kg
available phosphate (P2O5), and 137.5 mg/kg available potassium
(K2O) at the layer of 0–20 cm.

The experiment was conducted as a randomized complete
plot design (RCBD) with eight levels of nitrogen in three
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FIGURE 1 | Photographs of mid season rice in 2015 and 2016 (A). Meichuan Experimental Station and field view (B). Before heading (C) at maturity.

blocks (replicates). Treatments used various N fertilizer rates,
0, 45, 83, 128, 165, 210, 248, and 293 kg N ha−1 urea (N
concentrations 46%), for each plot of, which was 20 m2 N
application was distributed as 55% for pre-planting, 20% for
jointing dressing, and 25% for booting dressing. To prevent water
and fertilizer flow between neighboring plots, 40 cm wide ridges
covered with plastic film inserted in 30 cm of soil were used
to separate each plot. Before transplanting, 90 kg ha−1 of P2O5
from SSP (P2O5 content 12%) and 180 kg ha−1 of K2O from
potassium (K2O content 60%) were applied. Twenty-seven to
thirty-day old seedlings of Japonica rice cultivar Shenliang you
5814 were transplanted with a spacing of 0.24 m × 0.30 m to
maintain a planting density of approximately 26 hills per m2.
Following the local rice production standards, weeds, insects
and diseases were strictly controlled throughout the rice growth
periods.

Canopy Spectral Reflectance
Measurements
Spectral reflectance measurements were assessed between the
hours of 10:00 and 14:00 China Standard (UTC+8) under a clear
and cloudless sky during the early (Transplanting) to late (before
maturity) growing stages in 2015 and 2016. Canopy spectra were
acquired with a portable Field spec (FRTM) spectro-radiometer,
an analytical spectral device (ASD, Boulder, CO, United States)

that covers the 350–2500 nm spectral range (Pimstein et al.,
2011). The radiometer sensor head was positioned 1 m above
the canopy, centered over the rice hills, with a nadir field of
view of 25◦. In 2015 and 2016, three spectral measurements (two
at corners and one at the center) were performed within each
plot to cover the entire plot. The radiance from a Spectral on
reference panel (BaSO4) was acquired to derive the reflectance,
which was used to calibrate the instrument at 15–30 min intervals
prior to each plot reflectance measurement (Mahajan et al.,
2014).

In 2015, spectra were collected on five dates between the
beginning of tillering (25 DAT), elongation (35 DAT), booting (45
DAT), heading (55 DAT), and 10 DAH (65 DAT) to maturity (July
10 and 28, August 11 and 28, September 11) for all experimental
plots.

In 2016, measurements were acquired at the same plane
described above at the growth stages, e.g., tillering, elongation,
booting, and heading, on July 7 and 23, August 15 and 30 and
September 13 for all plots.

Finally, the spectral data were exported to RS2 (ASD, Boulder,
CO, United States) software and averaged for each plot. The data
were reduced at the edges and for three different spectral portions
(e.g., 1341–1439, 1791–1959, and 2401–2500 nm) due to the large
noise caused by water absorption in the raw spectrum (Abdel-
Rahman et al., 2010).
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FIGURE 2 | Correlation among LAI and the canopy reflectance at
wavelength from 440 to 900 nm using data collected in 2015 and 2016.

Determination of the Field LAI Value
In both years, on the same dates as the spectra acquisitions,
the non-destructive LAI was measured using a Plant Canopy
Analyzer (LAI-2000, Li-Cor, Inc., Lincolin, NE, United States)
over all the plots (Stroppiana et al., 2009). The LAI-2000 is among
the most widely used advanced canopy LAI analyzers for many
crops, such as cotton, soybean, and maize (Hirooka et al., 2016);
in particular, it can be employed to measure leaf growth and
perform LAI estimation in different rice cultivars under varying
N fertilization regimes.

Plant Sampling and Measurement
Each plot consisted of two sub-sampling points, and five rice
plants from each sub-sampling point were picked without their
roots at each phenological stage after acquisition of spectral data.
Before each sampling, the tiller number of each hill within the
plot was counted (except border rows) for the average tiller

number per hill. After removing the panicles (after heading),
the fresh plant samples were put into plastic bags and moved
to the laboratory. From all of the fresh samples, green leaves
were separated from the stems and weighted, and then, all of the
samples were placed in a ventilated oven for 30 min at 105◦C and
dried at 75◦C until they reached a constant weight.

