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The particles within the size range of 1 and 100 nm are known as nanoparticles (NPs).
NP-containing wastes released from household, industrial and medical products are
emerging as a new threat to the environment. Plants, being fixed to the two major
environmental sinks where NPs accumulate — namely water and soil, cannot escape
the impact of nanopollution. Recent studies have shown that plant growth, development
and physiology are significantly affected by NPs. But, the effect of NPs on plant
secondary metabolism is still obscure. The induction of reactive oxygen species (ROS)
following interactions with NPs has been observed consistently across plant species.
Taking into account the existing link between ROS and secondary signaling messengers
that lead to transcriptional regulation of secondary metabolism, in this perspective we
put forward the argument that ROS induced in plants upon their interaction with NPs
will likely interfere with plant secondary metabolism. As plant secondary metabolites
play vital roles in plant performance, communication, and adaptation, a comprehensive
understanding of plant secondary metabolism in response to NPs is an utmost priority.

Keywords: nanoparticles, nanopollution, reactive oxygen species, antioxidant enzymes, signaling pathways, plant
secondary metabolism

INTRODUCTION

The National Science Foundation (NSF) projects that the global market for products incorporating
nanotechnology could amount to three trillion USD by 2020 (Roco, 2011). Currently, more than
1000 commercial products containing nanoparticles (NPs) are available in the market (Vance et al.,
2015). The NPs commonly found in household, industrial and healthcare products are Au (Gold),
Ag (silver), ZnO (zinc oxide), CuO (copper oxide), TiO2 (titanium dioxide), Fe3O4/Fe2O3 (iron
oxides), and CeO2 (cerium oxide). Similarly, incorporation of Ag, ZnO, TiO2, and SiO2 (silicon
dioxide) NPs into agrochemicals (pesticides, fungicides, herbicides, fertilizers, etc.) is expected to
have great potential in nanotechnology-driven smart agriculture (DeRosa et al., 2010; Khot et al.,
2012; Parisi et al., 2015; Boxi et al., 2016; Fraceto et al., 2016). The expanding applications of
nanotechnology in domestic, industrial and agricultural sectors are also increasing the possibilities
of NPs reaching the environment as nanomaterial-containing wastes. As the consequences of NP
pollutants reaching the environment in significant quantities are unknown, understanding the
plant’s response to NPs is an intensive area of research.
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Most studies with NPs indicated a certain degree of
phytotoxicity, especially at high concentrations (Miralles et al.,
2012). Depending on their size, NPs can enter plant cells from
the apoplast, crossing the plasma membrane via endocytosis;
subsequently they can be translocated from one part to another
through symplastic flow (Rico et al., 2011). There is also evidence
for the transport of NPs into subcellular organelles such as the
nucleus, plastids, and vacuoles (Chichiriccó and Poma, 2015; Da
Costa and Sharma, 2016).

Arabidopsis thaliana (L.) Heynh seedlings grown on soil
treated with ZnONPs were observed to have reduced growth,
chlorophyll content and rates of photosynthesis (Wang et al.,
2016). These effects were concentration dependent with growth
compromised 20 and 80%, respectively, with 200 and 300 mg/L
treatments. At 300 mg/L, the chlorophyll content, net rate of
photosynthesis, leaf stomatal conductance, intercellular CO2
concentration and transpiration rate were all reduced more
than 50%. Similarly, an increasing concentration (0, 2.5, 10,
50, 100, and 1,000 mg/L) of CuONPs negatively affected
Oryza sativa L. seedling growth in a hydroponic system (Da
Costa and Sharma, 2016). Photosynthetic rate, transpiration
rate, stomatal conductance, maximal quantum yield of PSII
photochemistry, and photosynthetic pigment contents declined,
with a complete loss of PSII photochemical quenching at
1,000 mg/L. ZnONPs inhibited the expression of genes involved
in chlorophyll synthesis and photosystem structure (Wang
et al., 2016). Accumulation of CuONPs in the chloroplasts was
accompanied by a lower number of thylakoids per granum
(Da Costa and Sharma, 2016). AgNPs inhibited Ribulose-
1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity and
the photo-protective capacity of PSII in the model aquatic
higher plant Spirodela polyrhiza (L.) Schleid (Jiang et al.,
2017).