The dried samples were milled to pass a 1-mm screen and were
then stored in plastic bags for nitrogen analysis. Plant samples of
0.5 g were digested with 3 g of catalyst of 3:1 K2SO4:CuSO4 for at
least 6 h at 375◦C, along with 10 ml of H2SO4 and 2 ml of H2O2.
The total N concentration in the leaf tissue was determined by a
Flow Injection Analyser (Germany SEAL) three times, and LNC
(g−1 LDW) was calculated on the basis of the unit dry weight.
Then, leaf nitrogen accumulation was computed as the product
of LNC (%) and leaf dry weight (LDW, g DW m−2).

Spectral Vegetation Index
The optimum combination of wavelengths used to calculate the
VIs was derived from an analysis of the correlation between
the LAI and canopy spectra. Strong relationships were shown
(Figure 2) in the blue portion (440–475 nm), shorter green
portion (500–550 nm), longer red portion (650–700 nm), and
a particular portion of NIR (780–850 nm) (Darvishzadeh et al.,
2009; Delegido et al., 2015). The same approach has already been
applied at single phenological stage to estimate the chlorophyll,
biomass as well as nitrogen contents with spectral reflectance in
many crops of cotton, potato, soybean, and maize with coefficient
of variation (CV) less than 25% and coefficient of determination
(R2) higher than 0.80 (Nguy-Robertson et al., 2013). The bands
included in the VIs are usually limited, and PCA has a better
effect, which can make use of complementary advantages among
different spectral bands (Ray et al., 2006).

Canopy spectral data have been used to developed several VIs
to estimate biophysical parameters, e.g., LAI, chlorophyll and
biomass (Delegido et al., 2013). Descriptions and formulas of
VIs used in this study are listed in Table 1. RVI and normalized
difference vegetation index (NDVI) have been frequently used to
estimate LAI changes during the growth period due to simplicity,
reduced influence of soil background and environmental noise

TABLE 1 | Descriptions and formulas of vegetation indices investigated in this study.

Index Formula Reference

RVI RVI = ρnir/ρred Pearson and Miller, 1972

NDVI NDVI = (ρnir − ρred)/(ρnir + ρred) Rouse et al., 1973

GNDVI GNDVI = (ρnir − ρgreen)/(ρnir + ρgreen) Gitelson et al., 1996

BNDVI BNDVI = (ρnir − ρBlue)/(ρnir + ρBlue) Wang et al., 2007

SAVI SAVI = (ρnir−ρred)
(ρnir+ρred+0.5) (1+ 0.5) Huete, 1988

OSAVI OSAVI = (1+ 0.16) (ρnir−ρred)
(ρnir−ρred+0.16) Rondeaux et al., 1996

MSAVI MSAVI = 1
2

[
2ρnir + 1−

√
(2ρnir + 1)2 − 8(ρnir − ρred)

]
Qi et al., 1994

MTVI2 MTVI = 1.5[1.2(ρnir−ρgreen)−(2.5ρred−ρgreen)]√
(2ρnir+1)2−(6ρnir−5

√
ρred)−0.5

Haboudane et al., 2004

EVI EVI = 2.5 (ρnir−ρred)
(ρnir+6ρred−7.5ρblue+1) Huete et al., 1994

RVI, ratio vegetation index; NDVI, normalized difference vegetation index; GNDV1, green normalized difference vegetation index; BNDV1, blue normalized difference
vegetation index; SAVI, soil adjusted vegetation index; OSAVI, optimized soil-adjusted vegetation index; MSAVI, modified soil-adjusted vegetation index; MTVI2, modified
triangular vegetation index; EVI, enhances vegetation index.
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FIGURE 3 | Change in canopy reflectance spectra under different N
rates at critical growth stages of rice in 2015 (A) 2016 (B), where N0, N3,
N5.5, N8.5, N11, N14, N16.5, and N19.5 represents 0, 45, 83, 128, 165,
210, 248, and 293 kg N ha−1, respectively.

(Pearson and Miller, 1972). However, the NDVI correlation
with LAI can discriminate between the green leaf cellular
structure, pigment and other canopy material (Rouse et al., 1973).
GNDVI was found to be more sensitive to the leaf pigment
concentration (Gitelson et al., 1996). BNDV1 has been developed
to assess vegetation information but is seldom used because it is
more easily affected by the atmosphere. However, atmospheric
correction is applied to obtain accurate spectral reflectance
(Wang et al., 2007).

The vegetation canopy has been shown to be influenced by the
soil background during phenological growth; therefore, SAVI was
constructed to minimize the effect of the soil background (Huete,
1988). To enhance the sensitivity of the leaf pigment variability
and reduce the soil background reflectance contribution, SAVI
was improved into OSAVI (Rondeaux et al., 1996).

An improved form of SAVI with self-adjustment factor L
was modified soil-adjusted vegetation index (MSAVI), which

FIGURE 4 | Changes in canopy reflectance spectra from tillering to
maturity of rice in 2015 (A) elongation, booting, and heading stages in 2016
(B) under different N rates.

accounts for the difference in the soil background; however, this
factor does not appear in the MSAVI formulation (Qi et al.,
1994). The MSAVI construction based on the radiative transfer
model is sensitive for canopy LAI estimation. Moreover, MSAVI
has been proven to be less affected by a dense canopy variation
and soil spectral properties. Modified triangular vegetation
index (MTVI2) is an optimized form of MCARI and TVI that
determines the function of green LAI. Furthermore, it preserves
the LAI sensitivity as well as the resistance to chlorophyll
reflectance (Delegido et al., 2013). To account for the sensitivity
of the leaf biomass and minimize the effect of background
sources, the enhances vegetation index (EVI) was constructed
to optimize the vegetation signal with through a de-coupling of
the canopy background signal and a reduction in atmosphere
influences (Huete et al., 1994, 2002).

Sensitivity Analysis
The determination coefficient (R2) and root mean square error
(RMSE) were used to assess the predictive accuracy of the
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FIGURE 5 | Changes in LAI over the phenological period from tillering
to maturity of rice under different N rates in 2015 (A) and 2016 (B),
where N0, N3, N5.5, N8.5, N11, N14, N16.5 and N19.5 represents 0, 45, 83,
128, 165, 210, 248, and 293 kg N ha−1 respectively.

regression models (Govaerts et al., 1999). They constitute
measurements of how good the regression models (best-fit
function) are at capturing the relationship between LAI and VIs.
When the best-fit function is non-linear, however, the R2 as well
as the RMSE values may be misleading. The noise equivalent
(NE) was used to determine the LAI estimation accuracy. The
sensitivity of the VIs to the LAI was compared qualitatively using
the following (1) expression of the NE. A NE with a diverse
scale and dynamic limits proves its advantage compared to direct
assessment among VIs and is thus used to verify the sensitivity of
predicating LAI changes (Viña et al., 2011).

NE1LAI =
RMSE {VI vs. LAI}

d(VI)/d(LAI)
(1)

where the RMSE is the RMSE of the best fit function between
VI and LAI and d(VI)/d(LAI) is the first derivative in this

FIGURE 6 | Changes in LAI over two growing seasons in rice under
varied N levels 0, 45, 83, 128, 165, 210, 248, and 293 kg N ha−1 in 2015
(A) and 2016 (B) respectively.

relationship that is observed during the growing season (Gitelson,
2013). The NE method has already been applied to evaluate
the sensitivity of the photosynthetic active radiation, chlorophyll
contents, and vegetation fraction in wheat, maize, and soybean
(Schlemmera et al., 2013).

RESULTS

Variation of the Rice Canopy Reflectance
Spectra under Different N Rates
The canopy reflectance spectra of rice showed a marked variation
under different N rates in each successive year, as shown in
Figures 3A,B. The behavior of different regions of the spectrum
changed due to the nitrogen response, analogous with other green
plants. Our study demonstrated that nitrogen application from N
0 to N 19.5 over the crop phenological stages increased reflectance
in the near infrared region (>720 nm) and reduced reflectance
in the ultraviolet region (350–400 nm) as well as in the visible
region (400–720 nm) of the spectrum. Within the visible region,
the reflectance of the green region (490–560 nm) was always
slightly higher than that of the violet-blue (400–425 nm) and the
red region (640–685 nm). Moreover, the reflectance values near
680–900 and 530–560 nm result from the response of the rice
canopy under different N rates. The impacts of increased leaf
coverage and reduced soil and water below canopy on canopy
reflectance were weakened by averaging all spectra measured
under each N supply rate in whole growing season.

Canopy Reflectance Spectra at
Phenological Stages
Canopy reflectance spectra were not constant but consistently
changed at critical growth stages during the phenological period
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2015 and 2016, as shown in Figures 4A,B. The variations of
the canopy spectra revealed that from the elongation to heading
stages of crop development, while the reflectance pattern showed
a reducing trend in the visible region and increasing in the NIR
region. In particular, the reflectance behavior of the red and green
portion of the visible region changed due to the senescence of
the crop. The reason for this change is that the dense canopy at
early stages causes the increment in the green pigment, especially
in leaves, to decrease reflectance. Thus, the crop phenological
stages can be clearly identified. Leaf color variation, e.g., green-
yellow when heading to maturity and nitrogen remobilization
from leaf to grain at anthesis stage, caused reflectance increments
in the NIR region under varying N strategies. Such variations
of reflectance in the visible and near infrared regions were in
agreement with the variations in the relationship between the
coefficient of correlation and LAI over combined as well as
individual critical growth stages of the rice crop as shown in
Figure 2.