In addition to reduced photosynthetic rates the growth
inhibition caused by NPs has also been associated with increased
oxidative stress (Da Costa and Sharma, 2016; Li et al., 2016;
Jiang et al., 2017). However, whether the arrest of photosynthesis
or the induction of oxidative stress is the dominant impact
of NPs is a subject of debate, since both of them go hand in
hand (Aarti et al., 2006). Although the accumulation of NPs
in chloroplasts and damage to the photosynthetic apparatus
(Da Costa and Sharma, 2016; Jiang et al., 2017) supports the
former, the fact that to reach the chloroplast NPs must cross
the plasma membrane, where they can induce reactive oxygen
species (ROS) via NADPH oxidases (Sosan et al., 2016) argues
the reverse. ROS production, damage to the membrane structure
and function, and fluctuation in antioxidant enzymatic activities
are documented across plant species as common responses to
NPs (Thwala et al., 2013; Vannini et al., 2013; Fu et al., 2014;
Mirzajani et al., 2014; Hossain et al., 2015; Xia et al., 2015;
Jiang et al., 2017; Tripathi et al., 2017). A few studies have
also demonstrated that treatment of plants and photosynthetic
microorganisms with NPs resulted in increased production of
phenolics (Comotto et al., 2014; Ghorbanpour and Hadian,
2015; Večeřová et al., 2016), which might act as antioxidants
to scavenge the ROS (Dixon and Paiva, 1995; Franklin et al.,
2009).

The possibility of NP-induced disturbance in ROS
homeostasis and associated signaling pathways as a major
factor underlying the changes in plant secondary metabolism is
explored in this perspective.

“OXIDATIVE STRESS”- A COMMON
RESPONSE OF PLANT TO NPs
TREATMENT

Oxidative burst has been consistently reported in plants exposed
to toxic levels of NPs (Thwala et al., 2013; Hossain et al., 2015; Xia
et al., 2015). Exposure to various NPs, for example Ag, ZnO, and
Al2O3 (aluminum oxide), also induced reactive nitrogen species
(∗NO, nitric oxide) and H2O2 in duckweed (Thwala et al., 2013),
corn (Zhao et al., 2012) and tobacco bright yellow (BY2) cells
(Poborilova et al., 2013). In tobacco BY2 cells, Al2O3NPs also
induced the production of superoxide anion (O·−2 ), one of the
highly reactive forms of ROS. Although it is debated whether
ROS activation stems, actually, from intact particles or, rather,
from ions released from NPs, recent studies supports the latter. In
S. polyrhiza, internalized Ag, regardless of whether the exposure
was Ag+ ions or AgNPs, had the same capacity to generate ROS
supporting the hypothesis that intracellular AgNPs dissociate into
highly toxic Ag+ ions (Jiang et al., 2017). Similarly, dissolution
of ZnO, CuO, and CeO2 (cerium oxide) into their respective
ions (Zn2+, Cu2+, or Ce4+) has been established in other studies
(Ebbs et al., 2016; Bradfield et al., 2017).

The mechanisms through which NPs induce ROS production
and trigger oxidative stress at the cellular level have also been
investigated. AgNPs triggered Ca2+ and ROS signaling through
the induction of Ca2+-permeable pores and direct oxidation of
apoplastic L-ascorbic acid (Sosan et al., 2016). A. thaliana root
hair defective 2 (rhd2) mutant lacking NADPH oxidase RBOHC
showed a significantly lower level of ROS generation in response
to AgNPs compared with wild type plants (Sosan et al., 2016),
indicating that the accumulation of ROS in cells is mediated by
plasma membrane-bound NADPH oxidases (RBOH) enzymes
that produce ROS at the apoplast (Mittler, 2017). On the
other hand, chloroplastic ROS generation was observed in
S. polyrhiza, based on the ability of AgNPs to inhibit Ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco) activity and the
photo-protective capacity of PSII (Jiang et al., 2017).