Relationship of LAI to the Phenological
Stages
The LAI measurements exhibit significant variation under
different N rates, showing a consistent pattern among different
phenological stages for the two crop years, as shown in
Figures 5A,B. However, the LAI value over the growth period was

higher in 2016 than in 2015 under the same N rates, presumably
due to the relatively higher soil fertility status in the later growing
season, as shown in Figure 6.

Leaf area index increases with zero-N to higher-N rates as
plants develop from tillering to maturity. The leaf appearance was
more erect in plots with zero-N rates characterized by lower LAI,
and all of the changes were manifested in the canopy reflectance.
The LAI reaches its peak before heading and goes down with
plant senescence, demonstrating significant leaf area changes
related to the phenological stages. The increased LAI before
heading was due to the expansion of the leaf photosynthetic area,
building of carbohydrates, which improve the leaf area, leaf dry
weight and overall plant biomass.

The ranges of the LAI in the entire dataset were
(0.19–7.62 m2 m−2) in 2015 and 2016 (Table 2). In 2015,
the LAI gradually increased along with plant growth from
an average value of 0.36 m2 m−2 at tillering with zero-N to
5.06 m2 m−2 at maturity with maximum N-application. The
significant LAI difference between the zero-N treatment and
high-N application (292 kg ha−1) occurred at booting, with
a value of 5.85 m2 m−2 in 2015. This trend of variation was
also true for 2016 across all phenological stages (Table 2).
Across the phenological stages, the LAI value ranged from 0.80
to 6.78 m2 m−2 with 0–292 N kg ha−1, and the maximum
7.62 m2 m−2 was recorded at booting stages under higher
(292 N kg ha−1) N application. The variation range of LAI

TABLE 2 | Description of Oryza sativa L. leaf area index (LAI) at phenological stages under different nitrogen rates.

LAI m2 m−2 2015 LAI m2 m−2 2016

N rates Tillering Elongation Booting Heading Maturity Tillering Elongation Booting Heading Maturity

0 N kg ha−1 0.36 f 1.06 h 3.04 h 2.57 h 2.49 h 0.80 e 1.88 e 3.46 f 1.81 g 1.60 e

45 N kg ha−1 0.56 e 0.56 g 3.91 g 3.36 g 3.25 g 1.15 d 2.29 de 4.47 e 3.07 f 2.22 e

82 N kg ha−1 0.64 d 2.15 f 4.42 f 4.16 f 3.46 f 1.28 cd 2.51 d 4.90 e 3.69 e 3.24 d

127 N kg ha−1 0.72 c 2.56 e 4.88 e 4.74 e 4.01 e 1.33 cd 2.98 c 5.91 d 4.22 de 4.15 c

165 N kg ha−1 0.77 b 2.61 d 5.17 d 4.94 d 4.49 d 1.53 bc 3.22 c 6.45 cd 4.65 d 4.46 c

210 N kg ha−1 0.78 b 2.75 c 5.30 c 5.17 c 4.57 c 1.63 b 3.95 b 7.17 c 5.68 c 4.90 bc

247 N kg ha−1 0.86 a 3.54 b 5.55 b 5.45 b 5.02 b 1.71 ab 4.18 b 7.42 b 6.76 b 5.42 b

292 N kg ha−1 0.90 a 3.73 a 5.85 a 5.56 a 5.06 a 1.91 a 4.88 a 7.62 a 7.84 a 6.78 a

In a column, means followed by the letters a–h denote significant difference at 5% level by ANOVA.

TABLE 3 | Summery statistics of leaf area index (LAI) at phenological stages under different nitrogen rates in 2015 and 2016.

LAI m2 m−2 2015 LAI m2 m−2 2016

N rates Mean ± SD† Minimum Maximum Mean ± SD Minimum Maximum

0 N kg ha−1 1.90 + 0.15 0.36 3.04 1.62 + 0.52 0.19 3.46

45 N kg ha−1 2.56 + 0.23 0.56 3.91 2.27 + 0.25 0.24 4.47

82 N kg ha−1 2.97 + 0.22 0.64 4.42 2.76 + 0.45 0.32 5.00

127 N kg ha−1 3.39 + 0.39 0.72 4.88 3.15 + 0.33 0.34 5.91

165 N kg ha−1 3.60 + 0.21 0.77 5.17 3.40 + 0.21 0.38 6.45

210 N kg ha−1 3.72 + 0.30 0.78 5.30 3.96 + 0.37 0.37 7.17

247 N kg ha−1 4.08 + 0.37 0.86 5.55 4.54 + 0.30 0.51 7.42

292 N kg ha−1 4.22 + 0.27 0.90 5.85 5.16 + 0.42 0.64 7.62

†Mean ± SD, mean and standard deviation.
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TABLE 4 | Relationship of vegetation indices to the phenological stages in 2015 and 2016.

Phenological stages

2015 2016

Vegetation indices Elongation Booting Heading Elongation Booting Heading

RVI 14.93 ± 4.53† 13.92 ± 3.20 9.48 ± 1.86 12.85 ± 4.08 13.82 ± 0.59 8.88 ± 0.49

NDVI 0.86 ± 0.04 0.86 ± 0.04 0.80 ± 0.04 0.82 ± 0.47 0.84 ± 0.58 0.81 ± 0.70

GNDVI 0.84 ± 0.04 0.84 ± 0.04 0.80 ± 0.03 0.87 ± 0.52 0.84 ± 0.61 0.82 ± 0.57

BNDVI 0.93 ± 0.02 0.93 ± 0.02 0.92 ± 0.01 0.93 ± 0.47 0.90 ± 0.27 0.88 ± 0.24

SAVI 0.73 ± 0.06 0.74 ± 0.06 0.66 ± 0.05 0.74 ± 0.48 0.73 ± 0.38 0.68 ± 0.30

OSAVI 0.86 ± 0.04 0.87 ± 0.04 0.82 ± 0.03 0.87 ± 0.47 0.86 ± 0.37 0.83 ± 0.31

MSAVI 0.73 ± 0.09 0.74 ± 0.08 0.62 ± 0.07 0.79 ± 0.54 0.74 ± 0.48 0.69 ± 0.42

MTVI2 0.71 ± 0.09 0.71 ± 0.09 0.58 ± 0.07 0.74 ± 0.53 0.73 ± 0.50 0.63 ± 0.50

EVI 0.74 ± 0.09 0.75 ± 0.09 0.61 ± 0.07 0.75 ± 0.58 0.76 ± 0.49 0.63 ± 0.45

†Mean ± SD, mean and standard deviation.

FIGURE 7 | Best-fit models between vegetation indices (VI) and LAI at elongation stage.

demonstrated a significant change in the absorption of the
red and green regions and reflectance in the NIR region due
to changes in the leaf area over the growth period. Moreover,
dynamic changes in the leaf area and its contents, such as

chlorophyll, over the growth period could also be a good
indicator of non-destructive N measurement and management.
The LAI ranges in both years (Table 3) were sufficiently broad
to evaluate the potential ability of the VIs; however, the dataset
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FIGURE 8 | Best-fit models between VIs and LAI at booting stage.

shows that the LAIs had a specific range of values at each
phenological stage.

Relationship of Vegetation Indices to the
Phenological Stages
The spectral indices expressed the variation on the canopy
development from elongation to heading, temporal signature
of RVI (14.93–9.48) and NDVI (0.86–0.80) changes in 2015
and same pattern of variation (12.85–8.88) in RVI and NDVI
(0.82–0.81) observed in 2016 from elongation to heading
probably due to initiation of panicle in canopy, Moreover, the
NDVI and RVI tend to saturate easily with the progress of
canopy growth (Table 4). SAVI and OSAVI expressed better but
similar behavior less sensitive to canopy biophysical parameters
(0.73–0.66) from booting to heading in 2015 and (0.75–0.63) in
2016 at same growth stages as compared to MSAVI and MTVI
which are modified index, and values comprised 0.73–0.62 and
0.074–0.63 from elongation to heading and in 2015 and 2016.
GNDVI value ranged 0.84–0.80 from elongation to heading in
2015 and 0.87–0.82 in 2016 at same phenological stage. While
the BNDVI showed relatively higher values of from elongation to

heading in each year. This variation vegetation of indices might
be due to leaf angle within the canopy rather than the individual
leaf reflectance properties at different phenological stage.

Evaluation of Vegetation Indices for
Estimation of Rice LAI at Phenological
Stages
To examine the suitability of the canopy reflection feature for
assessing the LAI, the corresponding best fit models of the
relationships between all of the VIs and LAI were discriminated
at each phenological stage shown in Figures 7–9. Typical patterns
of change in different phenological stages demonstrated the
potential utility of these indices. The first part in Table 5 shows
the R2 of the estimation equation for the relationship between the
LAI and VIs for 2015 and 2016. The results indicated that all of
the indices were increasingly related to the temporal distribution
of the LAI data of 2015 and 2016 at different phenological
stages, except for tillering and maturity, which showed the lowest
R2 values for all of the indices and were excluded from the
data. Among the nine indices, the RVI captured the LAI, with
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FIGURE 9 | Best-fit models between VIs and LAI at heading stage.