A common consequence of harmful levels of ROS is the
damage to cellular macromolecules including membrane lipids
that leads to cell death (Van Breusegem and Dat, 2006).
Growth inhibition coupled with lipid peroxidation has been
reported in O. sativa seedlings treated with 0.5, 1.0, and
1.5 mM CuONPs (Shaw and Hossain, 2013) and in 5 mg/L
TiO2NPs treated Nitzschia closterium (Xia et al., 2015). NPs
could also damage other macromolecules like DNA. AgNPs and
AuNPs affected cell division in Allium cepa L. root tip cells
(Kumari et al., 2009; Rajeshwari et al., 2016), the former causing
chromatin bridge, chromosomal stickiness, disturbed metaphase,
multiple chromosomal breaks, and cell disintegration (Kumari
et al., 2009). DNA damage, mitochondrial dysfunction, and cell
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apoptosis were also observed in eggplant, as a consequence of
oxidative stress induced by Co3O4 (Faisal et al., 2016).

In order to mitigate the effects of oxidative stress plants
activate both enzymatic and non-enzymatic antioxidant defense
machinery to scavenge excess ROS (Sewelam et al., 2016).
Correspondingly, NP-mediated stress also activates plant’s
antioxidant machinery/enzymes. Briefly, superoxide dismutase
(SOD) that catalyzes detoxification of O·−2 into either ordinary
molecular oxygen (O2) or H2O2 and ascorbate peroxidase
(APX), which detoxifies peroxides such as H2O2 using ascorbic
acid (Asc) as a substrate, were up-regulated in plants upon
treatment with NPs (Fu et al., 2014). Whereas, dehydroascorbate
reductase (DHAR) and monodehydroascorbate reductase
(MDAR) enzymes that regulate the cellular Asc redox state
were downregulated (Fu et al., 2014). Proteomic analysis of
AgNPs treated O. sativa roots revealed an increased abundance
of SOD, APX, and glutathione-S-transferase (GST) (Mirzajani
et al., 2014). These NPs also stimulated the activities of SOD
and APX significantly, while inhibiting glutathione reductase
(GR) and DHAR in Pisum sativum L. seedlings (Tripathi
et al., 2017). Catalase (CAT), another enzyme that protects
the cells from oxidative damage, was significantly elevated
upon treatment of wheat roots with 500 mg/kg CuONPs
(Dimkpa et al., 2012). Maize plants germinated and grown on
soil amended with 0, 400, and 800 mg/kg CeO2NPs showed
a concentration dependent increase in the accumulation
of H2O2 when tested after 10 days, but on day 20 did not
show any difference (Zhao et al., 2012). A similar pattern in
the increase of CAT and APX activities protected CeO2NP
treated maize seedlings from lipid peroxidation (Zhao et al.,
2012).

As disruption of ROS homeostasis impairs plant growth
and development, whereas maintenance of ROS levels within
appropriate parameters promotes plant health (Mittler, 2017), it
is emerging that the induction of antioxidant machinery by NPs
might promote plant growth as reported in a few studies (Sharma
et al., 2012; Burman et al., 2013; Kumar et al., 2013) as long
as a harmful level of ROS is not reached in the cells, whereas,
once breached, this may lead to impaired organelle function,
membrane damage, and eventually phytotoxicity.

“NP-INDUCED ROS”- CAN IT BE AN
INDUCTIVE SIGNAL FOR PLANT
SECONDARY METABOLISM?