TABLE 5 | Validation of R2 and RMSE for estimation of LAI at phenological stages.

R2 val 2015 R2 val 2016 RMSE

Vegetation indices Elongation Booting Heading Elongation Booting Heading Elongation Booting Heading

RVI 0.92 0.94 0.80 0.72 0.49 0.39 0.32 0.28 0.24

NDVI 0.89 0.67 0.75 0.77 0.69 0.48 0.30 0.28 0.21

GNDVI 0.89 0.64 0.71 0.72 0.46 0.45 0.40 0.29 0.34

BNDVI 0.89 0.45 0.57 0.57 0.25 0.34 0.42 0.30 0.36

SAVI 0.62 0.60 0.50 0.42 0.35 0.31 0.36 0.37 0.34

OSAVI 0.64 0.62 0.52 0.42 0.34 0.33 0.35 0.36 0.24

MSAVI 0.79 0.75 0.65 0.56 0.55 0.46 0.30 0.31 0.22

MTVI2 0.81 0.77 0.70 0.59 0.58 0.49 0.32 0.31 0.23

EVI 0.72 0.69 0.63 0.52 0.47 0.46 0.34 0.31 0.23

RVI, ratio vegetation index; NDVI, normalized difference vegetation index; GNDV1, green normalized difference vegetation index; BNDV1, blue normalized difference
vegetation index; SAVI, soil adjusted vegetation index; OSAVI, optimized soil-adjusted vegetation index; MSAVI, modified soil-adjusted vegetation index; MTVI2, modified
triangular vegetation index; EVI, enhances vegetation index.

the highest determination coefficient (R2
= 0.92), followed by

NDVI, BNDVI, and GNDVI (R2
= 0.89) at the elongation stage.

By contrast, SAVI and OSAVI exhibited (R2
= 0.62, 0.64) less

significant relationships with LAI at the elongation stage as
shown in Table 5. The RVI (R2

= 0.94), followed by MTVI2,
MSAVI, EVI, and NDVI (R2

= 0. 77, 0.75, 0.69, and 0.67,
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FIGURE 10 | Relationship between measured LAI and estimated LAI at elongation.

respectively), had the best relationship, but the least was observed
with BNDVI (R2

= 0.45) at the booting stages. The next heading
phenological stage provides best-fit models of the LAI with the
VIs RVI (R2

= 0.80), NDVI (R2
= 0.75), and GNDVI (R2

= 0.71),
followed by MTVI2 (R2

= 0.70) and MSAVI (R2
= 0.65).

However, when the LAI exceeded saturation (LAI > 3 m2 m−2)
at the booting stage, the NDVI leveled off (R2

= 0.67), and its
sensitivity suffered while the MSAVI (R2

= 0.75) and MTVI2
(R2
= 0.77) have modifying factor to cope with it. All of the

indices approached high values at higher doses of N from tillering
to booting and diminished from heading to maturity.

Validation of Estimation between the
Vegetation Indices and LAI
To test the above calibration models, relationships between the
VIs and LAI, potential validation with the subsequent year 2016
data (n= 120) was applied, showing the highest values at different
phenological stages (Figures 10–12). The regression equation

derived from the calibration data from 2015 were applied to
validate the 2016 data and resulted in the estimation of the paddy
LAI. The R2 of the calibration and R2 of the validation at three
phenological stages were calculated for all of the models for the
datasets from both years. The predictive ability of VIs to assess the
LAI was identified by RMSE and a sensitivity analysis. The R2 and
RMSE results were better and fluctuated with the phenological
stages, as summarized in Table 5. Moreover, it is common that
the results of the estimation of the LAI with calibration data are
better than those of the validation data.

The equations with the first two maximum R2 were fitted
between the LAI and RVI (0.72) and NDVI (0.77) or GNDVI
(0.72) have strong correlations, and the relationship between
SAVI, OSAVI, and EVI exhibited a smaller correlation (0.42, 0.42,
and 0.52) at the elongation of crop development. At the booting
stage NDVI (0.69) and MTVI2 (0.58) shows best fit with LAI
followed by MSAVI (0.55) and RVI (0.49). VIs MTVI2 (0.49) and
NDVI (0.48) followed by MSAVI (0.46) are strongly correlated
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FIGURE 11 | Relationship between measured LAI and estimated LAI at booting.

to the LAI at heading stage. The uppermost values were ≤0.44
for the RMSE for all of the indices. The BNDVI, GNDVI, and
SAVI (0.42, 0.40, and 0.36) exhibited the highest RMSE at the
elongation of the vegetative phase. At booting NDVI, RVI both
have least RMSE (0.28). The results indicate that all indices are
closely related to the LAI and thus have a high potential to
provide an accurate LAI estimation over a temporal distribution.
Therefore, it is not necessary that the best-performing indices at
each stage perform best at each phenological stage and that all of
the indices behave uniformly at all stages performed best with LAI
estimation. The best fit least RMSE was observed for the NDVI
(0.21), MTVI2 (0.23), and MSAVI (0.22) at heading stages of crop
development. The performance of the VIs fluctuated with the
growth stage, but most of the indices had the best performance
at later growth stages when the canopy was partially closed,
as at earlier stages, the field was fully covered by the canopy.
VIs constructed from green, blue, and red band combination
reflectance show a better relationship with the LAI at early stages.

In addition, the results of our field study suggest that an
analysis of the field LAI with the canopy spectral reflectance at
three phenological stages, e.g., elongation, booting, and heading,
might be used to evaluate the potential of LAI-related VIs.

Sensitivity Analysis
In this study, we evaluate the potential relationship of eight VIs
vs. LAI over the phenological periods of a rice crop and test the
sensitivity to overcome the decreased sensitivity of VIs at varying
N levels (Figure 13). BNDVI and OSAVI exhibited the highest
insensitivity. EVI and RVI showed moderate insensitivity, while
MTVI2 was consistent. A significant decrease in the sensitivity
of NDVI was observed when the LAI exceeded three concealing
changes in vegetation with moderate to high levels (Yang et al.,
2010; Nguy-Robertson et al., 2014). As the LAI > 3 NE of both
NDVI and GNDVI, however, decreased the NE of NDVI, which
remained below that of GNDVI. NEs for MSAVI and MTVI2
were similar and were linearly related to the LAI (Dong et al.,
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FIGURE 12 | Relationship between measured LAI and estimated LAI at heading.

2016). The sensitivity of SAVI and OSAVI are soil-related indices
and are relatively inconsistent over the entire range of the LAI,
so they are not included in the representation. EVI and RVI
are better indices for numerical changes in the LAI as the other
indices are frail at higher values of LAI. On the basis of the high
sensitivity and degree of linearity, MSAVI and MTVI2 might be
useful for LAI estimation.

DISCUSSION

The results were supported by the hypothesis that multiple peak
regions of the canopy spectral reflectance formulate many narrow
band VIs, which have the potential to be used to evaluate crop
biophysical parameters. The reflectance around the peaks was
used to extract accurate information to improve the quantitative
accuracy of the VIs used to evaluate crop attributes, such as
LAI, N status, biomass, and so on Li et al. (2013). Such regions

of the canopy spectra have been observed in many crops, such
as wheat, maize, soybean, cotton, and grass (Perry et al., 2012).
Up to five vegetation stages have already been identified in both
maize and soybean using spectral reflectance under varying rates
of fertilizers (Morier et al., 2015). In the current study, the
potential of using nine VIs with the rice LAI was investigated
at different phenological stags under varying N fertilization
levels and showed that the progress of the LAI from tillering to
heading has a reasonable association with the canopy reflectance
characteristics in rice (Figures 4, 5), which has been reported
previously for cultivation (Maki and Homma, 2014; Xiong et al.,
2016).

Canopy reflectance reaches its peak value before heading and
decreases later, at senescence. Transformation in the canopy
reflectivity of different spectral parts is concurrent with the
LAI and is often confounded through modification of the leaf
chlorophyll contents during plant growth with increasing N
fertilization (Jégo et al., 2012). Elevated N application generates
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FIGURE 13 | Sensitivity analysis for nine spectral VIs tested to LAI.