So far, a handful of studies have showed that NPs could affect
microbial and plant secondary metabolism. For example,
the concentration of phenolic compounds secreted to
an extracellular medium was increased 127.5 and 22.1%,
respectively, in Arthrospira platensis Gomont (cyanobacterium)
and Haematococcus pluvialis Flotow (microalga) after treating
with 100 mg/L TiO2NPs (Comotto et al., 2014). Artemisinin
content was increased 3.9-fold in Artemisia annua L. hairy
root cultures after 900 mg/L AgNPs treatment for 20 days
(Zhang et al., 2013). This increase was associated with
oxidative stress (H2O2 production), lipid peroxidation and

CAT activity. A substantial increase in plant growth and
diosgenin concentration was observed in fenugreek after
2 µg/kg AgNP treatment (Jasim et al., 2017). Ferulic acid and
isovitexin were increased in barley plants exposed to CdO
(cadmium oxide) NPs in air for 3 weeks at a concentration
of 2.03 ± 0.45 × 105 particles cm−3 (Večeřová et al., 2016).
In A. thaliana, anthocyanin and flavonoid biosynthetic genes
were upregulated in response to AgNPs (Garcia-Sanchez et al.,
2015).

Although all the studies discussed above provide evidence
for NP-mediated modulation of plant secondary metabolism,
the following studies provide an indirect link between ROS
and secondary metabolism. Satureja khuzestanica Jamzad calli
growth improved significantly with increasing concentrations of
carbon nanotubes (CNTs) in culture medium up to 50 mg/L, and
then began to decrease at 500 mg/L (Ghorbanpour and Hadian,
2015). At this toxic concentration (500 mg/L), the highest
level of H2O2 was observed together with significantly higher
polyphenol oxidase (PPO), peroxidase (POD), and secondary
metabolic activities. Similarly, when A. thaliana was exposed
to 250 and 1000 mg/L CeO2 and indium oxide (In2O3) NPs,
in addition to excessive ROS production, the activities of
phenylalanine ammonia lyase (PAL) and PPO were greatly
induced (Ma et al., 2016) revealing a possible role of secondary
metabolism in protection against oxidative stress. Furthermore,
PAL is the first enzyme of the general phenylpropanoid
pathway that catalyses the deamination of phenylalanine to
cinnamic acid and play a key role in diverting aromatic
amino acids from primary metabolism to phenylpropanoid
pathway.

There are several lines of evidence available in the literature
implicating ROS-mediated signaling events as inductive cues
for plant secondary metabolism. ROS themselves are signaling
molecules, capable of inducing plant secondary metabolism
(Simon et al., 2010). This could be observed during the wound-
induced activation of secondary metabolism where ROS plays a
key role as signaling molecule (Jacobo-Velazquez et al., 2015). In
addition, ROS can also serve as signals for other messengers like
jasmonic acid (JA) (Wu and Ge, 2004), salicylic acid (SA) (Maruta
et al., 2012; Noshi et al., 2012; Wrzaczek et al., 2013; Baxter et al.,
2014), ethylene (ET) (Zhang et al., 2016a,b), NO (Wang et al.,
2013; Lindermayr and Durner, 2015), brassinosteroids (BRs) (Xia
et al., 2009), etc., which are capable of modulating secondary
metabolisms directly or indirectly.