taller plants with higher numbers of tillers and a greater leaf
area, which requires more carbohydrates in the plant canopy
(Pan et al., 2011). Not only the biophysical characteristics of
vegetation, canopy architecture, atmospheric absorption, and
scattering affect the canopy hyperspectral reflectance but so
do the direction of incidence radiation and soil backgrounds
(Carvalho et al., 2016). During early phenological periods of our
rice crop, variations in the maximum spectral reflectance in the
visible region are likely to be small, which might be due to the
soil water background and nitrogen contents in the canopy under
varying N application. However, predominant changes in the NIR
reflectance with changes in the leaf orientation from horizontal
to vertical at certain stages of the growth cycle in rice owing
to overlapping leaves reduced the active photosynthetic size
after the increment of the LAI reached a plateau, in accordance
with previous studies (Tian et al., 2009, 2013; Huang et al.,
2013). Younger rice plants absorb more photosynthetically active
radiation from the visible region due to the formation of new
tissue (until all tillers have reached the flag leaf emergence stage)
and chlorophyll filling, and they reflect more NIR due to chlorotic
and necrotic turning during senescence, as has been previously
reported (Feng et al., 2014; Gaju et al., 2014). Moreover, the
visible regions of the spectral spaces are useful for estimating
the vegetation fraction in multi-crop and background datasets
(Gitelson et al., 2002). The LAI was maximum at the booting
stage after the subsequent loss in the LAI with each growth step
(Liu et al., 2012) due to the loss in photosynthetic activity under
the same environmental conditions (Wu et al., 2016). The rice
yield was positively correlated with the LAI near the heading,
maintaining the larger leaf area duration before heading until
harvesting (Song et al., 2011).

High values of LAI in successive years at phenological stages
corresponding to previous studies might be due to better inherent
N fertility, soil N balance and crop background. Previously,
hyperspectral reflectance screened growth changes of wheat crop
in response to NPK applications (Mahajan et al., 2014).

Vegetation indices, such as NDVI and RVI, demonstrated
close relationship with the LAI as the LAI was at approximately
3 m2 m−2 (Zhang et al., 2015). Reduced variability in red
reflectance pred and NIR reflectance pNIR when the LAI
approaches the saturation point and formulation of the NDVI
has pred, and pNIR makes it insensitive. While GNDVI could
not obviously reach a saturation level, even the LAI value was
approximately moderate to high (4–5.5). This result provides
more accurate information for assessing the LAI under different
nutritional statuses as well as different phenological stages of
paddy crop. Moreover, accurate estimation of the LAI could
be completed with blue and green bands compared to red,
when even the LAI should be greater than 3 m2 m−2 at the
elongation stage (Li et al., 2010; Motohka et al., 2010; Inoue
et al., 2012), suggesting that the blue region could improve the
ability to estimate the LAI across different phenological stages
in rice and wheat. However, the maximum NIR reflectance
region response cannot be neglected under changing rice growing
conditions (Hatfield and Prueger, 2010). The NIR band has a
strong contribution to strengthening relationships between the
spectral reflectance and LAI (Darvishzadeh et al., 2009). At the
late reproductive phase, reflectance in the NIIR region represents
a supplementary increase over the red region due to additional
vegetative growth of spikes, resulting in an increase in the NDVI
value at this stage (Gitelson et al., 2014). The notable raise in
NDVI is evident in our study during the reproductive phase,
where additional vegetative growth or the development of a spike
during later growth could contribute to the reflectance. These
findings demonstrated once again that the spectral reflectance
and VIs were sensitive to early and late reproductive growth due
to the senescence effect (Gitelson et al., 2005; Li et al., 2016). The
NE was applied as an accuracy indicator and was used to verify
the performance of vegetative indices for LAI estimations in the
field; moreover, it accounts for both a scattering point from the
slope and the slope of the best fit function (Saltelli et al., 2010;
Xiao et al., 2014). Non-linearity of the best-fit function between
the VIs and LAI at the phenological periods shows the irregular
pattern of sensitivity. The NE is a better index for assessing the
sensitivity of spectral parameters and the LAI because the RMSE
and R2 values can be misleading about the estimation accuracy of
the LAI (Heiskanen et al., 2013; Marshall et al., 2016).

CONCLUSION

The LAI a more sensitive growth parameter for spectral
reflectance and VIs at vegetative than in reproductive stage due
to senescence effects. Our results demonstrate that for rice leaf
characterization reflectance at various band such as infrared
(>760 nm) and visible (524–534, 583, 687, and 707 nm) are most
important. At the vegetative phase of the crop, elongation or
stand establishment, the LAI shows the maximum relationship
with the spectral reflectance and VIs among phenological stages
with eight nitrogen fertilization levels. The RVI and NDVI
exhibited significant potential for LAI estimation, followed by
MSAVI and MTVI2 at the most critical elongation, the booting
and heading growth stages. RVI and EVI showed changes in
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LAI sensitivity that was capable of detecting differences in
treatments during the senescence phase, which caused a more
rapid loss of leaf area. Moreover, potential evaluation of VI
through the sensitivity analysis technique is not only suitable for
the investigation of VIs but can also be extended to other climatic,
ecological, and environmental variables. Using the changes in the
LAI and spectral sensitivity at phenological stages, three stages
were identified to evaluate the potential of VIs. Future studies
should be directed toward determining other species and crops
as well as to changing phenological growth and other biophysical
parameters under varying N rates.
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