To support the notion that ROS induced by NPs acts as signals
for secondary metabolism, many indirect lines of evidence are
available. ZnONP treatment induced SA, whereas it suppressed
JA in A. thaliana (Vankova et al., 2017). Moreover, SA-
mediated systemic acquired resistance (SAR) against microbial
pathogens was compromised in A. thaliana after treatment
with Ag, TiO2NPs, and CNTs, resulting in an increased
colonization by Pseudomonas syringae pv. tomato, Pst (Garcia-
Sanchez et al., 2015). These authors further suggested that SA
pathway repression is a common feature of NP exposure, as
an inducible kinase in the pathway that activates basal immune
response upon perception of bacterial flagellin namely FLG22-
induced receptor-like kinase 1 (FRK1) was downregulated in
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FIGURE 1 | Scheme describing the possible mechanisms involved in nanoparticle (NP)-mediated modulation of plant secondary metabolism. NPs
could enter plant cells through plasmodesmata causing physical damage to the plasma membrane. NPs can induce reactive oxygen species (ROS) production,
calcium spikes, antioxidant machinery activation, mitogen-activated protein kinase (MAPK) cascades, etc., which could lead to transcriptional reprogramming of
secondary metabolism. Activation of enzymatic antioxidant and non-enzymatic machineries including secondary metabolism might scavenge the ROS and protect
the cells from oxidative damage. However, the exact consequences of changes in plant secondary metabolism on plant’s performance, environmental interaction,
growth and yield are still unknown. On the other hand, the ability of NPs (e.g., anatase TiO2) to enter plant cells and exit as NP-secondary metabolite complexes
could possibly be exploited for molecular pharming (dotted arrows).

response to NPs (Garcia-Sanchez et al., 2015). In addition to
SA-mediated SAR, other signaling pathways such as ET, BRs,
and NO were also affected by NPs. In A. thaliana plants
treated with AgNPs expression of ET biosynthetic components
1-aminocyclopropane-1-carboxylate synthase ACC and ACC
oxidase 2 was reduced (Syu et al., 2014), suggesting that these
NPs could inhibit ET perception and affect its biosynthesis. ET
is an important signaling molecule mediating sesquiterpenoid
biosynthesis in the Atractylodes lancea (Thunb.) endophytic
fungi Gilmaniella sp. AL12 interaction (Yuan et al., 2016). BRs,
the steroidal phytohormones that play important role in plant
growth, secondary metabolite accumulation, stress responses and
adaptation (Çoban and Göktürk Baydar, 2016) could ameliorate
ZnONP-induced oxidative stress by improving antioxidant
potential and redox homeostasis in tomato seedlings (Li et al.,
2016). NO, another universal signaling molecule that plays a
central role in secondary metabolite production in plant cells
(Zhang et al., 2012; Zeng et al., 2014), is also involved in plant–NP
interactions. For instance, AgNP-induced phytotoxicity could be
alleviated by NO in P. sativum seedlings (Tripathi et al., 2017).
Correspondingly, O. sativa NO excess mutant (noe1) plants were

tolerant to ZnONP treatment, whereas OsNOA1-silenced (noa1)
plants were susceptible to ZnONP-induced phytotoxicity (Chen
et al., 2015).

POSSIBLE MECHANISMS OF
MODULATION OF PLANT SECONDARY
METABOLISM BY NPs

Although the aforementioned reports suggest that NPs are
interfering with various signaling pathways and capable of
modulating plant secondary metabolism, the exact mechanism
through which this modulation could occur is not understood.
We believe that the initial responses of plants to NPs
might include elevated levels of ROS, cytoplasmic Ca2+ and
upregulation of mitogen-activated protein kinase (MAPK)
cascades similar to other abiotic stresses (Figure 1) because of the
following reasons. Recognition of AgNPs by plasma membrane
bound receptors triggered a Ca2+ burst and ROS induction
in A. thaliana (Sosan et al., 2016). Ca2+ levels and associated
signaling pathway proteins were found to be upregulated in the
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proteomic analysis of AgNP treated O. sativa roots (Mirzajani
et al., 2014). These authors hypothesized that AgNPs, or ions
released thereof, impede cell metabolism by binding to Ca2+

receptors, Ca2+ channels, and Ca2+/Na+ ATPases. As sensed
by calcium binding proteins (CaBPs) or other NP-specific
proteins, NPs either mimic Ca2+ or signaling molecules in
the cytosol (Khan et al., 2017). MAPK phosphorylation, and
activation of downstream transcription factors generally lead to
the transcriptional reprogramming of secondary metabolism in
plants (Vasconsuelo and Boland, 2007; Schluttenhofer and Yuan,
2015; Phukan et al., 2016). Although no direct evidence for
the involvement of MAPK pathways in plant-NP interactions
is available, animal and human cell line studies revealed that
analogous pathways are involved in AgNP-induced signaling
(Eom and Choi, 2010; Lim et al., 2012), and it has been postulated
that plants may also utilize MAPK cascade upon exposure to Ag
NPs (Kohan-Baghkheirati and Geisler-Lee, 2015).

CONCLUSION

As discussed in this article, exposure to NPs has the potential to
alter plant secondary metabolism. Secondary metabolites can act
as phytoalexins/phytoanticipins to protect plants from herbivores
and pathogenic microbes, as signals for plant symbiotic
interactions with beneficial microbes and as allelopathic agents
to protect plants from rhizosphere competitors (Abdel-Lateif
et al., 2012). In addition, they also serve as physical and chemical
barriers to abiotic stressors and as antioxidants to scavenge ROS
(Franklin et al., 2009; Ramakrishna and Ravishankar, 2011).
Although NP-mediated changes in plant secondary metabolism
would affect the optimal interaction of plants with their
surrounding environment and possibly growth and productivity,
substantial research is needed to understand the exact impact.

The presence of NPs in the environment might affect
the pharmacological properties of medicinal plants, as many
phytomedicines exert their beneficial effects through additive
or synergistic actions of several compounds acting on single
or multiple target sites associated with a physiological process
(Briskin, 2000). While it is necessary to tackle these adverse
effects, NP-mediated changes in secondary metabolism could
also be beneficial if harnessed in such a way that NPs are used
as elicitors in molecular pharming to enhance the production
of desired secondary metabolites. For example, the content
of important drugs like artemisinin (Zhang et al., 2013) and
diosgenin (Jasim et al., 2017) were enhanced in plants treated with
NPs. The ability of NPs to adsorb secondary metabolites (Kurepa
et al., 2014) could be exploited for purification of precious
compounds from plants via nanotrapping, if harnessed properly.
Similarly, in vitro green synthesis of NPs using plant extracts can
be further extended to develop high throughput tools to purify
specific classes of compounds, as green synthesized NPs are often
found as conjugates of secondary metabolites (Marslin et al.,
2015).

Paucity of knowledge on the exact consequences of NP
accumulation in the environment on plant metabolism is

exacerbated by the fact that most of the studies have been
conducted under controlled laboratory conditions and typically
at much higher concentrations than what could be expected
in the environment (Gottschalk et al., 2009; Baalousha et al.,
2016). For instance, to induce statistically significant changes in
the growth characteristics of A. thaliana plants, the minimum
concentration of AgNPs was 300 mg/L under laboratory
conditions (Sosan et al., 2016), a value much higher compared to
the predicted environmental concentration of AgNPs in different
environmental compartments: e.g., 1.3–4.4 mg/kg in sewage
sludge (Gottschalk et al., 2009; Choi et al., 2017). Moreover, the
ecologically relevant concentration of NPs largely depends on
their environmental fate, plant species, characteristics of NPs,
the medium through which it reaches the plant, etc. (Yin et al.,
2012; Syu et al., 2014; Goswami et al., 2017), in addition to
other, yet unknown, parameters. Although a recent study showed
that ecologically relevant size and concentration of CdONPs
could activate secondary metabolism in barley plants (Večeřová
et al., 2016), it is difficult to generalize the impact of NPs on
plant secondary metabolism in the environmental perspective.
However, it is necessary to improve our understanding on
the environmental fate of NPs and their hazards/risks, testing
ecologically relevant conditions and concentrations in the
context of plant secondary metabolism. Considering that plant
secondary metabolism includes a vast array of compounds that
are tightly controlled by signaling events and environmental
cues, a case-by-case analysis might be necessary to have a deeper
understanding.
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